// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/objects.h" #include #include #include #include #include #include "src/objects-inl.h" #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/api-arguments-inl.h" #include "src/api-natives.h" #include "src/api.h" #include "src/arguments.h" #include "src/ast/ast.h" #include "src/ast/scopes.h" #include "src/base/bits.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/builtins/builtins.h" #include "src/code-stubs.h" #include "src/compiler.h" #include "src/counters-inl.h" #include "src/counters.h" #include "src/date.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/execution.h" #include "src/field-index-inl.h" #include "src/field-index.h" #include "src/field-type.h" #include "src/frames-inl.h" #include "src/globals.h" #include "src/ic/ic.h" #include "src/identity-map.h" #include "src/interpreter/bytecode-array-iterator.h" #include "src/interpreter/bytecode-decoder.h" #include "src/interpreter/interpreter.h" #include "src/isolate-inl.h" #include "src/keys.h" #include "src/log.h" #include "src/lookup-inl.h" #include "src/macro-assembler.h" #include "src/map-updater.h" #include "src/messages.h" #include "src/objects-body-descriptors-inl.h" #include "src/objects/api-callbacks.h" #include "src/objects/arguments-inl.h" #include "src/objects/bigint.h" #include "src/objects/code-inl.h" #include "src/objects/compilation-cache-inl.h" #include "src/objects/debug-objects-inl.h" #include "src/objects/frame-array-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/js-array-inl.h" #ifdef V8_INTL_SUPPORT #include "src/objects/js-collator.h" #endif // V8_INTL_SUPPORT #include "src/objects/js-collection-inl.h" #include "src/objects/js-generator-inl.h" #ifdef V8_INTL_SUPPORT #include "src/objects/js-list-format.h" #include "src/objects/js-locale.h" #endif // V8_INTL_SUPPORT #include "src/objects/js-regexp-inl.h" #include "src/objects/js-regexp-string-iterator.h" #ifdef V8_INTL_SUPPORT #include "src/objects/js-plural-rules.h" #include "src/objects/js-relative-time-format.h" #endif // V8_INTL_SUPPORT #include "src/objects/literal-objects-inl.h" #include "src/objects/map.h" #include "src/objects/microtask-inl.h" #include "src/objects/module-inl.h" #include "src/objects/promise-inl.h" #include "src/parsing/preparsed-scope-data.h" #include "src/property-descriptor.h" #include "src/prototype.h" #include "src/regexp/jsregexp.h" #include "src/safepoint-table.h" #include "src/snapshot/code-serializer.h" #include "src/snapshot/snapshot.h" #include "src/source-position-table.h" #include "src/string-builder-inl.h" #include "src/string-search.h" #include "src/string-stream.h" #include "src/unicode-cache-inl.h" #include "src/unicode-decoder.h" #include "src/utils-inl.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-objects.h" #include "src/zone/zone.h" #ifdef ENABLE_DISASSEMBLER #include "src/disasm.h" #include "src/disassembler.h" #include "src/eh-frame.h" #endif namespace v8 { namespace internal { bool ComparisonResultToBool(Operation op, ComparisonResult result) { switch (op) { case Operation::kLessThan: return result == ComparisonResult::kLessThan; case Operation::kLessThanOrEqual: return result == ComparisonResult::kLessThan || result == ComparisonResult::kEqual; case Operation::kGreaterThan: return result == ComparisonResult::kGreaterThan; case Operation::kGreaterThanOrEqual: return result == ComparisonResult::kGreaterThan || result == ComparisonResult::kEqual; default: break; } UNREACHABLE(); } std::ostream& operator<<(std::ostream& os, InstanceType instance_type) { switch (instance_type) { #define WRITE_TYPE(TYPE) \ case TYPE: \ return os << #TYPE; INSTANCE_TYPE_LIST(WRITE_TYPE) #undef WRITE_TYPE } UNREACHABLE(); } Handle Object::OptimalType(Isolate* isolate, Representation representation) { if (representation.IsNone()) return FieldType::None(isolate); if (FLAG_track_field_types) { if (representation.IsHeapObject() && IsHeapObject()) { // We can track only JavaScript objects with stable maps. Handle map(HeapObject::cast(this)->map(), isolate); if (map->is_stable() && map->IsJSReceiverMap()) { return FieldType::Class(map, isolate); } } } return FieldType::Any(isolate); } MaybeHandle Object::ToObject(Isolate* isolate, Handle object, Handle native_context, const char* method_name) { if (object->IsJSReceiver()) return Handle::cast(object); Handle constructor; if (object->IsSmi()) { constructor = handle(native_context->number_function(), isolate); } else { int constructor_function_index = Handle::cast(object)->map()->GetConstructorFunctionIndex(); if (constructor_function_index == Map::kNoConstructorFunctionIndex) { if (method_name != nullptr) { THROW_NEW_ERROR( isolate, NewTypeError( MessageTemplate::kCalledOnNullOrUndefined, isolate->factory()->NewStringFromAsciiChecked(method_name)), JSReceiver); } THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kUndefinedOrNullToObject), JSReceiver); } constructor = handle( JSFunction::cast(native_context->get(constructor_function_index)), isolate); } Handle result = isolate->factory()->NewJSObject(constructor); Handle::cast(result)->set_value(*object); return result; } // ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee. // static MaybeHandle Object::ConvertReceiver(Isolate* isolate, Handle object) { if (object->IsJSReceiver()) return Handle::cast(object); if (object->IsNullOrUndefined(isolate)) { return isolate->global_proxy(); } return Object::ToObject(isolate, object); } // static MaybeHandle Object::ConvertToNumberOrNumeric(Isolate* isolate, Handle input, Conversion mode) { while (true) { if (input->IsNumber()) { return input; } if (input->IsString()) { return String::ToNumber(isolate, Handle::cast(input)); } if (input->IsOddball()) { return Oddball::ToNumber(isolate, Handle::cast(input)); } if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber), Object); } if (input->IsBigInt()) { if (mode == Conversion::kToNumeric) return input; DCHECK_EQ(mode, Conversion::kToNumber); THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntToNumber), Object); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle::cast(input), ToPrimitiveHint::kNumber), Object); } } // static MaybeHandle Object::ConvertToInteger(Isolate* isolate, Handle input) { ASSIGN_RETURN_ON_EXCEPTION( isolate, input, ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber), Object); if (input->IsSmi()) return input; return isolate->factory()->NewNumber(DoubleToInteger(input->Number())); } // static MaybeHandle Object::ConvertToInt32(Isolate* isolate, Handle input) { ASSIGN_RETURN_ON_EXCEPTION( isolate, input, ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber), Object); if (input->IsSmi()) return input; return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number())); } // static MaybeHandle Object::ConvertToUint32(Isolate* isolate, Handle input) { ASSIGN_RETURN_ON_EXCEPTION( isolate, input, ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber), Object); if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate); return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number())); } // static MaybeHandle Object::ConvertToName(Isolate* isolate, Handle input) { ASSIGN_RETURN_ON_EXCEPTION( isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString), Name); if (input->IsName()) return Handle::cast(input); return ToString(isolate, input); } // ES6 7.1.14 // static MaybeHandle Object::ConvertToPropertyKey(Isolate* isolate, Handle value) { // 1. Let key be ToPrimitive(argument, hint String). MaybeHandle maybe_key = Object::ToPrimitive(value, ToPrimitiveHint::kString); // 2. ReturnIfAbrupt(key). Handle key; if (!maybe_key.ToHandle(&key)) return key; // 3. If Type(key) is Symbol, then return key. if (key->IsSymbol()) return key; // 4. Return ToString(key). // Extending spec'ed behavior, we'd be happy to return an element index. if (key->IsSmi()) return key; if (key->IsHeapNumber()) { uint32_t uint_value; if (value->ToArrayLength(&uint_value) && uint_value <= static_cast(Smi::kMaxValue)) { return handle(Smi::FromInt(static_cast(uint_value)), isolate); } } return Object::ToString(isolate, key); } // static MaybeHandle Object::ConvertToString(Isolate* isolate, Handle input) { while (true) { if (input->IsOddball()) { return handle(Handle::cast(input)->to_string(), isolate); } if (input->IsNumber()) { return isolate->factory()->NumberToString(input); } if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString), String); } if (input->IsBigInt()) { return BigInt::ToString(isolate, Handle::cast(input)); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle::cast(input), ToPrimitiveHint::kString), String); // The previous isString() check happened in Object::ToString and thus we // put it at the end of the loop in this helper. if (input->IsString()) { return Handle::cast(input); } } } namespace { bool IsErrorObject(Isolate* isolate, Handle object) { if (!object->IsJSReceiver()) return false; Handle symbol = isolate->factory()->stack_trace_symbol(); return JSReceiver::HasOwnProperty(Handle::cast(object), symbol) .FromMaybe(false); } Handle AsStringOrEmpty(Isolate* isolate, Handle object) { return object->IsString() ? Handle::cast(object) : isolate->factory()->empty_string(); } Handle NoSideEffectsErrorToString(Isolate* isolate, Handle input) { Handle receiver = Handle::cast(input); Handle name_key = isolate->factory()->name_string(); Handle name = JSReceiver::GetDataProperty(receiver, name_key); Handle name_str = AsStringOrEmpty(isolate, name); Handle msg_key = isolate->factory()->message_string(); Handle msg = JSReceiver::GetDataProperty(receiver, msg_key); Handle msg_str = AsStringOrEmpty(isolate, msg); if (name_str->length() == 0) return msg_str; if (msg_str->length() == 0) return name_str; IncrementalStringBuilder builder(isolate); builder.AppendString(name_str); builder.AppendCString(": "); builder.AppendString(msg_str); return builder.Finish().ToHandleChecked(); } } // namespace // static Handle Object::NoSideEffectsToString(Isolate* isolate, Handle input) { DisallowJavascriptExecution no_js(isolate); if (input->IsString() || input->IsNumeric() || input->IsOddball()) { return Object::ToString(isolate, input).ToHandleChecked(); } else if (input->IsFunction()) { // -- F u n c t i o n Handle fun_str; if (input->IsJSBoundFunction()) { fun_str = JSBoundFunction::ToString(Handle::cast(input)); } else { DCHECK(input->IsJSFunction()); fun_str = JSFunction::ToString(Handle::cast(input)); } if (fun_str->length() > 128) { IncrementalStringBuilder builder(isolate); builder.AppendString(isolate->factory()->NewSubString(fun_str, 0, 111)); builder.AppendCString("......"); builder.AppendString(isolate->factory()->NewSubString( fun_str, fun_str->length() - 2, fun_str->length())); return builder.Finish().ToHandleChecked(); } return fun_str; } else if (input->IsSymbol()) { // -- S y m b o l Handle symbol = Handle::cast(input); IncrementalStringBuilder builder(isolate); builder.AppendCString("Symbol("); if (symbol->name()->IsString()) { builder.AppendString(handle(String::cast(symbol->name()), isolate)); } builder.AppendCharacter(')'); return builder.Finish().ToHandleChecked(); } else if (input->IsJSReceiver()) { // -- J S R e c e i v e r Handle receiver = Handle::cast(input); Handle to_string = JSReceiver::GetDataProperty( receiver, isolate->factory()->toString_string()); if (IsErrorObject(isolate, input) || *to_string == *isolate->error_to_string()) { // When internally formatting error objects, use a side-effects-free // version of Error.prototype.toString independent of the actually // installed toString method. return NoSideEffectsErrorToString(isolate, input); } else if (*to_string == *isolate->object_to_string()) { Handle ctor = JSReceiver::GetDataProperty( receiver, isolate->factory()->constructor_string()); if (ctor->IsFunction()) { Handle ctor_name; if (ctor->IsJSBoundFunction()) { ctor_name = JSBoundFunction::GetName( isolate, Handle::cast(ctor)) .ToHandleChecked(); } else if (ctor->IsJSFunction()) { Handle ctor_name_obj = JSFunction::GetName(isolate, Handle::cast(ctor)); ctor_name = AsStringOrEmpty(isolate, ctor_name_obj); } if (ctor_name->length() != 0) { IncrementalStringBuilder builder(isolate); builder.AppendCString("#<"); builder.AppendString(ctor_name); builder.AppendCString(">"); return builder.Finish().ToHandleChecked(); } } } } // At this point, input is either none of the above or a JSReceiver. Handle receiver; if (input->IsJSReceiver()) { receiver = Handle::cast(input); } else { // This is the only case where Object::ToObject throws. DCHECK(!input->IsSmi()); int constructor_function_index = Handle::cast(input)->map()->GetConstructorFunctionIndex(); if (constructor_function_index == Map::kNoConstructorFunctionIndex) { return isolate->factory()->NewStringFromAsciiChecked("[object Unknown]"); } receiver = Object::ToObject(isolate, input, isolate->native_context()) .ToHandleChecked(); } Handle builtin_tag = handle(receiver->class_name(), isolate); Handle tag_obj = JSReceiver::GetDataProperty( receiver, isolate->factory()->to_string_tag_symbol()); Handle tag = tag_obj->IsString() ? Handle::cast(tag_obj) : builtin_tag; IncrementalStringBuilder builder(isolate); builder.AppendCString("[object "); builder.AppendString(tag); builder.AppendCString("]"); return builder.Finish().ToHandleChecked(); } // static MaybeHandle Object::ConvertToLength(Isolate* isolate, Handle input) { ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(isolate, input), Object); if (input->IsSmi()) { int value = std::max(Smi::ToInt(*input), 0); return handle(Smi::FromInt(value), isolate); } double len = DoubleToInteger(input->Number()); if (len <= 0.0) { return handle(Smi::kZero, isolate); } else if (len >= kMaxSafeInteger) { len = kMaxSafeInteger; } return isolate->factory()->NewNumber(len); } // static MaybeHandle Object::ConvertToIndex( Isolate* isolate, Handle input, MessageTemplate::Template error_index) { if (input->IsUndefined(isolate)) return handle(Smi::kZero, isolate); ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(isolate, input), Object); if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input; double len = DoubleToInteger(input->Number()) + 0.0; auto js_len = isolate->factory()->NewNumber(len); if (len < 0.0 || len > kMaxSafeInteger) { THROW_NEW_ERROR(isolate, NewRangeError(error_index, js_len), Object); } return js_len; } bool Object::BooleanValue(Isolate* isolate) { if (IsSmi()) return Smi::ToInt(this) != 0; DCHECK(IsHeapObject()); if (IsBoolean()) return IsTrue(isolate); if (IsNullOrUndefined(isolate)) return false; if (IsUndetectable()) return false; // Undetectable object is false. if (IsString()) return String::cast(this)->length() != 0; if (IsHeapNumber()) return DoubleToBoolean(HeapNumber::cast(this)->value()); if (IsBigInt()) return BigInt::cast(this)->ToBoolean(); return true; } namespace { // TODO(bmeurer): Maybe we should introduce a marker interface Number, // where we put all these methods at some point? ComparisonResult NumberCompare(double x, double y) { if (std::isnan(x) || std::isnan(y)) { return ComparisonResult::kUndefined; } else if (x < y) { return ComparisonResult::kLessThan; } else if (x > y) { return ComparisonResult::kGreaterThan; } else { return ComparisonResult::kEqual; } } bool NumberEquals(double x, double y) { // Must check explicitly for NaN's on Windows, but -0 works fine. if (std::isnan(x)) return false; if (std::isnan(y)) return false; return x == y; } bool NumberEquals(const Object* x, const Object* y) { return NumberEquals(x->Number(), y->Number()); } bool NumberEquals(Handle x, Handle y) { return NumberEquals(*x, *y); } ComparisonResult Reverse(ComparisonResult result) { if (result == ComparisonResult::kLessThan) { return ComparisonResult::kGreaterThan; } if (result == ComparisonResult::kGreaterThan) { return ComparisonResult::kLessThan; } return result; } } // anonymous namespace // static Maybe Object::Compare(Isolate* isolate, Handle x, Handle y) { // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4. if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) || !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) { return Nothing(); } if (x->IsString() && y->IsString()) { // ES6 section 7.2.11 Abstract Relational Comparison step 5. return Just(String::Compare(isolate, Handle::cast(x), Handle::cast(y))); } if (x->IsBigInt() && y->IsString()) { return Just(BigInt::CompareToString(isolate, Handle::cast(x), Handle::cast(y))); } if (x->IsString() && y->IsBigInt()) { return Just(Reverse(BigInt::CompareToString( isolate, Handle::cast(y), Handle::cast(x)))); } // ES6 section 7.2.11 Abstract Relational Comparison step 6. if (!Object::ToNumeric(isolate, x).ToHandle(&x) || !Object::ToNumeric(isolate, y).ToHandle(&y)) { return Nothing(); } bool x_is_number = x->IsNumber(); bool y_is_number = y->IsNumber(); if (x_is_number && y_is_number) { return Just(NumberCompare(x->Number(), y->Number())); } else if (!x_is_number && !y_is_number) { return Just(BigInt::CompareToBigInt(Handle::cast(x), Handle::cast(y))); } else if (x_is_number) { return Just(Reverse(BigInt::CompareToNumber(Handle::cast(y), x))); } else { return Just(BigInt::CompareToNumber(Handle::cast(x), y)); } } // static Maybe Object::Equals(Isolate* isolate, Handle x, Handle y) { // This is the generic version of Abstract Equality Comparison. Must be in // sync with CodeStubAssembler::Equal. while (true) { if (x->IsNumber()) { if (y->IsNumber()) { return Just(NumberEquals(x, y)); } else if (y->IsBoolean()) { return Just(NumberEquals(*x, Handle::cast(y)->to_number())); } else if (y->IsString()) { return Just(NumberEquals( x, String::ToNumber(isolate, Handle::cast(y)))); } else if (y->IsBigInt()) { return Just(BigInt::EqualToNumber(Handle::cast(y), x)); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle::cast(y)) .ToHandle(&y)) { return Nothing(); } } else { return Just(false); } } else if (x->IsString()) { if (y->IsString()) { return Just(String::Equals(isolate, Handle::cast(x), Handle::cast(y))); } else if (y->IsNumber()) { x = String::ToNumber(isolate, Handle::cast(x)); return Just(NumberEquals(x, y)); } else if (y->IsBoolean()) { x = String::ToNumber(isolate, Handle::cast(x)); return Just(NumberEquals(*x, Handle::cast(y)->to_number())); } else if (y->IsBigInt()) { return Just(BigInt::EqualToString(isolate, Handle::cast(y), Handle::cast(x))); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle::cast(y)) .ToHandle(&y)) { return Nothing(); } } else { return Just(false); } } else if (x->IsBoolean()) { if (y->IsOddball()) { return Just(x.is_identical_to(y)); } else if (y->IsNumber()) { return Just(NumberEquals(Handle::cast(x)->to_number(), *y)); } else if (y->IsString()) { y = String::ToNumber(isolate, Handle::cast(y)); return Just(NumberEquals(Handle::cast(x)->to_number(), *y)); } else if (y->IsBigInt()) { x = Oddball::ToNumber(isolate, Handle::cast(x)); return Just(BigInt::EqualToNumber(Handle::cast(y), x)); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle::cast(y)) .ToHandle(&y)) { return Nothing(); } x = Oddball::ToNumber(isolate, Handle::cast(x)); } else { return Just(false); } } else if (x->IsSymbol()) { if (y->IsSymbol()) { return Just(x.is_identical_to(y)); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle::cast(y)) .ToHandle(&y)) { return Nothing(); } } else { return Just(false); } } else if (x->IsBigInt()) { if (y->IsBigInt()) { return Just(BigInt::EqualToBigInt(BigInt::cast(*x), BigInt::cast(*y))); } return Equals(isolate, y, x); } else if (x->IsJSReceiver()) { if (y->IsJSReceiver()) { return Just(x.is_identical_to(y)); } else if (y->IsUndetectable()) { return Just(x->IsUndetectable()); } else if (y->IsBoolean()) { y = Oddball::ToNumber(isolate, Handle::cast(y)); } else if (!JSReceiver::ToPrimitive(Handle::cast(x)) .ToHandle(&x)) { return Nothing(); } } else { return Just(x->IsUndetectable() && y->IsUndetectable()); } } } bool Object::StrictEquals(Object* that) { if (this->IsNumber()) { if (!that->IsNumber()) return false; return NumberEquals(this, that); } else if (this->IsString()) { if (!that->IsString()) return false; return String::cast(this)->Equals(String::cast(that)); } else if (this->IsBigInt()) { if (!that->IsBigInt()) return false; return BigInt::EqualToBigInt(BigInt::cast(this), BigInt::cast(that)); } return this == that; } // static Handle Object::TypeOf(Isolate* isolate, Handle object) { if (object->IsNumber()) return isolate->factory()->number_string(); if (object->IsOddball()) return handle(Oddball::cast(*object)->type_of(), isolate); if (object->IsUndetectable()) { return isolate->factory()->undefined_string(); } if (object->IsString()) return isolate->factory()->string_string(); if (object->IsSymbol()) return isolate->factory()->symbol_string(); if (object->IsBigInt()) return isolate->factory()->bigint_string(); if (object->IsCallable()) return isolate->factory()->function_string(); return isolate->factory()->object_string(); } // static MaybeHandle Object::Add(Isolate* isolate, Handle lhs, Handle rhs) { if (lhs->IsNumber() && rhs->IsNumber()) { return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } else if (lhs->IsString() && rhs->IsString()) { return isolate->factory()->NewConsString(Handle::cast(lhs), Handle::cast(rhs)); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object); if (lhs->IsString() || rhs->IsString()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs), Object); return isolate->factory()->NewConsString(Handle::cast(lhs), Handle::cast(rhs)); } ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(isolate, rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(isolate, lhs), Object); return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } // static MaybeHandle Object::OrdinaryHasInstance(Isolate* isolate, Handle callable, Handle object) { // The {callable} must have a [[Call]] internal method. if (!callable->IsCallable()) return isolate->factory()->false_value(); // Check if {callable} is a bound function, and if so retrieve its // [[BoundTargetFunction]] and use that instead of {callable}. if (callable->IsJSBoundFunction()) { Handle bound_callable( Handle::cast(callable)->bound_target_function(), isolate); return Object::InstanceOf(isolate, object, bound_callable); } // If {object} is not a receiver, return false. if (!object->IsJSReceiver()) return isolate->factory()->false_value(); // Get the "prototype" of {callable}; raise an error if it's not a receiver. Handle prototype; ASSIGN_RETURN_ON_EXCEPTION( isolate, prototype, Object::GetProperty(isolate, callable, isolate->factory()->prototype_string()), Object); if (!prototype->IsJSReceiver()) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kInstanceofNonobjectProto, prototype), Object); } // Return whether or not {prototype} is in the prototype chain of {object}. Maybe result = JSReceiver::HasInPrototypeChain( isolate, Handle::cast(object), prototype); if (result.IsNothing()) return MaybeHandle(); return isolate->factory()->ToBoolean(result.FromJust()); } // static MaybeHandle Object::InstanceOf(Isolate* isolate, Handle object, Handle callable) { // The {callable} must be a receiver. if (!callable->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kNonObjectInInstanceOfCheck), Object); } // Lookup the @@hasInstance method on {callable}. Handle inst_of_handler; ASSIGN_RETURN_ON_EXCEPTION( isolate, inst_of_handler, JSReceiver::GetMethod(Handle::cast(callable), isolate->factory()->has_instance_symbol()), Object); if (!inst_of_handler->IsUndefined(isolate)) { // Call the {inst_of_handler} on the {callable}. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, inst_of_handler, callable, 1, &object), Object); return isolate->factory()->ToBoolean(result->BooleanValue(isolate)); } // The {callable} must have a [[Call]] internal method. if (!callable->IsCallable()) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kNonCallableInInstanceOfCheck), Object); } // Fall back to OrdinaryHasInstance with {callable} and {object}. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, JSReceiver::OrdinaryHasInstance(isolate, callable, object), Object); return result; } // static MaybeHandle Object::GetMethod(Handle receiver, Handle name) { Handle func; Isolate* isolate = receiver->GetIsolate(); ASSIGN_RETURN_ON_EXCEPTION( isolate, func, JSReceiver::GetProperty(isolate, receiver, name), Object); if (func->IsNullOrUndefined(isolate)) { return isolate->factory()->undefined_value(); } if (!func->IsCallable()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction, func, name, receiver), Object); } return func; } namespace { MaybeHandle CreateListFromArrayLikeFastPath( Isolate* isolate, Handle object, ElementTypes element_types) { if (element_types == ElementTypes::kAll) { if (object->IsJSArray()) { Handle array = Handle::cast(object); uint32_t length; if (!array->HasArrayPrototype(isolate) || !array->length()->ToUint32(&length) || !array->HasFastElements() || !JSObject::PrototypeHasNoElements(isolate, *array)) { return MaybeHandle(); } return array->GetElementsAccessor()->CreateListFromArrayLike( isolate, array, length); } else if (object->IsJSTypedArray()) { Handle array = Handle::cast(object); size_t length = array->length_value(); if (array->WasNeutered() || length > static_cast(FixedArray::kMaxLength)) { return MaybeHandle(); } return array->GetElementsAccessor()->CreateListFromArrayLike( isolate, array, static_cast(length)); } } return MaybeHandle(); } } // namespace // static MaybeHandle Object::CreateListFromArrayLike( Isolate* isolate, Handle object, ElementTypes element_types) { // Fast-path for JSArray and JSTypedArray. MaybeHandle fast_result = CreateListFromArrayLikeFastPath(isolate, object, element_types); if (!fast_result.is_null()) return fast_result; // 1. ReturnIfAbrupt(object). // 2. (default elementTypes -- not applicable.) // 3. If Type(obj) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, isolate->factory()->NewStringFromAsciiChecked( "CreateListFromArrayLike")), FixedArray); } // 4. Let len be ? ToLength(? Get(obj, "length")). Handle receiver = Handle::cast(object); Handle raw_length_number; ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number, Object::GetLengthFromArrayLike(isolate, receiver), FixedArray); uint32_t len; if (!raw_length_number->ToUint32(&len) || len > static_cast(FixedArray::kMaxLength)) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength), FixedArray); } // 5. Let list be an empty List. Handle list = isolate->factory()->NewFixedArray(len); // 6. Let index be 0. // 7. Repeat while index < len: for (uint32_t index = 0; index < len; ++index) { // 7a. Let indexName be ToString(index). // 7b. Let next be ? Get(obj, indexName). Handle next; ASSIGN_RETURN_ON_EXCEPTION(isolate, next, JSReceiver::GetElement(isolate, receiver, index), FixedArray); switch (element_types) { case ElementTypes::kAll: // Nothing to do. break; case ElementTypes::kStringAndSymbol: { // 7c. If Type(next) is not an element of elementTypes, throw a // TypeError exception. if (!next->IsName()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kNotPropertyName, next), FixedArray); } // 7d. Append next as the last element of list. // Internalize on the fly so we can use pointer identity later. next = isolate->factory()->InternalizeName(Handle::cast(next)); break; } } list->set(index, *next); // 7e. Set index to index + 1. (See loop header.) } // 8. Return list. return list; } // static MaybeHandle Object::GetLengthFromArrayLike(Isolate* isolate, Handle object) { Handle val; Handle key = isolate->factory()->length_string(); ASSIGN_RETURN_ON_EXCEPTION( isolate, val, JSReceiver::GetProperty(isolate, object, key), Object); return Object::ToLength(isolate, val); } // static Maybe JSReceiver::HasProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::HasProperty(it->isolate(), it->GetHolder(), it->GetName()); case LookupIterator::INTERCEPTOR: { Maybe result = JSObject::GetPropertyAttributesWithInterceptor(it); if (result.IsNothing()) return Nothing(); if (result.FromJust() != ABSENT) return Just(true); break; } case LookupIterator::ACCESS_CHECK: { if (it->HasAccess()) break; Maybe result = JSObject::GetPropertyAttributesWithFailedAccessCheck(it); if (result.IsNothing()) return Nothing(); return Just(result.FromJust() != ABSENT); } case LookupIterator::INTEGER_INDEXED_EXOTIC: // TypedArray out-of-bounds access. return Just(false); case LookupIterator::ACCESSOR: case LookupIterator::DATA: return Just(true); } } return Just(false); } // static Maybe JSReceiver::HasOwnProperty(Handle object, Handle name) { if (object->IsJSModuleNamespace()) { PropertyDescriptor desc; return JSReceiver::GetOwnPropertyDescriptor(object->GetIsolate(), object, name, &desc); } if (object->IsJSObject()) { // Shortcut. LookupIterator it = LookupIterator::PropertyOrElement( object->GetIsolate(), object, name, object, LookupIterator::OWN); return HasProperty(&it); } Maybe attributes = JSReceiver::GetOwnPropertyAttributes(object, name); MAYBE_RETURN(attributes, Nothing()); return Just(attributes.FromJust() != ABSENT); } // static MaybeHandle Object::GetProperty(LookupIterator* it, OnNonExistent on_non_existent) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: { bool was_found; MaybeHandle result = JSProxy::GetProperty(it->isolate(), it->GetHolder(), it->GetName(), it->GetReceiver(), &was_found); if (!was_found) it->NotFound(); return result; } case LookupIterator::INTERCEPTOR: { bool done; Handle result; ASSIGN_RETURN_ON_EXCEPTION( it->isolate(), result, JSObject::GetPropertyWithInterceptor(it, &done), Object); if (done) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyWithFailedAccessCheck(it); case LookupIterator::ACCESSOR: return GetPropertyWithAccessor(it); case LookupIterator::INTEGER_INDEXED_EXOTIC: return it->isolate()->factory()->undefined_value(); case LookupIterator::DATA: return it->GetDataValue(); } } if (on_non_existent == OnNonExistent::kThrowReferenceError) { THROW_NEW_ERROR(it->isolate(), NewReferenceError(MessageTemplate::kNotDefined, it->name()), Object); } return it->isolate()->factory()->undefined_value(); } // static MaybeHandle JSProxy::GetProperty(Isolate* isolate, Handle proxy, Handle name, Handle receiver, bool* was_found) { *was_found = true; DCHECK(!name->IsPrivate()); STACK_CHECK(isolate, MaybeHandle()); Handle trap_name = isolate->factory()->get_string(); // 1. Assert: IsPropertyKey(P) is true. // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyRevoked, trap_name), Object); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle target(JSReceiver::cast(proxy->target()), isolate); // 6. Let trap be ? GetMethod(handler, "get"). Handle trap; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap, Object::GetMethod(Handle::cast(handler), trap_name), Object); // 7. If trap is undefined, then if (trap->IsUndefined(isolate)) { // 7.a Return target.[[Get]](P, Receiver). LookupIterator it = LookupIterator::PropertyOrElement(isolate, receiver, name, target); MaybeHandle result = Object::GetProperty(&it); *was_found = it.IsFound(); return result; } // 8. Let trapResult be ? Call(trap, handler, «target, P, Receiver»). Handle trap_result; Handle args[] = {target, name, receiver}; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Object); MaybeHandle result = JSProxy::CheckGetSetTrapResult(isolate, name, target, trap_result, kGet); if (result.is_null()) { return result; } // 11. Return trap_result return trap_result; } // static MaybeHandle JSProxy::CheckGetSetTrapResult(Isolate* isolate, Handle name, Handle target, Handle trap_result, AccessKind access_kind) { // 9. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe target_found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN_NULL(target_found); // 10. If targetDesc is not undefined, then if (target_found.FromJust()) { // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is // false and targetDesc.[[Writable]] is false, then // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false, // throw a TypeError exception. bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) && !target_desc.configurable() && !target_desc.writable() && !trap_result->SameValue(*target_desc.value()); if (inconsistent) { if (access_kind == kGet) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData, name, target_desc.value(), trap_result), Object); } else { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxySetFrozenData, name)); return MaybeHandle(); } } // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] // is false and targetDesc.[[Get]] is undefined, then // 10.b.i. If trapResult is not undefined, throw a TypeError exception. if (access_kind == kGet) { inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) && !target_desc.configurable() && target_desc.get()->IsUndefined(isolate) && !trap_result->IsUndefined(isolate); } else { inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) && !target_desc.configurable() && target_desc.set()->IsUndefined(isolate); } if (inconsistent) { if (access_kind == kGet) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name, trap_result), Object); } else { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxySetFrozenAccessor, name)); return MaybeHandle(); } } } return isolate->factory()->undefined_value(); } Handle JSReceiver::GetDataProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: // Support calling this method without an active context, but refuse // access to access-checked objects in that case. if (it->isolate()->context() != nullptr && it->HasAccess()) continue; V8_FALLTHROUGH; case LookupIterator::JSPROXY: it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::ACCESSOR: // TODO(verwaest): For now this doesn't call into AccessorInfo, since // clients don't need it. Update once relevant. it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return it->isolate()->factory()->undefined_value(); case LookupIterator::DATA: return it->GetDataValue(); } } return it->isolate()->factory()->undefined_value(); } bool Object::ToInt32(int32_t* value) { if (IsSmi()) { *value = Smi::ToInt(this); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); // Check range before conversion to avoid undefined behavior. if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) { *value = FastD2I(num); return true; } } return false; } Handle FunctionTemplateInfo::GetOrCreateSharedFunctionInfo( Isolate* isolate, Handle info, MaybeHandle maybe_name) { Object* current_info = info->shared_function_info(); if (current_info->IsSharedFunctionInfo()) { return handle(SharedFunctionInfo::cast(current_info), isolate); } Handle name; Handle name_string; if (maybe_name.ToHandle(&name) && name->IsString()) { name_string = Handle::cast(name); } else if (info->class_name()->IsString()) { name_string = handle(String::cast(info->class_name()), isolate); } else { name_string = isolate->factory()->empty_string(); } FunctionKind function_kind; if (info->remove_prototype()) { function_kind = kConciseMethod; } else { function_kind = kNormalFunction; } Handle result = isolate->factory()->NewSharedFunctionInfoForApiFunction(name_string, info, function_kind); result->set_length(info->length()); result->DontAdaptArguments(); DCHECK(result->IsApiFunction()); info->set_shared_function_info(*result); return result; } bool FunctionTemplateInfo::IsTemplateFor(Map* map) { // There is a constraint on the object; check. if (!map->IsJSObjectMap()) return false; // Fetch the constructor function of the object. Object* cons_obj = map->GetConstructor(); Object* type; if (cons_obj->IsJSFunction()) { JSFunction* fun = JSFunction::cast(cons_obj); type = fun->shared()->function_data(); } else if (cons_obj->IsFunctionTemplateInfo()) { type = FunctionTemplateInfo::cast(cons_obj); } else { return false; } // Iterate through the chain of inheriting function templates to // see if the required one occurs. while (type->IsFunctionTemplateInfo()) { if (type == this) return true; type = FunctionTemplateInfo::cast(type)->parent_template(); } // Didn't find the required type in the inheritance chain. return false; } // static Handle TemplateList::New(Isolate* isolate, int size) { Handle list = isolate->factory()->NewFixedArray(kLengthIndex + size); list->set(kLengthIndex, Smi::kZero); return Handle::cast(list); } // static Handle TemplateList::Add(Isolate* isolate, Handle list, Handle value) { STATIC_ASSERT(kFirstElementIndex == 1); int index = list->length() + 1; Handle fixed_array = Handle::cast(list); fixed_array = FixedArray::SetAndGrow(isolate, fixed_array, index, value); fixed_array->set(kLengthIndex, Smi::FromInt(index)); return Handle::cast(fixed_array); } // static MaybeHandle JSObject::New(Handle constructor, Handle new_target, Handle site) { // If called through new, new.target can be: // - a subclass of constructor, // - a proxy wrapper around constructor, or // - the constructor itself. // If called through Reflect.construct, it's guaranteed to be a constructor. Isolate* const isolate = constructor->GetIsolate(); DCHECK(constructor->IsConstructor()); DCHECK(new_target->IsConstructor()); DCHECK(!constructor->has_initial_map() || constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE); Handle initial_map; ASSIGN_RETURN_ON_EXCEPTION( isolate, initial_map, JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject); Handle result = isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site); if (initial_map->is_dictionary_map()) { Handle dictionary = NameDictionary::New(isolate, NameDictionary::kInitialCapacity); result->SetProperties(*dictionary); } isolate->counters()->constructed_objects()->Increment(); isolate->counters()->constructed_objects_runtime()->Increment(); return result; } // 9.1.12 ObjectCreate ( proto [ , internalSlotsList ] ) // Notice: This is NOT 19.1.2.2 Object.create ( O, Properties ) MaybeHandle JSObject::ObjectCreate(Isolate* isolate, Handle prototype) { // Generate the map with the specified {prototype} based on the Object // function's initial map from the current native context. // TODO(bmeurer): Use a dedicated cache for Object.create; think about // slack tracking for Object.create. Handle map = Map::GetObjectCreateMap(isolate, Handle::cast(prototype)); // Actually allocate the object. Handle object; if (map->is_dictionary_map()) { object = isolate->factory()->NewSlowJSObjectFromMap(map); } else { object = isolate->factory()->NewJSObjectFromMap(map); } return object; } void JSObject::EnsureWritableFastElements(Handle object) { DCHECK(object->HasSmiOrObjectElements() || object->HasFastStringWrapperElements()); FixedArray* raw_elems = FixedArray::cast(object->elements()); Heap* heap = object->GetHeap(); if (raw_elems->map() != ReadOnlyRoots(heap).fixed_cow_array_map()) return; Isolate* isolate = heap->isolate(); Handle elems(raw_elems, isolate); Handle writable_elems = isolate->factory()->CopyFixedArrayWithMap( elems, isolate->factory()->fixed_array_map()); object->set_elements(*writable_elems); isolate->counters()->cow_arrays_converted()->Increment(); } int JSObject::GetHeaderSize(InstanceType type, bool function_has_prototype_slot) { switch (type) { case JS_OBJECT_TYPE: case JS_API_OBJECT_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_GENERATOR_OBJECT_TYPE: return JSGeneratorObject::kSize; case JS_ASYNC_GENERATOR_OBJECT_TYPE: return JSAsyncGeneratorObject::kSize; case JS_GLOBAL_PROXY_TYPE: return JSGlobalProxy::kSize; case JS_GLOBAL_OBJECT_TYPE: return JSGlobalObject::kSize; case JS_BOUND_FUNCTION_TYPE: return JSBoundFunction::kSize; case JS_FUNCTION_TYPE: return JSFunction::GetHeaderSize(function_has_prototype_slot); case JS_VALUE_TYPE: return JSValue::kSize; case JS_DATE_TYPE: return JSDate::kSize; case JS_ARRAY_TYPE: return JSArray::kSize; case JS_ARRAY_BUFFER_TYPE: return JSArrayBuffer::kSize; case JS_ARRAY_ITERATOR_TYPE: return JSArrayIterator::kSize; case JS_TYPED_ARRAY_TYPE: return JSTypedArray::kSize; case JS_DATA_VIEW_TYPE: return JSDataView::kSize; case JS_SET_TYPE: return JSSet::kSize; case JS_MAP_TYPE: return JSMap::kSize; case JS_SET_KEY_VALUE_ITERATOR_TYPE: case JS_SET_VALUE_ITERATOR_TYPE: return JSSetIterator::kSize; case JS_MAP_KEY_ITERATOR_TYPE: case JS_MAP_KEY_VALUE_ITERATOR_TYPE: case JS_MAP_VALUE_ITERATOR_TYPE: return JSMapIterator::kSize; case JS_WEAK_MAP_TYPE: return JSWeakMap::kSize; case JS_WEAK_SET_TYPE: return JSWeakSet::kSize; case JS_PROMISE_TYPE: return JSPromise::kSize; case JS_REGEXP_TYPE: return JSRegExp::kSize; case JS_REGEXP_STRING_ITERATOR_TYPE: return JSRegExpStringIterator::kSize; case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_MESSAGE_OBJECT_TYPE: return JSMessageObject::kSize; case JS_ARGUMENTS_TYPE: return JSObject::kHeaderSize; case JS_ERROR_TYPE: return JSObject::kHeaderSize; case JS_STRING_ITERATOR_TYPE: return JSStringIterator::kSize; case JS_MODULE_NAMESPACE_TYPE: return JSModuleNamespace::kHeaderSize; #ifdef V8_INTL_SUPPORT case JS_INTL_COLLATOR_TYPE: return JSCollator::kSize; case JS_INTL_LIST_FORMAT_TYPE: return JSListFormat::kSize; case JS_INTL_LOCALE_TYPE: return JSLocale::kSize; case JS_INTL_PLURAL_RULES_TYPE: return JSPluralRules::kSize; case JS_INTL_RELATIVE_TIME_FORMAT_TYPE: return JSRelativeTimeFormat::kSize; #endif // V8_INTL_SUPPORT case WASM_GLOBAL_TYPE: return WasmGlobalObject::kSize; case WASM_INSTANCE_TYPE: return WasmInstanceObject::kSize; case WASM_MEMORY_TYPE: return WasmMemoryObject::kSize; case WASM_MODULE_TYPE: return WasmModuleObject::kSize; case WASM_TABLE_TYPE: return WasmTableObject::kSize; default: UNREACHABLE(); } } // ES6 9.5.1 // static MaybeHandle JSProxy::GetPrototype(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); Handle trap_name = isolate->factory()->getPrototypeOf_string(); STACK_CHECK(isolate, MaybeHandle()); // 1. Let handler be the value of the [[ProxyHandler]] internal slot. // 2. If handler is null, throw a TypeError exception. // 3. Assert: Type(handler) is Object. // 4. Let target be the value of the [[ProxyTarget]] internal slot. if (proxy->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyRevoked, trap_name), Object); } Handle target(JSReceiver::cast(proxy->target()), isolate); Handle handler(JSReceiver::cast(proxy->handler()), isolate); // 5. Let trap be ? GetMethod(handler, "getPrototypeOf"). Handle trap; ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name), Object); // 6. If trap is undefined, then return target.[[GetPrototypeOf]](). if (trap->IsUndefined(isolate)) { return JSReceiver::GetPrototype(isolate, target); } // 7. Let handlerProto be ? Call(trap, handler, «target»). Handle argv[] = {target}; Handle handler_proto; ASSIGN_RETURN_ON_EXCEPTION( isolate, handler_proto, Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object); // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError. if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull(isolate))) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid), Object); } // 9. Let extensibleTarget be ? IsExtensible(target). Maybe is_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN_NULL(is_extensible); // 10. If extensibleTarget is true, return handlerProto. if (is_extensible.FromJust()) return handler_proto; // 11. Let targetProto be ? target.[[GetPrototypeOf]](). Handle target_proto; ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto, JSReceiver::GetPrototype(isolate, target), Object); // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError. if (!handler_proto->SameValue(*target_proto)) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible), Object); } // 13. Return handlerProto. return handler_proto; } MaybeHandle Object::GetPropertyWithAccessor(LookupIterator* it) { Isolate* isolate = it->isolate(); Handle structure = it->GetAccessors(); Handle receiver = it->GetReceiver(); // In case of global IC, the receiver is the global object. Replace by the // global proxy. if (receiver->IsJSGlobalObject()) { receiver = handle(JSGlobalObject::cast(*receiver)->global_proxy(), isolate); } // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the getter. DCHECK(!structure->IsForeign()); // API style callbacks. Handle holder = it->GetHolder(); if (structure->IsAccessorInfo()) { Handle name = it->GetName(); Handle info = Handle::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, name, receiver), Object); } if (!info->has_getter()) return isolate->factory()->undefined_value(); if (info->is_sloppy() && !receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Object); } PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder, kDontThrow); Handle result = args.CallAccessorGetter(info, name); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.is_null()) return isolate->factory()->undefined_value(); Handle reboxed_result = handle(*result, isolate); if (info->replace_on_access() && receiver->IsJSReceiver()) { RETURN_ON_EXCEPTION(isolate, Accessors::ReplaceAccessorWithDataProperty( receiver, holder, name, result), Object); } return reboxed_result; } // AccessorPair with 'cached' private property. if (it->TryLookupCachedProperty()) { return Object::GetProperty(it); } // Regular accessor. Handle getter(AccessorPair::cast(*structure)->getter(), isolate); if (getter->IsFunctionTemplateInfo()) { SaveContext save(isolate); isolate->set_context(*holder->GetCreationContext()); return Builtins::InvokeApiFunction( isolate, false, Handle::cast(getter), receiver, 0, nullptr, isolate->factory()->undefined_value()); } else if (getter->IsCallable()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return Object::GetPropertyWithDefinedGetter( receiver, Handle::cast(getter)); } // Getter is not a function. return isolate->factory()->undefined_value(); } // static Address AccessorInfo::redirect(Address address, AccessorComponent component) { ApiFunction fun(address); DCHECK_EQ(ACCESSOR_GETTER, component); ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL; return ExternalReference::Create(&fun, type).address(); } Address AccessorInfo::redirected_getter() const { Address accessor = v8::ToCData
(getter()); if (accessor == kNullAddress) return kNullAddress; return redirect(accessor, ACCESSOR_GETTER); } Address CallHandlerInfo::redirected_callback() const { Address address = v8::ToCData
(callback()); ApiFunction fun(address); ExternalReference::Type type = ExternalReference::DIRECT_API_CALL; return ExternalReference::Create(&fun, type).address(); } bool AccessorInfo::IsCompatibleReceiverMap(Handle info, Handle map) { if (!info->HasExpectedReceiverType()) return true; if (!map->IsJSObjectMap()) return false; return FunctionTemplateInfo::cast(info->expected_receiver_type()) ->IsTemplateFor(*map); } Maybe Object::SetPropertyWithAccessor(LookupIterator* it, Handle value, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); Handle structure = it->GetAccessors(); Handle receiver = it->GetReceiver(); // In case of global IC, the receiver is the global object. Replace by the // global proxy. if (receiver->IsJSGlobalObject()) { receiver = handle(JSGlobalObject::cast(*receiver)->global_proxy(), isolate); } // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the setter. DCHECK(!structure->IsForeign()); // API style callbacks. Handle holder = it->GetHolder(); if (structure->IsAccessorInfo()) { Handle name = it->GetName(); Handle info = Handle::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kIncompatibleMethodReceiver, name, receiver)); return Nothing(); } if (!info->has_setter()) { // TODO(verwaest): We should not get here anymore once all AccessorInfos // are marked as special_data_property. They cannot both be writable and // not have a setter. return Just(true); } if (info->is_sloppy() && !receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } // The actual type of setter callback is either // v8::AccessorNameSetterCallback or // i::Accesors::AccessorNameBooleanSetterCallback, depending on whether the // AccessorInfo was created by the API or internally (see accessors.cc). // Here we handle both cases using GenericNamedPropertySetterCallback and // its Call method. PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder, should_throw); Handle result = args.CallAccessorSetter(info, name, value); // In the case of AccessorNameSetterCallback, we know that the result value // cannot have been set, so the result of Call will be null. In the case of // AccessorNameBooleanSetterCallback, the result will either be null // (signalling an exception) or a boolean Oddball. RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); if (result.is_null()) return Just(true); DCHECK(result->BooleanValue(isolate) || should_throw == kDontThrow); return Just(result->BooleanValue(isolate)); } // Regular accessor. Handle setter(AccessorPair::cast(*structure)->setter(), isolate); if (setter->IsFunctionTemplateInfo()) { SaveContext save(isolate); isolate->set_context(*holder->GetCreationContext()); Handle argv[] = {value}; RETURN_ON_EXCEPTION_VALUE( isolate, Builtins::InvokeApiFunction( isolate, false, Handle::cast(setter), receiver, arraysize(argv), argv, isolate->factory()->undefined_value()), Nothing()); return Just(true); } else if (setter->IsCallable()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle::cast(setter), value, should_throw); } RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoSetterInCallback, it->GetName(), it->GetHolder())); } MaybeHandle Object::GetPropertyWithDefinedGetter( Handle receiver, Handle getter) { Isolate* isolate = getter->GetIsolate(); // Platforms with simulators like arm/arm64 expose a funny issue. If the // simulator has a separate JS stack pointer from the C++ stack pointer, it // can miss C++ stack overflows in the stack guard at the start of JavaScript // functions. It would be very expensive to check the C++ stack pointer at // that location. The best solution seems to be to break the impasse by // adding checks at possible recursion points. What's more, we don't put // this stack check behind the USE_SIMULATOR define in order to keep // behavior the same between hardware and simulators. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { isolate->StackOverflow(); return MaybeHandle(); } return Execution::Call(isolate, getter, receiver, 0, nullptr); } Maybe Object::SetPropertyWithDefinedSetter(Handle receiver, Handle setter, Handle value, ShouldThrow should_throw) { Isolate* isolate = setter->GetIsolate(); Handle argv[] = { value }; RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver, arraysize(argv), argv), Nothing()); return Just(true); } // static bool JSObject::AllCanRead(LookupIterator* it) { // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of // which have already been checked. DCHECK(it->state() == LookupIterator::ACCESS_CHECK || it->state() == LookupIterator::INTERCEPTOR); for (it->Next(); it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { auto accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_read()) return true; } } else if (it->state() == LookupIterator::INTERCEPTOR) { if (it->GetInterceptor()->all_can_read()) return true; } else if (it->state() == LookupIterator::JSPROXY) { // Stop lookupiterating. And no, AllCanNotRead. return false; } } return false; } namespace { MaybeHandle GetPropertyWithInterceptorInternal( LookupIterator* it, Handle interceptor, bool* done) { *done = false; Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); if (interceptor->getter()->IsUndefined(isolate)) { return isolate->factory()->undefined_value(); } Handle holder = it->GetHolder(); Handle result; Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, receiver, Object::ConvertReceiver(isolate, receiver), Object); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, kDontThrow); if (it->IsElement()) { result = args.CallIndexedGetter(interceptor, it->index()); } else { result = args.CallNamedGetter(interceptor, it->name()); } RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.is_null()) return isolate->factory()->undefined_value(); *done = true; // Rebox handle before return return handle(*result, isolate); } Maybe GetPropertyAttributesWithInterceptorInternal( LookupIterator* it, Handle interceptor) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); HandleScope scope(isolate); Handle holder = it->GetHolder(); DCHECK_IMPLIES(!it->IsElement() && it->name()->IsSymbol(), interceptor->can_intercept_symbols()); Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, kDontThrow); if (!interceptor->query()->IsUndefined(isolate)) { Handle result; if (it->IsElement()) { result = args.CallIndexedQuery(interceptor, it->index()); } else { result = args.CallNamedQuery(interceptor, it->name()); } if (!result.is_null()) { int32_t value; CHECK(result->ToInt32(&value)); return Just(static_cast(value)); } } else if (!interceptor->getter()->IsUndefined(isolate)) { // TODO(verwaest): Use GetPropertyWithInterceptor? Handle result; if (it->IsElement()) { result = args.CallIndexedGetter(interceptor, it->index()); } else { result = args.CallNamedGetter(interceptor, it->name()); } if (!result.is_null()) return Just(DONT_ENUM); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(ABSENT); } Maybe SetPropertyWithInterceptorInternal( LookupIterator* it, Handle interceptor, ShouldThrow should_throw, Handle value) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); if (interceptor->setter()->IsUndefined(isolate)) return Just(false); Handle holder = it->GetHolder(); bool result; Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, should_throw); if (it->IsElement()) { // TODO(neis): In the future, we may want to actually return the // interceptor's result, which then should be a boolean. result = !args.CallIndexedSetter(interceptor, it->index(), value).is_null(); } else { result = !args.CallNamedSetter(interceptor, it->name(), value).is_null(); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing()); return Just(result); } Maybe DefinePropertyWithInterceptorInternal( LookupIterator* it, Handle interceptor, ShouldThrow should_throw, PropertyDescriptor& desc) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); if (interceptor->definer()->IsUndefined(isolate)) return Just(false); Handle holder = it->GetHolder(); bool result; Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, should_throw); std::unique_ptr descriptor( new v8::PropertyDescriptor()); if (PropertyDescriptor::IsAccessorDescriptor(&desc)) { descriptor.reset(new v8::PropertyDescriptor( v8::Utils::ToLocal(desc.get()), v8::Utils::ToLocal(desc.set()))); } else if (PropertyDescriptor::IsDataDescriptor(&desc)) { if (desc.has_writable()) { descriptor.reset(new v8::PropertyDescriptor( v8::Utils::ToLocal(desc.value()), desc.writable())); } else { descriptor.reset( new v8::PropertyDescriptor(v8::Utils::ToLocal(desc.value()))); } } if (desc.has_enumerable()) { descriptor->set_enumerable(desc.enumerable()); } if (desc.has_configurable()) { descriptor->set_configurable(desc.configurable()); } if (it->IsElement()) { result = !args.CallIndexedDefiner(interceptor, it->index(), *descriptor) .is_null(); } else { result = !args.CallNamedDefiner(interceptor, it->name(), *descriptor).is_null(); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing()); return Just(result); } } // namespace MaybeHandle JSObject::GetPropertyWithFailedAccessCheck( LookupIterator* it) { Isolate* isolate = it->isolate(); Handle checked = it->GetHolder(); Handle interceptor = it->GetInterceptorForFailedAccessCheck(); if (interceptor.is_null()) { while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return GetPropertyWithAccessor(it); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); bool done; Handle result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, GetPropertyWithInterceptor(it, &done), Object); if (done) return result; } } else { Handle result; bool done; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, GetPropertyWithInterceptorInternal(it, interceptor, &done), Object); if (done) return result; } // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns // undefined. Handle name = it->GetName(); if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) { return it->factory()->undefined_value(); } isolate->ReportFailedAccessCheck(checked); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return it->factory()->undefined_value(); } Maybe JSObject::GetPropertyAttributesWithFailedAccessCheck( LookupIterator* it) { Isolate* isolate = it->isolate(); Handle checked = it->GetHolder(); Handle interceptor = it->GetInterceptorForFailedAccessCheck(); if (interceptor.is_null()) { while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return Just(it->property_attributes()); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); auto result = GetPropertyAttributesWithInterceptor(it); if (isolate->has_scheduled_exception()) break; if (result.IsJust() && result.FromJust() != ABSENT) return result; } } else { Maybe result = GetPropertyAttributesWithInterceptorInternal(it, interceptor); if (isolate->has_pending_exception()) return Nothing(); if (result.FromMaybe(ABSENT) != ABSENT) return result; } isolate->ReportFailedAccessCheck(checked); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(ABSENT); } // static bool JSObject::AllCanWrite(LookupIterator* it) { for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { Handle accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_write()) return true; } } } return false; } Maybe JSObject::SetPropertyWithFailedAccessCheck( LookupIterator* it, Handle value, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); Handle checked = it->GetHolder(); Handle interceptor = it->GetInterceptorForFailedAccessCheck(); if (interceptor.is_null()) { if (AllCanWrite(it)) { return SetPropertyWithAccessor(it, value, should_throw); } } else { Maybe result = SetPropertyWithInterceptorInternal( it, interceptor, should_throw, value); if (isolate->has_pending_exception()) return Nothing(); if (result.IsJust()) return result; } isolate->ReportFailedAccessCheck(checked); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(true); } void JSObject::SetNormalizedProperty(Handle object, Handle name, Handle value, PropertyDetails details) { DCHECK(!object->HasFastProperties()); DCHECK(name->IsUniqueName()); Isolate* isolate = object->GetIsolate(); uint32_t hash = name->Hash(); if (object->IsJSGlobalObject()) { Handle global_obj = Handle::cast(object); Handle dictionary(global_obj->global_dictionary(), isolate); int entry = dictionary->FindEntry(ReadOnlyRoots(isolate), name, hash); if (entry == GlobalDictionary::kNotFound) { DCHECK_IMPLIES(global_obj->map()->is_prototype_map(), Map::IsPrototypeChainInvalidated(global_obj->map())); auto cell = isolate->factory()->NewPropertyCell(name); cell->set_value(*value); auto cell_type = value->IsUndefined(isolate) ? PropertyCellType::kUndefined : PropertyCellType::kConstant; details = details.set_cell_type(cell_type); value = cell; dictionary = GlobalDictionary::Add(isolate, dictionary, name, value, details); global_obj->set_global_dictionary(*dictionary); } else { Handle cell = PropertyCell::PrepareForValue( isolate, dictionary, entry, value, details); cell->set_value(*value); } } else { Handle dictionary(object->property_dictionary(), isolate); int entry = dictionary->FindEntry(isolate, name); if (entry == NameDictionary::kNotFound) { DCHECK_IMPLIES(object->map()->is_prototype_map(), Map::IsPrototypeChainInvalidated(object->map())); dictionary = NameDictionary::Add(isolate, dictionary, name, value, details); object->SetProperties(*dictionary); } else { PropertyDetails original_details = dictionary->DetailsAt(entry); int enumeration_index = original_details.dictionary_index(); DCHECK_GT(enumeration_index, 0); details = details.set_index(enumeration_index); dictionary->SetEntry(isolate, entry, *name, *value, details); } } } // static Maybe JSReceiver::HasInPrototypeChain(Isolate* isolate, Handle object, Handle proto) { PrototypeIterator iter(isolate, object, kStartAtReceiver); while (true) { if (!iter.AdvanceFollowingProxies()) return Nothing(); if (iter.IsAtEnd()) return Just(false); if (PrototypeIterator::GetCurrent(iter).is_identical_to(proto)) { return Just(true); } } } namespace { bool HasExcludedProperty( const ScopedVector>* excluded_properties, Handle search_element) { // TODO(gsathya): Change this to be a hashtable. for (int i = 0; i < excluded_properties->length(); i++) { if (search_element->SameValue(*excluded_properties->at(i))) { return true; } } return false; } V8_WARN_UNUSED_RESULT Maybe FastAssign( Handle target, Handle source, const ScopedVector>* excluded_properties, bool use_set) { // Non-empty strings are the only non-JSReceivers that need to be handled // explicitly by Object.assign. if (!source->IsJSReceiver()) { return Just(!source->IsString() || String::cast(*source)->length() == 0); } // If the target is deprecated, the object will be updated on first store. If // the source for that store equals the target, this will invalidate the // cached representation of the source. Preventively upgrade the target. // Do this on each iteration since any property load could cause deprecation. if (target->map()->is_deprecated()) { JSObject::MigrateInstance(Handle::cast(target)); } Isolate* isolate = target->GetIsolate(); Handle map(JSReceiver::cast(*source)->map(), isolate); if (!map->IsJSObjectMap()) return Just(false); if (!map->OnlyHasSimpleProperties()) return Just(false); Handle from = Handle::cast(source); if (from->elements() != ReadOnlyRoots(isolate).empty_fixed_array()) { return Just(false); } Handle descriptors(map->instance_descriptors(), isolate); int length = map->NumberOfOwnDescriptors(); bool stable = true; for (int i = 0; i < length; i++) { Handle next_key(descriptors->GetKey(i), isolate); Handle prop_value; // Directly decode from the descriptor array if |from| did not change shape. if (stable) { PropertyDetails details = descriptors->GetDetails(i); if (!details.IsEnumerable()) continue; if (details.kind() == kData) { if (details.location() == kDescriptor) { prop_value = handle(descriptors->GetStrongValue(i), isolate); } else { Representation representation = details.representation(); FieldIndex index = FieldIndex::ForDescriptor(*map, i); prop_value = JSObject::FastPropertyAt(from, representation, index); } } else { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, JSReceiver::GetProperty(isolate, from, next_key), Nothing()); stable = from->map() == *map; } } else { // If the map did change, do a slower lookup. We are still guaranteed that // the object has a simple shape, and that the key is a name. LookupIterator it(from, next_key, from, LookupIterator::OWN_SKIP_INTERCEPTOR); if (!it.IsFound()) continue; DCHECK(it.state() == LookupIterator::DATA || it.state() == LookupIterator::ACCESSOR); if (!it.IsEnumerable()) continue; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, Object::GetProperty(&it), Nothing()); } if (use_set) { LookupIterator it(target, next_key, target); Maybe result = Object::SetProperty(&it, prop_value, LanguageMode::kStrict, Object::CERTAINLY_NOT_STORE_FROM_KEYED); if (result.IsNothing()) return result; if (stable) stable = from->map() == *map; } else { if (excluded_properties != nullptr && HasExcludedProperty(excluded_properties, next_key)) { continue; } // 4a ii 2. Perform ? CreateDataProperty(target, nextKey, propValue). bool success; LookupIterator it = LookupIterator::PropertyOrElement( isolate, target, next_key, &success, LookupIterator::OWN); CHECK(success); CHECK(JSObject::CreateDataProperty(&it, prop_value, kThrowOnError) .FromJust()); } } return Just(true); } } // namespace // static Maybe JSReceiver::SetOrCopyDataProperties( Isolate* isolate, Handle target, Handle source, const ScopedVector>* excluded_properties, bool use_set) { Maybe fast_assign = FastAssign(target, source, excluded_properties, use_set); if (fast_assign.IsNothing()) return Nothing(); if (fast_assign.FromJust()) return Just(true); Handle from = Object::ToObject(isolate, source).ToHandleChecked(); // 3b. Let keys be ? from.[[OwnPropertyKeys]](). Handle keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, KeyAccumulator::GetKeys(from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, GetKeysConversion::kKeepNumbers), Nothing()); // 4. Repeat for each element nextKey of keys in List order, for (int j = 0; j < keys->length(); ++j) { Handle next_key(keys->get(j), isolate); // 4a i. Let desc be ? from.[[GetOwnProperty]](nextKey). PropertyDescriptor desc; Maybe found = JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc); if (found.IsNothing()) return Nothing(); // 4a ii. If desc is not undefined and desc.[[Enumerable]] is true, then if (found.FromJust() && desc.enumerable()) { // 4a ii 1. Let propValue be ? Get(from, nextKey). Handle prop_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, Runtime::GetObjectProperty(isolate, from, next_key), Nothing()); if (use_set) { // 4c ii 2. Let status be ? Set(to, nextKey, propValue, true). Handle status; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, status, Runtime::SetObjectProperty(isolate, target, next_key, prop_value, LanguageMode::kStrict), Nothing()); } else { if (excluded_properties != nullptr && HasExcludedProperty(excluded_properties, next_key)) { continue; } // 4a ii 2. Perform ! CreateDataProperty(target, nextKey, propValue). bool success; LookupIterator it = LookupIterator::PropertyOrElement( isolate, target, next_key, &success, LookupIterator::OWN); CHECK(success); CHECK(JSObject::CreateDataProperty(&it, prop_value, kThrowOnError) .FromJust()); } } } return Just(true); } Map* Object::GetPrototypeChainRootMap(Isolate* isolate) const { DisallowHeapAllocation no_alloc; if (IsSmi()) { Context* native_context = isolate->context()->native_context(); return native_context->number_function()->initial_map(); } const HeapObject* heap_object = HeapObject::cast(this); return heap_object->map()->GetPrototypeChainRootMap(isolate); } Map* Map::GetPrototypeChainRootMap(Isolate* isolate) const { DisallowHeapAllocation no_alloc; if (IsJSReceiverMap()) { return const_cast(this); } int constructor_function_index = GetConstructorFunctionIndex(); if (constructor_function_index != Map::kNoConstructorFunctionIndex) { Context* native_context = isolate->context()->native_context(); JSFunction* constructor_function = JSFunction::cast(native_context->get(constructor_function_index)); return constructor_function->initial_map(); } return ReadOnlyRoots(isolate).null_value()->map(); } // static Smi* Object::GetOrCreateHash(Isolate* isolate, Object* key) { DisallowHeapAllocation no_gc; return key->GetOrCreateHash(isolate); } Smi* Object::GetOrCreateHash(Isolate* isolate) { DisallowHeapAllocation no_gc; Object* hash = Object::GetSimpleHash(this); if (hash->IsSmi()) return Smi::cast(hash); DCHECK(IsJSReceiver()); return JSReceiver::cast(this)->GetOrCreateIdentityHash(isolate); } bool Object::SameValue(Object* other) { if (other == this) return true; if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // SameValue(NaN, NaN) is true. if (this_value != other_value) { return std::isnan(this_value) && std::isnan(other_value); } // SameValue(0.0, -0.0) is false. return (std::signbit(this_value) == std::signbit(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsBigInt() && other->IsBigInt()) { return BigInt::EqualToBigInt(BigInt::cast(this), BigInt::cast(other)); } return false; } bool Object::SameValueZero(Object* other) { if (other == this) return true; if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // +0 == -0 is true return this_value == other_value || (std::isnan(this_value) && std::isnan(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsBigInt() && other->IsBigInt()) { return BigInt::EqualToBigInt(BigInt::cast(this), BigInt::cast(other)); } return false; } MaybeHandle Object::ArraySpeciesConstructor( Isolate* isolate, Handle original_array) { Handle default_species = isolate->array_function(); if (original_array->IsJSArray() && Handle::cast(original_array)->HasArrayPrototype(isolate) && isolate->IsArraySpeciesLookupChainIntact()) { return default_species; } Handle constructor = isolate->factory()->undefined_value(); Maybe is_array = Object::IsArray(original_array); MAYBE_RETURN_NULL(is_array); if (is_array.FromJust()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor, Object::GetProperty(isolate, original_array, isolate->factory()->constructor_string()), Object); if (constructor->IsConstructor()) { Handle constructor_context; ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor_context, JSReceiver::GetFunctionRealm(Handle::cast(constructor)), Object); if (*constructor_context != *isolate->native_context() && *constructor == constructor_context->array_function()) { constructor = isolate->factory()->undefined_value(); } } if (constructor->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor, JSReceiver::GetProperty(isolate, Handle::cast(constructor), isolate->factory()->species_symbol()), Object); if (constructor->IsNull(isolate)) { constructor = isolate->factory()->undefined_value(); } } } if (constructor->IsUndefined(isolate)) { return default_species; } else { if (!constructor->IsConstructor()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSpeciesNotConstructor), Object); } return constructor; } } // ES6 section 7.3.20 SpeciesConstructor ( O, defaultConstructor ) V8_WARN_UNUSED_RESULT MaybeHandle Object::SpeciesConstructor( Isolate* isolate, Handle recv, Handle default_ctor) { Handle ctor_obj; ASSIGN_RETURN_ON_EXCEPTION( isolate, ctor_obj, JSObject::GetProperty(isolate, recv, isolate->factory()->constructor_string()), Object); if (ctor_obj->IsUndefined(isolate)) return default_ctor; if (!ctor_obj->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kConstructorNotReceiver), Object); } Handle ctor = Handle::cast(ctor_obj); Handle species; ASSIGN_RETURN_ON_EXCEPTION( isolate, species, JSObject::GetProperty(isolate, ctor, isolate->factory()->species_symbol()), Object); if (species->IsNullOrUndefined(isolate)) { return default_ctor; } if (species->IsConstructor()) return species; THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kSpeciesNotConstructor), Object); } bool Object::IterationHasObservableEffects() { // Check that this object is an array. if (!IsJSArray()) return true; JSArray* array = JSArray::cast(this); Isolate* isolate = array->GetIsolate(); #ifdef V8_ENABLE_FORCE_SLOW_PATH if (isolate->force_slow_path()) return true; #endif // Check that we have the original ArrayPrototype. if (!array->map()->prototype()->IsJSObject()) return true; JSObject* array_proto = JSObject::cast(array->map()->prototype()); if (!isolate->is_initial_array_prototype(array_proto)) return true; // Check that the ArrayPrototype hasn't been modified in a way that would // affect iteration. if (!isolate->IsArrayIteratorLookupChainIntact()) return true; // For FastPacked kinds, iteration will have the same effect as simply // accessing each property in order. ElementsKind array_kind = array->GetElementsKind(); if (IsFastPackedElementsKind(array_kind)) return false; // For FastHoley kinds, an element access on a hole would cause a lookup on // the prototype. This could have different results if the prototype has been // changed. if (IsHoleyElementsKind(array_kind) && isolate->IsNoElementsProtectorIntact()) { return false; } return true; } void Object::ShortPrint(FILE* out) { OFStream os(out); os << Brief(this); } void Object::ShortPrint(StringStream* accumulator) { std::ostringstream os; os << Brief(this); accumulator->Add(os.str().c_str()); } void Object::ShortPrint(std::ostream& os) { os << Brief(this); } void MaybeObject::ShortPrint(FILE* out) { OFStream os(out); os << Brief(this); } void MaybeObject::ShortPrint(StringStream* accumulator) { std::ostringstream os; os << Brief(this); accumulator->Add(os.str().c_str()); } void MaybeObject::ShortPrint(std::ostream& os) { os << Brief(this); } Brief::Brief(const Object* v) : value(MaybeObject::FromObject(const_cast(v))) {} std::ostream& operator<<(std::ostream& os, const Brief& v) { // TODO(marja): const-correct HeapObjectShortPrint. MaybeObject* maybe_object = const_cast(v.value); Smi* smi; HeapObject* heap_object; if (maybe_object->ToSmi(&smi)) { smi->SmiPrint(os); } else if (maybe_object->IsClearedWeakHeapObject()) { os << "[cleared]"; } else if (maybe_object->ToWeakHeapObject(&heap_object)) { os << "[weak] "; heap_object->HeapObjectShortPrint(os); } else if (maybe_object->ToStrongHeapObject(&heap_object)) { heap_object->HeapObjectShortPrint(os); } else { UNREACHABLE(); } return os; } void Smi::SmiPrint(std::ostream& os) const { // NOLINT os << value(); } Handle String::SlowFlatten(Isolate* isolate, Handle cons, PretenureFlag pretenure) { DCHECK_NE(cons->second()->length(), 0); // TurboFan can create cons strings with empty first parts. while (cons->first()->length() == 0) { // We do not want to call this function recursively. Therefore we call // String::Flatten only in those cases where String::SlowFlatten is not // called again. if (cons->second()->IsConsString() && !cons->second()->IsFlat()) { cons = handle(ConsString::cast(cons->second()), isolate); } else { return String::Flatten(isolate, handle(cons->second(), isolate)); } } DCHECK(AllowHeapAllocation::IsAllowed()); int length = cons->length(); PretenureFlag tenure = Heap::InNewSpace(*cons) ? pretenure : TENURED; Handle result; if (cons->IsOneByteRepresentation()) { Handle flat = isolate->factory()->NewRawOneByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } else { Handle flat = isolate->factory()->NewRawTwoByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } cons->set_first(isolate, *result); cons->set_second(isolate, ReadOnlyRoots(isolate).empty_string()); DCHECK(result->IsFlat()); return result; } bool String::MakeExternal(v8::String::ExternalStringResource* resource) { DisallowHeapAllocation no_allocation; // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(this->SupportsExternalization()); DCHECK(!resource->IsCompressible()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast(this->length()) == resource->length()); ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK_EQ(0, memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0]))); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Isolate* isolate; // Read-only strings cannot be made external, since that would mutate the // string. if (!Isolate::FromWritableHeapObject(this, &isolate)) return false; Heap* heap = isolate->heap(); bool is_one_byte = this->IsOneByteRepresentation(); bool is_internalized = this->IsInternalizedString(); bool has_pointers = StringShape(this).IsIndirect(); if (has_pointers) { heap->NotifyObjectLayoutChange(this, size, no_allocation); } // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; ReadOnlyRoots roots(heap); if (size < ExternalString::kSize) { if (is_internalized) { new_map = is_one_byte ? roots .short_external_internalized_string_with_one_byte_data_map() : roots.short_external_internalized_string_map(); } else { new_map = is_one_byte ? roots.short_external_string_with_one_byte_data_map() : roots.short_external_string_map(); } } else { new_map = is_internalized ? (is_one_byte ? roots.external_internalized_string_with_one_byte_data_map() : roots.external_internalized_string_map()) : (is_one_byte ? roots.external_string_with_one_byte_data_map() : roots.external_string_map()); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size, ClearRecordedSlots::kNo); if (has_pointers) { heap->ClearRecordedSlotRange(this->address(), this->address() + new_size); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalTwoByteString* self = ExternalTwoByteString::cast(this); self->SetResource(isolate, resource); heap->RegisterExternalString(this); if (is_internalized) self->Hash(); // Force regeneration of the hash value. return true; } bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) { DisallowHeapAllocation no_allocation; // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(this->SupportsExternalization()); DCHECK(!resource->IsCompressible()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast(this->length()) == resource->length()); if (this->IsTwoByteRepresentation()) { ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(String::IsOneByte(smart_chars.start(), this->length())); } ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK_EQ(0, memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0]))); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Isolate* isolate; // Read-only strings cannot be made external, since that would mutate the // string. if (!Isolate::FromWritableHeapObject(this, &isolate)) return false; Heap* heap = isolate->heap(); bool is_internalized = this->IsInternalizedString(); bool has_pointers = StringShape(this).IsIndirect(); if (has_pointers) { heap->NotifyObjectLayoutChange(this, size, no_allocation); } // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; ReadOnlyRoots roots(heap); if (size < ExternalString::kSize) { new_map = is_internalized ? roots.short_external_one_byte_internalized_string_map() : roots.short_external_one_byte_string_map(); } else { new_map = is_internalized ? roots.external_one_byte_internalized_string_map() : roots.external_one_byte_string_map(); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size, ClearRecordedSlots::kNo); if (has_pointers) { heap->ClearRecordedSlotRange(this->address(), this->address() + new_size); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalOneByteString* self = ExternalOneByteString::cast(this); self->SetResource(isolate, resource); heap->RegisterExternalString(this); if (is_internalized) self->Hash(); // Force regeneration of the hash value. return true; } bool String::SupportsExternalization() { if (this->IsThinString()) { return i::ThinString::cast(this)->actual()->SupportsExternalization(); } Isolate* isolate; // RO_SPACE strings cannot be externalized. if (!Isolate::FromWritableHeapObject(this, &isolate)) { return false; } // Already an external string. if (StringShape(this).IsExternal()) { return false; } return !isolate->heap()->IsInGCPostProcessing(); } void String::StringShortPrint(StringStream* accumulator, bool show_details) { int len = length(); if (len > kMaxShortPrintLength) { accumulator->Add("", len); return; } if (!LooksValid()) { accumulator->Add(""); return; } StringCharacterStream stream(this); bool truncated = false; if (len > kMaxShortPrintLength) { len = kMaxShortPrintLength; truncated = true; } bool one_byte = true; for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c < 32 || c >= 127) { one_byte = false; } } stream.Reset(this); if (one_byte) { if (show_details) accumulator->Add("Put(static_cast(stream.GetNext())); } if (show_details) accumulator->Put('>'); } else { // Backslash indicates that the string contains control // characters and that backslashes are therefore escaped. if (show_details) accumulator->Add("Add("\\n"); } else if (c == '\r') { accumulator->Add("\\r"); } else if (c == '\\') { accumulator->Add("\\\\"); } else if (c < 32 || c > 126) { accumulator->Add("\\x%02x", c); } else { accumulator->Put(static_cast(c)); } } if (truncated) { accumulator->Put('.'); accumulator->Put('.'); accumulator->Put('.'); } if (show_details) accumulator->Put('>'); } return; } void String::PrintUC16(std::ostream& os, int start, int end) { // NOLINT if (end < 0) end = length(); StringCharacterStream stream(this, start); for (int i = start; i < end && stream.HasMore(); i++) { os << AsUC16(stream.GetNext()); } } void JSObject::JSObjectShortPrint(StringStream* accumulator) { switch (map()->instance_type()) { case JS_ARRAY_TYPE: { double length = JSArray::cast(this)->length()->IsUndefined() ? 0 : JSArray::cast(this)->length()->Number(); accumulator->Add("", static_cast(length)); break; } case JS_BOUND_FUNCTION_TYPE: { JSBoundFunction* bound_function = JSBoundFunction::cast(this); accumulator->Add("Add( " (BoundTargetFunction %p)>", reinterpret_cast(bound_function->bound_target_function())); break; } case JS_WEAK_MAP_TYPE: { accumulator->Add(""); break; } case JS_WEAK_SET_TYPE: { accumulator->Add(""); break; } case JS_REGEXP_TYPE: { accumulator->Add("source()->IsString()) { accumulator->Add(" "); String::cast(regexp->source())->StringShortPrint(accumulator); } accumulator->Add(">"); break; } case JS_FUNCTION_TYPE: { JSFunction* function = JSFunction::cast(this); Object* fun_name = function->shared()->DebugName(); bool printed = false; if (fun_name->IsString()) { String* str = String::cast(fun_name); if (str->length() > 0) { accumulator->Add("Put(str); printed = true; } } if (!printed) { accumulator->Add("shared()->script())->name(); if (source_name->IsString()) { String* str = String::cast(source_name); if (str->length() > 0) { accumulator->Add(" <"); accumulator->Put(str); accumulator->Add(">"); } } } accumulator->Add(" (sfi = %p)", reinterpret_cast(function->shared())); accumulator->Put('>'); break; } case JS_GENERATOR_OBJECT_TYPE: { accumulator->Add(""); break; } case JS_ASYNC_GENERATOR_OBJECT_TYPE: { accumulator->Add(""); break; } // All other JSObjects are rather similar to each other (JSObject, // JSGlobalProxy, JSGlobalObject, JSUndetectable, JSValue). default: { Map* map_of_this = map(); Heap* heap = GetHeap(); Object* constructor = map_of_this->GetConstructor(); bool printed = false; if (constructor->IsHeapObject() && !heap->Contains(HeapObject::cast(constructor))) { accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); } else { bool global_object = IsJSGlobalProxy(); if (constructor->IsJSFunction()) { if (!heap->Contains(JSFunction::cast(constructor)->shared())) { accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); } else { String* constructor_name = JSFunction::cast(constructor)->shared()->Name(); if (constructor_name->length() > 0) { accumulator->Add(global_object ? "Put(constructor_name); accumulator->Add( " %smap = %p", map_of_this->is_deprecated() ? "deprecated-" : "", map_of_this); printed = true; } } } else if (constructor->IsFunctionTemplateInfo()) { accumulator->Add(global_object ? "" : ""); printed = true; } if (!printed) { accumulator->Add("Add(" value = "); JSValue::cast(this)->value()->ShortPrint(accumulator); } accumulator->Put('>'); break; } } } void JSObject::PrintElementsTransition( FILE* file, Handle object, ElementsKind from_kind, Handle from_elements, ElementsKind to_kind, Handle to_elements) { if (from_kind != to_kind) { OFStream os(file); os << "elements transition [" << ElementsKindToString(from_kind) << " -> " << ElementsKindToString(to_kind) << "] in "; JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true); PrintF(file, " for "); object->ShortPrint(file); PrintF(file, " from "); from_elements->ShortPrint(file); PrintF(file, " to "); to_elements->ShortPrint(file); PrintF(file, "\n"); } } // static MaybeHandle Map::GetConstructorFunction( Handle map, Handle native_context) { if (map->IsPrimitiveMap()) { int const constructor_function_index = map->GetConstructorFunctionIndex(); if (constructor_function_index != kNoConstructorFunctionIndex) { return handle( JSFunction::cast(native_context->get(constructor_function_index)), native_context->GetIsolate()); } } return MaybeHandle(); } void Map::PrintReconfiguration(Isolate* isolate, FILE* file, int modify_index, PropertyKind kind, PropertyAttributes attributes) { OFStream os(file); os << "[reconfiguring]"; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast(name) << "}"; } os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: "; os << attributes << " ["; JavaScriptFrame::PrintTop(isolate, file, false, true); os << "]\n"; } VisitorId Map::GetVisitorId(Map* map) { STATIC_ASSERT(kVisitorIdCount <= 256); const int instance_type = map->instance_type(); const bool has_unboxed_fields = FLAG_unbox_double_fields && !map->HasFastPointerLayout(); if (instance_type < FIRST_NONSTRING_TYPE) { switch (instance_type & kStringRepresentationMask) { case kSeqStringTag: if ((instance_type & kStringEncodingMask) == kOneByteStringTag) { return kVisitSeqOneByteString; } else { return kVisitSeqTwoByteString; } case kConsStringTag: if (IsShortcutCandidate(instance_type)) { return kVisitShortcutCandidate; } else { return kVisitConsString; } case kSlicedStringTag: return kVisitSlicedString; case kExternalStringTag: return kVisitDataObject; case kThinStringTag: return kVisitThinString; } UNREACHABLE(); } switch (instance_type) { case BYTE_ARRAY_TYPE: return kVisitByteArray; case BYTECODE_ARRAY_TYPE: return kVisitBytecodeArray; case FREE_SPACE_TYPE: return kVisitFreeSpace; case FIXED_ARRAY_TYPE: case OBJECT_BOILERPLATE_DESCRIPTION_TYPE: case HASH_TABLE_TYPE: case ORDERED_HASH_MAP_TYPE: case ORDERED_HASH_SET_TYPE: case NAME_DICTIONARY_TYPE: case GLOBAL_DICTIONARY_TYPE: case NUMBER_DICTIONARY_TYPE: case SIMPLE_NUMBER_DICTIONARY_TYPE: case STRING_TABLE_TYPE: case SCOPE_INFO_TYPE: case SCRIPT_CONTEXT_TABLE_TYPE: case BLOCK_CONTEXT_TYPE: case CATCH_CONTEXT_TYPE: case DEBUG_EVALUATE_CONTEXT_TYPE: case EVAL_CONTEXT_TYPE: case FUNCTION_CONTEXT_TYPE: case MODULE_CONTEXT_TYPE: case NATIVE_CONTEXT_TYPE: case SCRIPT_CONTEXT_TYPE: case WITH_CONTEXT_TYPE: return kVisitFixedArray; case EPHEMERON_HASH_TABLE_TYPE: return kVisitEphemeronHashTable; case WEAK_FIXED_ARRAY_TYPE: case WEAK_ARRAY_LIST_TYPE: case DESCRIPTOR_ARRAY_TYPE: return kVisitWeakArray; case FIXED_DOUBLE_ARRAY_TYPE: return kVisitFixedDoubleArray; case PROPERTY_ARRAY_TYPE: return kVisitPropertyArray; case FEEDBACK_CELL_TYPE: return kVisitFeedbackCell; case FEEDBACK_VECTOR_TYPE: return kVisitFeedbackVector; case ODDBALL_TYPE: return kVisitOddball; case MAP_TYPE: return kVisitMap; case CODE_TYPE: return kVisitCode; case CELL_TYPE: return kVisitCell; case PROPERTY_CELL_TYPE: return kVisitPropertyCell; case TRANSITION_ARRAY_TYPE: return kVisitTransitionArray; case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: return kVisitJSWeakCollection; case CALL_HANDLER_INFO_TYPE: return kVisitStruct; case SHARED_FUNCTION_INFO_TYPE: return kVisitSharedFunctionInfo; case JS_PROXY_TYPE: return kVisitStruct; case SYMBOL_TYPE: return kVisitSymbol; case JS_ARRAY_BUFFER_TYPE: return kVisitJSArrayBuffer; case SMALL_ORDERED_HASH_MAP_TYPE: return kVisitSmallOrderedHashMap; case SMALL_ORDERED_HASH_SET_TYPE: return kVisitSmallOrderedHashSet; case CODE_DATA_CONTAINER_TYPE: return kVisitCodeDataContainer; case WASM_INSTANCE_TYPE: return kVisitWasmInstanceObject; case PRE_PARSED_SCOPE_DATA_TYPE: return kVisitPreParsedScopeData; case UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE: return kVisitUncompiledDataWithoutPreParsedScope; case UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE: return kVisitUncompiledDataWithPreParsedScope; case JS_OBJECT_TYPE: case JS_ERROR_TYPE: case JS_ARGUMENTS_TYPE: case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_ASYNC_GENERATOR_OBJECT_TYPE: case JS_MODULE_NAMESPACE_TYPE: case JS_VALUE_TYPE: case JS_DATE_TYPE: case JS_ARRAY_ITERATOR_TYPE: case JS_ARRAY_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_MESSAGE_OBJECT_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_KEY_VALUE_ITERATOR_TYPE: case JS_SET_VALUE_ITERATOR_TYPE: case JS_MAP_KEY_ITERATOR_TYPE: case JS_MAP_KEY_VALUE_ITERATOR_TYPE: case JS_MAP_VALUE_ITERATOR_TYPE: case JS_STRING_ITERATOR_TYPE: case JS_PROMISE_TYPE: case JS_REGEXP_TYPE: case JS_REGEXP_STRING_ITERATOR_TYPE: #ifdef V8_INTL_SUPPORT case JS_INTL_COLLATOR_TYPE: case JS_INTL_LIST_FORMAT_TYPE: case JS_INTL_LOCALE_TYPE: case JS_INTL_PLURAL_RULES_TYPE: case JS_INTL_RELATIVE_TIME_FORMAT_TYPE: #endif // V8_INTL_SUPPORT case WASM_GLOBAL_TYPE: case WASM_MEMORY_TYPE: case WASM_MODULE_TYPE: case WASM_TABLE_TYPE: case JS_BOUND_FUNCTION_TYPE: return has_unboxed_fields ? kVisitJSObject : kVisitJSObjectFast; case JS_API_OBJECT_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: return kVisitJSApiObject; case JS_FUNCTION_TYPE: return kVisitJSFunction; case FILLER_TYPE: case FOREIGN_TYPE: case HEAP_NUMBER_TYPE: case MUTABLE_HEAP_NUMBER_TYPE: case FEEDBACK_METADATA_TYPE: return kVisitDataObject; case BIGINT_TYPE: return kVisitBigInt; case FIXED_UINT8_ARRAY_TYPE: case FIXED_INT8_ARRAY_TYPE: case FIXED_UINT16_ARRAY_TYPE: case FIXED_INT16_ARRAY_TYPE: case FIXED_UINT32_ARRAY_TYPE: case FIXED_INT32_ARRAY_TYPE: case FIXED_FLOAT32_ARRAY_TYPE: case FIXED_UINT8_CLAMPED_ARRAY_TYPE: case FIXED_BIGUINT64_ARRAY_TYPE: case FIXED_BIGINT64_ARRAY_TYPE: return kVisitFixedTypedArrayBase; case FIXED_FLOAT64_ARRAY_TYPE: return kVisitFixedFloat64Array; case ALLOCATION_SITE_TYPE: return kVisitAllocationSite; #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE if (instance_type == PROTOTYPE_INFO_TYPE) { return kVisitPrototypeInfo; } return kVisitStruct; case LOAD_HANDLER_TYPE: case STORE_HANDLER_TYPE: return kVisitDataHandler; default: UNREACHABLE(); } } void Map::PrintGeneralization( Isolate* isolate, FILE* file, const char* reason, int modify_index, int split, int descriptors, bool descriptor_to_field, Representation old_representation, Representation new_representation, MaybeHandle old_field_type, MaybeHandle old_value, MaybeHandle new_field_type, MaybeHandle new_value) { OFStream os(file); os << "[generalizing]"; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast(name) << "}"; } os << ":"; if (descriptor_to_field) { os << "c"; } else { os << old_representation.Mnemonic() << "{"; if (old_field_type.is_null()) { os << Brief(*(old_value.ToHandleChecked())); } else { old_field_type.ToHandleChecked()->PrintTo(os); } os << "}"; } os << "->" << new_representation.Mnemonic() << "{"; if (new_field_type.is_null()) { os << Brief(*(new_value.ToHandleChecked())); } else { new_field_type.ToHandleChecked()->PrintTo(os); } os << "} ("; if (strlen(reason) > 0) { os << reason; } else { os << "+" << (descriptors - split) << " maps"; } os << ") ["; JavaScriptFrame::PrintTop(isolate, file, false, true); os << "]\n"; } void JSObject::PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map) { if (new_map->is_dictionary_map()) { PrintF(file, "[migrating to slow]\n"); return; } PrintF(file, "[migrating]"); DescriptorArray* o = original_map->instance_descriptors(); DescriptorArray* n = new_map->instance_descriptors(); for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) { Representation o_r = o->GetDetails(i).representation(); Representation n_r = n->GetDetails(i).representation(); if (!o_r.Equals(n_r)) { String::cast(o->GetKey(i))->PrintOn(file); PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic()); } else if (o->GetDetails(i).location() == kDescriptor && n->GetDetails(i).location() == kField) { Name* name = o->GetKey(i); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { PrintF(file, "{symbol %p}", static_cast(name)); } PrintF(file, " "); } } if (original_map->elements_kind() != new_map->elements_kind()) { PrintF(file, "elements_kind[%i->%i]", original_map->elements_kind(), new_map->elements_kind()); } PrintF(file, "\n"); } bool JSObject::IsUnmodifiedApiObject(Object** o) { Object* object = *o; if (object->IsSmi()) return false; HeapObject* heap_object = HeapObject::cast(object); if (!object->IsJSObject()) return false; JSObject* js_object = JSObject::cast(object); if (!js_object->IsApiWrapper()) return false; Object* maybe_constructor = js_object->map()->GetConstructor(); if (!maybe_constructor->IsJSFunction()) return false; JSFunction* constructor = JSFunction::cast(maybe_constructor); if (js_object->elements()->length() != 0) return false; return constructor->initial_map() == heap_object->map(); } void HeapObject::HeapObjectShortPrint(std::ostream& os) { // NOLINT os << AsHex(reinterpret_cast
(this), kPointerHexDigits, true) << " "; if (IsString()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(this)->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } if (IsJSObject()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); JSObject::cast(this)->JSObjectShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } switch (map()->instance_type()) { case MAP_TYPE: { os << "IsJSObjectMap()) { os << "(" << ElementsKindToString(mapInstance->elements_kind()) << ")"; } else if (mapInstance->instance_size() != kVariableSizeSentinel) { os << "[" << mapInstance->instance_size() << "]"; } os << ">"; } break; case BLOCK_CONTEXT_TYPE: os << "length() << "]>"; break; case CATCH_CONTEXT_TYPE: os << "length() << "]>"; break; case DEBUG_EVALUATE_CONTEXT_TYPE: os << "length() << "]>"; break; case EVAL_CONTEXT_TYPE: os << "length() << "]>"; break; case FUNCTION_CONTEXT_TYPE: os << "length() << "]>"; break; case MODULE_CONTEXT_TYPE: os << "length() << "]>"; break; case NATIVE_CONTEXT_TYPE: os << "length() << "]>"; break; case SCRIPT_CONTEXT_TYPE: os << "length() << "]>"; break; case WITH_CONTEXT_TYPE: os << "length() << "]>"; break; case SCRIPT_CONTEXT_TABLE_TYPE: os << "length() << "]>"; break; case HASH_TABLE_TYPE: os << "length() << "]>"; break; case ORDERED_HASH_MAP_TYPE: os << "length() << "]>"; break; case ORDERED_HASH_SET_TYPE: os << "length() << "]>"; break; case NAME_DICTIONARY_TYPE: os << "length() << "]>"; break; case GLOBAL_DICTIONARY_TYPE: os << "length() << "]>"; break; case NUMBER_DICTIONARY_TYPE: os << "length() << "]>"; break; case SIMPLE_NUMBER_DICTIONARY_TYPE: os << "length() << "]>"; break; case STRING_TABLE_TYPE: os << "length() << "]>"; break; case FIXED_ARRAY_TYPE: os << "length() << "]>"; break; case OBJECT_BOILERPLATE_DESCRIPTION_TYPE: os << "length() << "]>"; break; case FIXED_DOUBLE_ARRAY_TYPE: os << "length() << "]>"; break; case BYTE_ARRAY_TYPE: os << "length() << "]>"; break; case BYTECODE_ARRAY_TYPE: os << "length() << "]>"; break; case DESCRIPTOR_ARRAY_TYPE: os << "length() << "]>"; break; case TRANSITION_ARRAY_TYPE: os << "length() << "]>"; break; case PROPERTY_ARRAY_TYPE: os << "length() << "]>"; break; case FEEDBACK_CELL_TYPE: { { ReadOnlyRoots roots = GetReadOnlyRoots(); os << ""; } break; } case FEEDBACK_VECTOR_TYPE: os << "length() << "]>"; break; case FREE_SPACE_TYPE: os << "size() << "]>"; break; #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype) \ case FIXED_##TYPE##_ARRAY_TYPE: \ os << "length() \ << "]>"; \ break; TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT) #undef TYPED_ARRAY_SHORT_PRINT case PRE_PARSED_SCOPE_DATA_TYPE: { PreParsedScopeData* data = PreParsedScopeData::cast(this); os << "length() << "]>"; break; } case UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE: { UncompiledDataWithoutPreParsedScope* data = UncompiledDataWithoutPreParsedScope::cast(this); os << "start_position() << ", " << data->end_position() << ")]>"; break; } case UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE: { UncompiledDataWithPreParsedScope* data = UncompiledDataWithPreParsedScope::cast(this); os << "start_position() << ", " << data->end_position() << ") preparsed=" << Brief(data->pre_parsed_scope_data()) << ">"; break; } case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo* shared = SharedFunctionInfo::cast(this); std::unique_ptr debug_name = shared->DebugName()->ToCString(); if (debug_name[0] != 0) { os << ""; } else { os << ""; } break; } case JS_MESSAGE_OBJECT_TYPE: os << ""; break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ os << "<" #Name; \ Name::cast(this)->BriefPrintDetails(os); \ os << ">"; \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE case ALLOCATION_SITE_TYPE: { os << "BriefPrintDetails(os); os << ">"; break; } case SCOPE_INFO_TYPE: { ScopeInfo* scope = ScopeInfo::cast(this); os << "length()) os << " " << scope->scope_type() << " "; os << "[" << scope->length() << "]>"; break; } case CODE_TYPE: { Code* code = Code::cast(this); os << "kind()); if (code->is_stub()) { os << " " << CodeStub::MajorName(CodeStub::GetMajorKey(code)); } else if (code->is_builtin()) { os << " " << Builtins::name(code->builtin_index()); } os << ">"; break; } case ODDBALL_TYPE: { if (IsUndefined()) { os << ""; } else if (IsTheHole()) { os << ""; } else if (IsNull()) { os << ""; } else if (IsTrue()) { os << ""; } else if (IsFalse()) { os << ""; } else { os << "to_string()->ToCString().get(); os << ">"; } break; } case SYMBOL_TYPE: { Symbol* symbol = Symbol::cast(this); symbol->SymbolShortPrint(os); break; } case HEAP_NUMBER_TYPE: { os << "HeapNumberPrint(os); os << ">"; break; } case MUTABLE_HEAP_NUMBER_TYPE: { os << "MutableHeapNumberPrint(os); os << '>'; break; } case BIGINT_TYPE: { os << "BigIntShortPrint(os); os << ">"; break; } case JS_PROXY_TYPE: os << ""; break; case FOREIGN_TYPE: os << ""; break; case CELL_TYPE: { os << ""; } else { os << ", side_effect_free= false>"; } break; } default: os << "instance_type() << ")>"; break; } } void Struct::BriefPrintDetails(std::ostream& os) {} void Tuple2::BriefPrintDetails(std::ostream& os) { os << " " << Brief(value1()) << ", " << Brief(value2()); } void Tuple3::BriefPrintDetails(std::ostream& os) { os << " " << Brief(value1()) << ", " << Brief(value2()) << ", " << Brief(value3()); } void ArrayBoilerplateDescription::BriefPrintDetails(std::ostream& os) { os << " " << elements_kind() << ", " << Brief(constant_elements()); } void CallableTask::BriefPrintDetails(std::ostream& os) { os << " callable=" << Brief(callable()); } void HeapObject::Iterate(ObjectVisitor* v) { IterateFast(v); } void HeapObject::IterateBody(ObjectVisitor* v) { Map* m = map(); IterateBodyFast(m, SizeFromMap(m), v); } void HeapObject::IterateBody(Map* map, int object_size, ObjectVisitor* v) { IterateBodyFast(map, object_size, v); } struct CallIsValidSlot { template static bool apply(Map* map, HeapObject* obj, int offset, int) { return BodyDescriptor::IsValidSlot(map, obj, offset); } }; bool HeapObject::IsValidSlot(Map* map, int offset) { DCHECK_NE(0, offset); return BodyDescriptorApply(map->instance_type(), map, this, offset, 0); } String* JSReceiver::class_name() { ReadOnlyRoots roots = GetReadOnlyRoots(); if (IsFunction()) return roots.Function_string(); if (IsJSArgumentsObject()) return roots.Arguments_string(); if (IsJSArray()) return roots.Array_string(); if (IsJSArrayBuffer()) { if (JSArrayBuffer::cast(this)->is_shared()) { return roots.SharedArrayBuffer_string(); } return roots.ArrayBuffer_string(); } if (IsJSArrayIterator()) return roots.ArrayIterator_string(); if (IsJSDate()) return roots.Date_string(); if (IsJSError()) return roots.Error_string(); if (IsJSGeneratorObject()) return roots.Generator_string(); if (IsJSMap()) return roots.Map_string(); if (IsJSMapIterator()) return roots.MapIterator_string(); if (IsJSProxy()) { return map()->is_callable() ? roots.Function_string() : roots.Object_string(); } if (IsJSRegExp()) return roots.RegExp_string(); if (IsJSSet()) return roots.Set_string(); if (IsJSSetIterator()) return roots.SetIterator_string(); if (IsJSTypedArray()) { #define SWITCH_KIND(Type, type, TYPE, ctype) \ if (map()->elements_kind() == TYPE##_ELEMENTS) { \ return roots.Type##Array_string(); \ } TYPED_ARRAYS(SWITCH_KIND) #undef SWITCH_KIND } if (IsJSValue()) { Object* value = JSValue::cast(this)->value(); if (value->IsBoolean()) return roots.Boolean_string(); if (value->IsString()) return roots.String_string(); if (value->IsNumber()) return roots.Number_string(); if (value->IsBigInt()) return roots.BigInt_string(); if (value->IsSymbol()) return roots.Symbol_string(); if (value->IsScript()) return roots.Script_string(); UNREACHABLE(); } if (IsJSWeakMap()) return roots.WeakMap_string(); if (IsJSWeakSet()) return roots.WeakSet_string(); if (IsJSGlobalProxy()) return roots.global_string(); Object* maybe_constructor = map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); if (constructor->shared()->IsApiFunction()) { maybe_constructor = constructor->shared()->get_api_func_data(); } } if (maybe_constructor->IsFunctionTemplateInfo()) { FunctionTemplateInfo* info = FunctionTemplateInfo::cast(maybe_constructor); if (info->class_name()->IsString()) return String::cast(info->class_name()); } return roots.Object_string(); } bool HeapObject::CanBeRehashed() const { DCHECK(NeedsRehashing()); switch (map()->instance_type()) { case ORDERED_HASH_MAP_TYPE: case ORDERED_HASH_SET_TYPE: // TODO(yangguo): actually support rehashing OrderedHash{Map,Set}. return false; case NAME_DICTIONARY_TYPE: case GLOBAL_DICTIONARY_TYPE: case NUMBER_DICTIONARY_TYPE: case SIMPLE_NUMBER_DICTIONARY_TYPE: case STRING_TABLE_TYPE: return true; case DESCRIPTOR_ARRAY_TYPE: return true; case TRANSITION_ARRAY_TYPE: return true; case SMALL_ORDERED_HASH_MAP_TYPE: return SmallOrderedHashMap::cast(this)->NumberOfElements() == 0; case SMALL_ORDERED_HASH_SET_TYPE: return SmallOrderedHashMap::cast(this)->NumberOfElements() == 0; default: return false; } return false; } void HeapObject::RehashBasedOnMap(Isolate* isolate) { switch (map()->instance_type()) { case HASH_TABLE_TYPE: UNREACHABLE(); break; case NAME_DICTIONARY_TYPE: NameDictionary::cast(this)->Rehash(isolate); break; case GLOBAL_DICTIONARY_TYPE: GlobalDictionary::cast(this)->Rehash(isolate); break; case NUMBER_DICTIONARY_TYPE: NumberDictionary::cast(this)->Rehash(isolate); break; case SIMPLE_NUMBER_DICTIONARY_TYPE: SimpleNumberDictionary::cast(this)->Rehash(isolate); break; case STRING_TABLE_TYPE: StringTable::cast(this)->Rehash(isolate); break; case DESCRIPTOR_ARRAY_TYPE: DCHECK_LE(1, DescriptorArray::cast(this)->number_of_descriptors()); DescriptorArray::cast(this)->Sort(); break; case TRANSITION_ARRAY_TYPE: TransitionArray::cast(this)->Sort(); break; case SMALL_ORDERED_HASH_MAP_TYPE: DCHECK_EQ(0, SmallOrderedHashMap::cast(this)->NumberOfElements()); break; case SMALL_ORDERED_HASH_SET_TYPE: DCHECK_EQ(0, SmallOrderedHashSet::cast(this)->NumberOfElements()); break; default: break; } } namespace { std::pair, Handle> GetConstructorHelper( Handle receiver) { Isolate* isolate = receiver->GetIsolate(); // If the object was instantiated simply with base == new.target, the // constructor on the map provides the most accurate name. // Don't provide the info for prototypes, since their constructors are // reclaimed and replaced by Object in OptimizeAsPrototype. if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() && !receiver->map()->is_prototype_map()) { Object* maybe_constructor = receiver->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); String* name = constructor->shared()->DebugName(); if (name->length() != 0 && !name->Equals(ReadOnlyRoots(isolate).Object_string())) { return std::make_pair(handle(constructor, isolate), handle(name, isolate)); } } else if (maybe_constructor->IsFunctionTemplateInfo()) { FunctionTemplateInfo* info = FunctionTemplateInfo::cast(maybe_constructor); if (info->class_name()->IsString()) { return std::make_pair( MaybeHandle(), handle(String::cast(info->class_name()), isolate)); } } } Handle maybe_tag = JSReceiver::GetDataProperty( receiver, isolate->factory()->to_string_tag_symbol()); if (maybe_tag->IsString()) return std::make_pair(MaybeHandle(), Handle::cast(maybe_tag)); PrototypeIterator iter(isolate, receiver); if (iter.IsAtEnd()) { return std::make_pair(MaybeHandle(), handle(receiver->class_name(), isolate)); } Handle start = PrototypeIterator::GetCurrent(iter); LookupIterator it(receiver, isolate->factory()->constructor_string(), start, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Handle maybe_constructor = JSReceiver::GetDataProperty(&it); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(*maybe_constructor); String* name = constructor->shared()->DebugName(); if (name->length() != 0 && !name->Equals(ReadOnlyRoots(isolate).Object_string())) { return std::make_pair(handle(constructor, isolate), handle(name, isolate)); } } return std::make_pair(MaybeHandle(), handle(receiver->class_name(), isolate)); } } // anonymous namespace // static MaybeHandle JSReceiver::GetConstructor( Handle receiver) { return GetConstructorHelper(receiver).first; } // static Handle JSReceiver::GetConstructorName(Handle receiver) { return GetConstructorHelper(receiver).second; } Handle JSReceiver::GetCreationContext() { JSReceiver* receiver = this; // Externals are JSObjects with null as a constructor. DCHECK(!receiver->IsExternal(GetIsolate())); Object* constructor = receiver->map()->GetConstructor(); JSFunction* function; if (constructor->IsJSFunction()) { function = JSFunction::cast(constructor); } else if (constructor->IsFunctionTemplateInfo()) { // Remote objects don't have a creation context. return Handle::null(); } else { // Functions have null as a constructor, // but any JSFunction knows its context immediately. CHECK(receiver->IsJSFunction()); function = JSFunction::cast(receiver); } return function->has_context() ? Handle(function->context()->native_context(), receiver->GetIsolate()) : Handle::null(); } // static MaybeObjectHandle Map::WrapFieldType(Isolate* isolate, Handle type) { if (type->IsClass()) { return MaybeObjectHandle::Weak(type->AsClass(), isolate); } return MaybeObjectHandle(type); } // static FieldType* Map::UnwrapFieldType(MaybeObject* wrapped_type) { if (wrapped_type->IsClearedWeakHeapObject()) { return FieldType::None(); } HeapObject* heap_object; if (wrapped_type->ToWeakHeapObject(&heap_object)) { return FieldType::cast(heap_object); } return FieldType::cast(wrapped_type->ToObject()); } MaybeHandle Map::CopyWithField(Isolate* isolate, Handle map, Handle name, Handle type, PropertyAttributes attributes, PropertyConstness constness, Representation representation, TransitionFlag flag) { DCHECK(DescriptorArray::kNotFound == map->instance_descriptors()->Search( *name, map->NumberOfOwnDescriptors())); // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle(); } // Compute the new index for new field. int index = map->NextFreePropertyIndex(); if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) { constness = PropertyConstness::kMutable; representation = Representation::Tagged(); type = FieldType::Any(isolate); } else { Map::GeneralizeIfCanHaveTransitionableFastElementsKind( isolate, map->instance_type(), &constness, &representation, &type); } MaybeObjectHandle wrapped_type = WrapFieldType(isolate, type); DCHECK_IMPLIES(!FLAG_track_constant_fields, constness == PropertyConstness::kMutable); Descriptor d = Descriptor::DataField(name, index, attributes, constness, representation, wrapped_type); Handle new_map = Map::CopyAddDescriptor(isolate, map, &d, flag); new_map->AccountAddedPropertyField(); return new_map; } MaybeHandle Map::CopyWithConstant(Isolate* isolate, Handle map, Handle name, Handle constant, PropertyAttributes attributes, TransitionFlag flag) { // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle(); } if (FLAG_track_constant_fields) { Representation representation = constant->OptimalRepresentation(); Handle type = constant->OptimalType(isolate, representation); return CopyWithField(isolate, map, name, type, attributes, PropertyConstness::kConst, representation, flag); } else { // Allocate new instance descriptors with (name, constant) added. Descriptor d = Descriptor::DataConstant(isolate, name, 0, constant, attributes); Handle new_map = Map::CopyAddDescriptor(isolate, map, &d, flag); return new_map; } } const char* Representation::Mnemonic() const { switch (kind_) { case kNone: return "v"; case kTagged: return "t"; case kSmi: return "s"; case kDouble: return "d"; case kInteger32: return "i"; case kHeapObject: return "h"; case kExternal: return "x"; default: UNREACHABLE(); } } bool Map::TransitionRemovesTaggedField(Map* target) const { int inobject = NumberOfFields(); int target_inobject = target->NumberOfFields(); for (int i = target_inobject; i < inobject; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(this, i); if (!IsUnboxedDoubleField(index)) return true; } return false; } bool Map::TransitionChangesTaggedFieldToUntaggedField(Map* target) const { int inobject = NumberOfFields(); int target_inobject = target->NumberOfFields(); int limit = Min(inobject, target_inobject); for (int i = 0; i < limit; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(target, i); if (!IsUnboxedDoubleField(index) && target->IsUnboxedDoubleField(index)) { return true; } } return false; } bool Map::TransitionRequiresSynchronizationWithGC(Map* target) const { return TransitionRemovesTaggedField(target) || TransitionChangesTaggedFieldToUntaggedField(target); } bool Map::InstancesNeedRewriting(Map* target) const { int target_number_of_fields = target->NumberOfFields(); int target_inobject = target->GetInObjectProperties(); int target_unused = target->UnusedPropertyFields(); int old_number_of_fields; return InstancesNeedRewriting(target, target_number_of_fields, target_inobject, target_unused, &old_number_of_fields); } bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields, int target_inobject, int target_unused, int* old_number_of_fields) const { // If fields were added (or removed), rewrite the instance. *old_number_of_fields = NumberOfFields(); DCHECK(target_number_of_fields >= *old_number_of_fields); if (target_number_of_fields != *old_number_of_fields) return true; // If smi descriptors were replaced by double descriptors, rewrite. DescriptorArray* old_desc = instance_descriptors(); DescriptorArray* new_desc = target->instance_descriptors(); int limit = NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if (new_desc->GetDetails(i).representation().IsDouble() != old_desc->GetDetails(i).representation().IsDouble()) { return true; } } // If no fields were added, and no inobject properties were removed, setting // the map is sufficient. if (target_inobject == GetInObjectProperties()) return false; // In-object slack tracking may have reduced the object size of the new map. // In that case, succeed if all existing fields were inobject, and they still // fit within the new inobject size. DCHECK(target_inobject < GetInObjectProperties()); if (target_number_of_fields <= target_inobject) { DCHECK(target_number_of_fields + target_unused == target_inobject); return false; } // Otherwise, properties will need to be moved to the backing store. return true; } // static void JSObject::UpdatePrototypeUserRegistration(Handle old_map, Handle new_map, Isolate* isolate) { DCHECK(old_map->is_prototype_map()); DCHECK(new_map->is_prototype_map()); bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate); new_map->set_prototype_info(old_map->prototype_info()); old_map->set_prototype_info(Smi::kZero); if (FLAG_trace_prototype_users) { PrintF("Moving prototype_info %p from map %p to map %p.\n", reinterpret_cast(new_map->prototype_info()), reinterpret_cast(*old_map), reinterpret_cast(*new_map)); } if (was_registered) { if (new_map->prototype_info()->IsPrototypeInfo()) { // The new map isn't registered with its prototype yet; reflect this fact // in the PrototypeInfo it just inherited from the old map. PrototypeInfo::cast(new_map->prototype_info()) ->set_registry_slot(PrototypeInfo::UNREGISTERED); } JSObject::LazyRegisterPrototypeUser(new_map, isolate); } } namespace { // To migrate a fast instance to a fast map: // - First check whether the instance needs to be rewritten. If not, simply // change the map. // - Otherwise, allocate a fixed array large enough to hold all fields, in // addition to unused space. // - Copy all existing properties in, in the following order: backing store // properties, unused fields, inobject properties. // - If all allocation succeeded, commit the state atomically: // * Copy inobject properties from the backing store back into the object. // * Trim the difference in instance size of the object. This also cleanly // frees inobject properties that moved to the backing store. // * If there are properties left in the backing store, trim of the space used // to temporarily store the inobject properties. // * If there are properties left in the backing store, install the backing // store. void MigrateFastToFast(Handle object, Handle new_map) { Isolate* isolate = object->GetIsolate(); Handle old_map(object->map(), isolate); // In case of a regular transition. if (new_map->GetBackPointer() == *old_map) { // If the map does not add named properties, simply set the map. if (old_map->NumberOfOwnDescriptors() == new_map->NumberOfOwnDescriptors()) { object->synchronized_set_map(*new_map); return; } PropertyDetails details = new_map->GetLastDescriptorDetails(); int target_index = details.field_index() - new_map->GetInObjectProperties(); int property_array_length = object->property_array()->length(); bool have_space = old_map->UnusedPropertyFields() > 0 || (details.location() == kField && target_index >= 0 && property_array_length > target_index); // Either new_map adds an kDescriptor property, or a kField property for // which there is still space, and which does not require a mutable double // box (an out-of-object double). if (details.location() == kDescriptor || (have_space && ((FLAG_unbox_double_fields && target_index < 0) || !details.representation().IsDouble()))) { object->synchronized_set_map(*new_map); return; } // If there is still space in the object, we need to allocate a mutable // double box. if (have_space) { FieldIndex index = FieldIndex::ForDescriptor(*new_map, new_map->LastAdded()); DCHECK(details.representation().IsDouble()); DCHECK(!new_map->IsUnboxedDoubleField(index)); auto value = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); object->RawFastPropertyAtPut(index, *value); object->synchronized_set_map(*new_map); return; } // This migration is a transition from a map that has run out of property // space. Extend the backing store. int grow_by = new_map->UnusedPropertyFields() + 1; Handle old_storage(object->property_array(), isolate); Handle new_storage = isolate->factory()->CopyPropertyArrayAndGrow(old_storage, grow_by); // Properly initialize newly added property. Handle value; if (details.representation().IsDouble()) { value = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); } else { value = isolate->factory()->uninitialized_value(); } DCHECK_EQ(kField, details.location()); DCHECK_EQ(kData, details.kind()); DCHECK_GE(target_index, 0); // Must be a backing store index. new_storage->set(target_index, *value); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Set the new property value and do the map transition. object->SetProperties(*new_storage); object->synchronized_set_map(*new_map); return; } int old_number_of_fields; int number_of_fields = new_map->NumberOfFields(); int inobject = new_map->GetInObjectProperties(); int unused = new_map->UnusedPropertyFields(); // Nothing to do if no functions were converted to fields and no smis were // converted to doubles. if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject, unused, &old_number_of_fields)) { object->synchronized_set_map(*new_map); return; } int total_size = number_of_fields + unused; int external = total_size - inobject; Handle array = isolate->factory()->NewPropertyArray(external); // We use this array to temporarily store the inobject properties. Handle inobject_props = isolate->factory()->NewFixedArray(inobject); Handle old_descriptors(old_map->instance_descriptors(), isolate); Handle new_descriptors(new_map->instance_descriptors(), isolate); int old_nof = old_map->NumberOfOwnDescriptors(); int new_nof = new_map->NumberOfOwnDescriptors(); // This method only supports generalizing instances to at least the same // number of properties. DCHECK(old_nof <= new_nof); for (int i = 0; i < old_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.location() != kField) continue; DCHECK_EQ(kData, details.kind()); PropertyDetails old_details = old_descriptors->GetDetails(i); Representation old_representation = old_details.representation(); Representation representation = details.representation(); Handle value; if (old_details.location() == kDescriptor) { if (old_details.kind() == kAccessor) { // In case of kAccessor -> kData property reconfiguration, the property // must already be prepared for data of certain type. DCHECK(!details.representation().IsNone()); if (details.representation().IsDouble()) { value = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); } else { value = isolate->factory()->uninitialized_value(); } } else { DCHECK_EQ(kData, old_details.kind()); value = handle(old_descriptors->GetStrongValue(i), isolate); DCHECK(!old_representation.IsDouble() && !representation.IsDouble()); } } else { DCHECK_EQ(kField, old_details.location()); FieldIndex index = FieldIndex::ForDescriptor(*old_map, i); if (object->IsUnboxedDoubleField(index)) { uint64_t old_bits = object->RawFastDoublePropertyAsBitsAt(index); if (representation.IsDouble()) { value = isolate->factory()->NewMutableHeapNumberFromBits(old_bits); } else { value = isolate->factory()->NewHeapNumberFromBits(old_bits); } } else { value = handle(object->RawFastPropertyAt(index), isolate); if (!old_representation.IsDouble() && representation.IsDouble()) { DCHECK_IMPLIES(old_representation.IsNone(), value->IsUninitialized(isolate)); value = Object::NewStorageFor(isolate, value, representation); } else if (old_representation.IsDouble() && !representation.IsDouble()) { value = Object::WrapForRead(isolate, value, old_representation); } } } DCHECK(!(representation.IsDouble() && value->IsSmi())); int target_index = new_descriptors->GetFieldIndex(i); if (target_index < inobject) { inobject_props->set(target_index, *value); } else { array->set(target_index - inobject, *value); } } for (int i = old_nof; i < new_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.location() != kField) continue; DCHECK_EQ(kData, details.kind()); Handle value; if (details.representation().IsDouble()) { value = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); } else { value = isolate->factory()->uninitialized_value(); } int target_index = new_descriptors->GetFieldIndex(i); if (target_index < inobject) { inobject_props->set(target_index, *value); } else { array->set(target_index - inobject, *value); } } // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; Heap* heap = isolate->heap(); int old_instance_size = old_map->instance_size(); heap->NotifyObjectLayoutChange(*object, old_instance_size, no_allocation); // Copy (real) inobject properties. If necessary, stop at number_of_fields to // avoid overwriting |one_pointer_filler_map|. int limit = Min(inobject, number_of_fields); for (int i = 0; i < limit; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); Object* value = inobject_props->get(i); // Can't use JSObject::FastPropertyAtPut() because proper map was not set // yet. if (new_map->IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); // Ensure that all bits of the double value are preserved. object->RawFastDoublePropertyAsBitsAtPut( index, MutableHeapNumber::cast(value)->value_as_bits()); if (i < old_number_of_fields && !old_map->IsUnboxedDoubleField(index)) { // Transition from tagged to untagged slot. heap->ClearRecordedSlot(*object, HeapObject::RawField(*object, index.offset())); } else { DCHECK(!heap->HasRecordedSlot( *object, HeapObject::RawField(*object, index.offset()))); } } else { object->RawFastPropertyAtPut(index, value); } } object->SetProperties(*array); // Create filler object past the new instance size. int new_instance_size = new_map->instance_size(); int instance_size_delta = old_instance_size - new_instance_size; DCHECK_GE(instance_size_delta, 0); if (instance_size_delta > 0) { Address address = object->address(); heap->CreateFillerObjectAt(address + new_instance_size, instance_size_delta, ClearRecordedSlots::kYes); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); } void MigrateFastToSlow(Handle object, Handle new_map, int expected_additional_properties) { // The global object is always normalized. DCHECK(!object->IsJSGlobalObject()); // JSGlobalProxy must never be normalized DCHECK(!object->IsJSGlobalProxy()); DCHECK_IMPLIES(new_map->is_prototype_map(), Map::IsPrototypeChainInvalidated(*new_map)); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle map(object->map(), isolate); // Allocate new content. int real_size = map->NumberOfOwnDescriptors(); int property_count = real_size; if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { // Make space for two more properties. property_count += NameDictionary::kInitialCapacity; } Handle dictionary = NameDictionary::New(isolate, property_count); Handle descs(map->instance_descriptors(), isolate); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); Handle key(descs->GetKey(i), isolate); Handle value; if (details.location() == kField) { FieldIndex index = FieldIndex::ForDescriptor(*map, i); if (details.kind() == kData) { if (object->IsUnboxedDoubleField(index)) { double old_value = object->RawFastDoublePropertyAt(index); value = isolate->factory()->NewHeapNumber(old_value); } else { value = handle(object->RawFastPropertyAt(index), isolate); if (details.representation().IsDouble()) { DCHECK(value->IsMutableHeapNumber()); double old_value = Handle::cast(value)->value(); value = isolate->factory()->NewHeapNumber(old_value); } } } else { DCHECK_EQ(kAccessor, details.kind()); value = handle(object->RawFastPropertyAt(index), isolate); } } else { DCHECK_EQ(kDescriptor, details.location()); value = handle(descs->GetStrongValue(i), isolate); } DCHECK(!value.is_null()); PropertyDetails d(details.kind(), details.attributes(), PropertyCellType::kNoCell); dictionary = NameDictionary::Add(isolate, dictionary, key, value, d); } // Copy the next enumeration index from instance descriptor. dictionary->SetNextEnumerationIndex(real_size + 1); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; Heap* heap = isolate->heap(); int old_instance_size = map->instance_size(); heap->NotifyObjectLayoutChange(*object, old_instance_size, no_allocation); // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = old_instance_size - new_instance_size; DCHECK_GE(instance_size_delta, 0); if (instance_size_delta > 0) { heap->CreateFillerObjectAt(object->address() + new_instance_size, instance_size_delta, ClearRecordedSlots::kYes); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); object->SetProperties(*dictionary); // Ensure that in-object space of slow-mode object does not contain random // garbage. int inobject_properties = new_map->GetInObjectProperties(); if (inobject_properties) { Heap* heap = isolate->heap(); heap->ClearRecordedSlotRange( object->address() + map->GetInObjectPropertyOffset(0), object->address() + new_instance_size); for (int i = 0; i < inobject_properties; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); object->RawFastPropertyAtPut(index, Smi::kZero); } } isolate->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { StdoutStream os; os << "Object properties have been normalized:\n"; object->Print(os); } #endif } } // namespace // static void JSObject::NotifyMapChange(Handle old_map, Handle new_map, Isolate* isolate) { if (!old_map->is_prototype_map()) return; InvalidatePrototypeChains(*old_map); // If the map was registered with its prototype before, ensure that it // registers with its new prototype now. This preserves the invariant that // when a map on a prototype chain is registered with its prototype, then // all prototypes further up the chain are also registered with their // respective prototypes. UpdatePrototypeUserRegistration(old_map, new_map, isolate); } void JSObject::MigrateToMap(Handle object, Handle new_map, int expected_additional_properties) { if (object->map() == *new_map) return; Handle old_map(object->map(), object->GetIsolate()); NotifyMapChange(old_map, new_map, object->GetIsolate()); if (old_map->is_dictionary_map()) { // For slow-to-fast migrations JSObject::MigrateSlowToFast() // must be used instead. CHECK(new_map->is_dictionary_map()); // Slow-to-slow migration is trivial. object->synchronized_set_map(*new_map); } else if (!new_map->is_dictionary_map()) { MigrateFastToFast(object, new_map); if (old_map->is_prototype_map()) { DCHECK(!old_map->is_stable()); DCHECK(new_map->is_stable()); DCHECK(new_map->owns_descriptors()); DCHECK(old_map->owns_descriptors()); // Transfer ownership to the new map. Keep the descriptor pointer of the // old map intact because the concurrent marker might be iterating the // object with the old map. old_map->set_owns_descriptors(false); DCHECK(old_map->is_abandoned_prototype_map()); // Ensure that no transition was inserted for prototype migrations. DCHECK_EQ(0, TransitionsAccessor(object->GetIsolate(), old_map) .NumberOfTransitions()); DCHECK(new_map->GetBackPointer()->IsUndefined()); DCHECK(object->map() != *old_map); } } else { MigrateFastToSlow(object, new_map, expected_additional_properties); } // Careful: Don't allocate here! // For some callers of this method, |object| might be in an inconsistent // state now: the new map might have a new elements_kind, but the object's // elements pointer hasn't been updated yet. Callers will fix this, but in // the meantime, (indirectly) calling JSObjectVerify() must be avoided. // When adding code here, add a DisallowHeapAllocation too. } void JSObject::ForceSetPrototype(Handle object, Handle proto) { // object.__proto__ = proto; Handle old_map = Handle(object->map(), object->GetIsolate()); Handle new_map = Map::Copy(object->GetIsolate(), old_map, "ForceSetPrototype"); Map::SetPrototype(object->GetIsolate(), new_map, proto); JSObject::MigrateToMap(object, new_map); } int Map::NumberOfFields() const { DescriptorArray* descriptors = instance_descriptors(); int result = 0; for (int i = 0; i < NumberOfOwnDescriptors(); i++) { if (descriptors->GetDetails(i).location() == kField) result++; } return result; } bool Map::HasOutOfObjectProperties() const { return GetInObjectProperties() < NumberOfFields(); } void DescriptorArray::GeneralizeAllFields() { int length = number_of_descriptors(); for (int i = 0; i < length; i++) { PropertyDetails details = GetDetails(i); details = details.CopyWithRepresentation(Representation::Tagged()); if (details.location() == kField) { DCHECK_EQ(kData, details.kind()); details = details.CopyWithConstness(PropertyConstness::kMutable); SetValue(i, FieldType::Any()); } set(ToDetailsIndex(i), MaybeObject::FromObject(details.AsSmi())); } } Handle Map::CopyGeneralizeAllFields(Isolate* isolate, Handle map, ElementsKind elements_kind, int modify_index, PropertyKind kind, PropertyAttributes attributes, const char* reason) { Handle old_descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle descriptors = DescriptorArray::CopyUpTo( isolate, old_descriptors, number_of_own_descriptors); descriptors->GeneralizeAllFields(); Handle new_layout_descriptor( LayoutDescriptor::FastPointerLayout(), isolate); Handle new_map = CopyReplaceDescriptors( isolate, map, descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle(), reason, SPECIAL_TRANSITION); // Unless the instance is being migrated, ensure that modify_index is a field. if (modify_index >= 0) { PropertyDetails details = descriptors->GetDetails(modify_index); if (details.constness() != PropertyConstness::kMutable || details.location() != kField || details.attributes() != attributes) { int field_index = details.location() == kField ? details.field_index() : new_map->NumberOfFields(); Descriptor d = Descriptor::DataField( isolate, handle(descriptors->GetKey(modify_index), isolate), field_index, attributes, Representation::Tagged()); descriptors->Replace(modify_index, &d); if (details.location() != kField) { new_map->AccountAddedPropertyField(); } } else { DCHECK(details.attributes() == attributes); } if (FLAG_trace_generalization) { MaybeHandle field_type = FieldType::None(isolate); if (details.location() == kField) { field_type = handle( map->instance_descriptors()->GetFieldType(modify_index), isolate); } map->PrintGeneralization( isolate, stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(), new_map->NumberOfOwnDescriptors(), details.location() == kDescriptor, details.representation(), Representation::Tagged(), field_type, MaybeHandle(), FieldType::Any(isolate), MaybeHandle()); } } new_map->set_elements_kind(elements_kind); return new_map; } void Map::DeprecateTransitionTree(Isolate* isolate) { if (is_deprecated()) return; DisallowHeapAllocation no_gc; TransitionsAccessor transitions(isolate, this, &no_gc); int num_transitions = transitions.NumberOfTransitions(); for (int i = 0; i < num_transitions; ++i) { transitions.GetTarget(i)->DeprecateTransitionTree(isolate); } DCHECK(!constructor_or_backpointer()->IsFunctionTemplateInfo()); set_is_deprecated(true); if (FLAG_trace_maps) { LOG(isolate, MapEvent("Deprecate", this, nullptr)); } dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kTransitionGroup); NotifyLeafMapLayoutChange(isolate); } // Installs |new_descriptors| over the current instance_descriptors to ensure // proper sharing of descriptor arrays. void Map::ReplaceDescriptors(Isolate* isolate, DescriptorArray* new_descriptors, LayoutDescriptor* new_layout_descriptor) { // Don't overwrite the empty descriptor array or initial map's descriptors. if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined(isolate)) { return; } DescriptorArray* to_replace = instance_descriptors(); // Replace descriptors by new_descriptors in all maps that share it. The old // descriptors will not be trimmed in the mark-compactor, we need to mark // all its elements. MarkingBarrierForElements(isolate->heap(), to_replace); Map* current = this; while (current->instance_descriptors() == to_replace) { Object* next = current->GetBackPointer(); if (next->IsUndefined(isolate)) break; // Stop overwriting at initial map. current->SetEnumLength(kInvalidEnumCacheSentinel); current->UpdateDescriptors(new_descriptors, new_layout_descriptor); current = Map::cast(next); } set_owns_descriptors(false); } Map* Map::FindRootMap(Isolate* isolate) const { const Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined(isolate)) { // Initial map always owns descriptors and doesn't have unused entries // in the descriptor array. DCHECK(result->owns_descriptors()); DCHECK_EQ(result->NumberOfOwnDescriptors(), result->instance_descriptors()->number_of_descriptors()); return const_cast(result); } result = Map::cast(back); } } Map* Map::FindFieldOwner(Isolate* isolate, int descriptor) const { DisallowHeapAllocation no_allocation; DCHECK_EQ(kField, instance_descriptors()->GetDetails(descriptor).location()); const Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined(isolate)) break; const Map* parent = Map::cast(back); if (parent->NumberOfOwnDescriptors() <= descriptor) break; result = parent; } return const_cast(result); } void Map::UpdateFieldType(Isolate* isolate, int descriptor, Handle name, PropertyConstness new_constness, Representation new_representation, MaybeObjectHandle new_wrapped_type) { DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakHeapObject()); // We store raw pointers in the queue, so no allocations are allowed. DisallowHeapAllocation no_allocation; PropertyDetails details = instance_descriptors()->GetDetails(descriptor); if (details.location() != kField) return; DCHECK_EQ(kData, details.kind()); Zone zone(isolate->allocator(), ZONE_NAME); ZoneQueue backlog(&zone); backlog.push(this); while (!backlog.empty()) { Map* current = backlog.front(); backlog.pop(); TransitionsAccessor transitions(isolate, current, &no_allocation); int num_transitions = transitions.NumberOfTransitions(); for (int i = 0; i < num_transitions; ++i) { Map* target = transitions.GetTarget(i); backlog.push(target); } DescriptorArray* descriptors = current->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); // Currently constness change implies map change. DCHECK_IMPLIES(new_constness != details.constness(), FLAG_modify_map_inplace); // It is allowed to change representation here only from None to something. DCHECK(details.representation().Equals(new_representation) || details.representation().IsNone()); // Skip if already updated the shared descriptor. if ((FLAG_modify_map_inplace && new_constness != details.constness()) || descriptors->GetFieldType(descriptor) != *new_wrapped_type.object()) { DCHECK_IMPLIES(!FLAG_track_constant_fields, new_constness == PropertyConstness::kMutable); Descriptor d = Descriptor::DataField( name, descriptors->GetFieldIndex(descriptor), details.attributes(), new_constness, new_representation, new_wrapped_type); descriptors->Replace(descriptor, &d); } } } bool FieldTypeIsCleared(Representation rep, FieldType* type) { return type->IsNone() && rep.IsHeapObject(); } // static Handle Map::GeneralizeFieldType(Representation rep1, Handle type1, Representation rep2, Handle type2, Isolate* isolate) { // Cleared field types need special treatment. They represent lost knowledge, // so we must be conservative, so their generalization with any other type // is "Any". if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) { return FieldType::Any(isolate); } if (type1->NowIs(type2)) return type2; if (type2->NowIs(type1)) return type1; return FieldType::Any(isolate); } // static void Map::GeneralizeField(Isolate* isolate, Handle map, int modify_index, PropertyConstness new_constness, Representation new_representation, Handle new_field_type) { // Check if we actually need to generalize the field type at all. Handle old_descriptors(map->instance_descriptors(), isolate); PropertyDetails old_details = old_descriptors->GetDetails(modify_index); PropertyConstness old_constness = old_details.constness(); Representation old_representation = old_details.representation(); Handle old_field_type(old_descriptors->GetFieldType(modify_index), isolate); // Return if the current map is general enough to hold requested constness and // representation/field type. if (((FLAG_modify_map_inplace && IsGeneralizableTo(new_constness, old_constness)) || (!FLAG_modify_map_inplace && (old_constness == new_constness))) && old_representation.Equals(new_representation) && !FieldTypeIsCleared(new_representation, *new_field_type) && // Checking old_field_type for being cleared is not necessary because // the NowIs check below would fail anyway in that case. new_field_type->NowIs(old_field_type)) { DCHECK(GeneralizeFieldType(old_representation, old_field_type, new_representation, new_field_type, isolate) ->NowIs(old_field_type)); return; } // Determine the field owner. Handle field_owner(map->FindFieldOwner(isolate, modify_index), isolate); Handle descriptors(field_owner->instance_descriptors(), isolate); DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index)); new_field_type = Map::GeneralizeFieldType(old_representation, old_field_type, new_representation, new_field_type, isolate); if (FLAG_modify_map_inplace) { new_constness = GeneralizeConstness(old_constness, new_constness); } PropertyDetails details = descriptors->GetDetails(modify_index); Handle name(descriptors->GetKey(modify_index), isolate); MaybeObjectHandle wrapped_type(WrapFieldType(isolate, new_field_type)); field_owner->UpdateFieldType(isolate, modify_index, name, new_constness, new_representation, wrapped_type); field_owner->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kFieldOwnerGroup); if (FLAG_trace_generalization) { map->PrintGeneralization( isolate, stdout, "field type generalization", modify_index, map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false, details.representation(), details.representation(), old_field_type, MaybeHandle(), new_field_type, MaybeHandle()); } } // TODO(ishell): remove. // static Handle Map::ReconfigureProperty(Isolate* isolate, Handle map, int modify_index, PropertyKind new_kind, PropertyAttributes new_attributes, Representation new_representation, Handle new_field_type) { DCHECK_EQ(kData, new_kind); // Only kData case is supported. MapUpdater mu(isolate, map); return mu.ReconfigureToDataField(modify_index, new_attributes, PropertyConstness::kConst, new_representation, new_field_type); } // TODO(ishell): remove. // static Handle Map::ReconfigureElementsKind(Isolate* isolate, Handle map, ElementsKind new_elements_kind) { MapUpdater mu(isolate, map); return mu.ReconfigureElementsKind(new_elements_kind); } // Generalize all fields and update the transition tree. Handle Map::GeneralizeAllFields(Isolate* isolate, Handle map) { Handle any_type = FieldType::Any(isolate); Handle descriptors(map->instance_descriptors(), isolate); for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) { PropertyDetails details = descriptors->GetDetails(i); if (details.location() == kField) { DCHECK_EQ(kData, details.kind()); MapUpdater mu(isolate, map); map = mu.ReconfigureToDataField(i, details.attributes(), PropertyConstness::kMutable, Representation::Tagged(), any_type); } } return map; } // static MaybeHandle Map::TryUpdate(Isolate* isolate, Handle old_map) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(isolate); if (!old_map->is_deprecated()) return old_map; // Check the state of the root map. Map* root_map = old_map->FindRootMap(isolate); if (root_map->is_deprecated()) { JSFunction* constructor = JSFunction::cast(root_map->GetConstructor()); DCHECK(constructor->has_initial_map()); DCHECK(constructor->initial_map()->is_dictionary_map()); if (constructor->initial_map()->elements_kind() != old_map->elements_kind()) { return MaybeHandle(); } return handle(constructor->initial_map(), constructor->GetIsolate()); } if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle(); ElementsKind from_kind = root_map->elements_kind(); ElementsKind to_kind = old_map->elements_kind(); if (from_kind != to_kind) { // Try to follow existing elements kind transitions. root_map = root_map->LookupElementsTransitionMap(isolate, to_kind); if (root_map == nullptr) return MaybeHandle(); // From here on, use the map with correct elements kind as root map. } Map* new_map = root_map->TryReplayPropertyTransitions(isolate, *old_map); if (new_map == nullptr) return MaybeHandle(); return handle(new_map, isolate); } Map* Map::TryReplayPropertyTransitions(Isolate* isolate, Map* old_map) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(isolate); int root_nof = NumberOfOwnDescriptors(); int old_nof = old_map->NumberOfOwnDescriptors(); DescriptorArray* old_descriptors = old_map->instance_descriptors(); Map* new_map = this; for (int i = root_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Map* transition = TransitionsAccessor(isolate, new_map, &no_allocation) .SearchTransition(old_descriptors->GetKey(i), old_details.kind(), old_details.attributes()); if (transition == nullptr) return nullptr; new_map = transition; DescriptorArray* new_descriptors = new_map->instance_descriptors(); PropertyDetails new_details = new_descriptors->GetDetails(i); DCHECK_EQ(old_details.kind(), new_details.kind()); DCHECK_EQ(old_details.attributes(), new_details.attributes()); if (!IsGeneralizableTo(old_details.constness(), new_details.constness())) { return nullptr; } DCHECK(IsGeneralizableTo(old_details.location(), new_details.location())); if (!old_details.representation().fits_into(new_details.representation())) { return nullptr; } if (new_details.location() == kField) { if (new_details.kind() == kData) { FieldType* new_type = new_descriptors->GetFieldType(i); // Cleared field types need special treatment. They represent lost // knowledge, so we must first generalize the new_type to "Any". if (FieldTypeIsCleared(new_details.representation(), new_type)) { return nullptr; } DCHECK_EQ(kData, old_details.kind()); if (old_details.location() == kField) { FieldType* old_type = old_descriptors->GetFieldType(i); if (FieldTypeIsCleared(old_details.representation(), old_type) || !old_type->NowIs(new_type)) { return nullptr; } } else { DCHECK_EQ(kDescriptor, old_details.location()); DCHECK(!FLAG_track_constant_fields); Object* old_value = old_descriptors->GetStrongValue(i); if (!new_type->NowContains(old_value)) { return nullptr; } } } else { DCHECK_EQ(kAccessor, new_details.kind()); #ifdef DEBUG FieldType* new_type = new_descriptors->GetFieldType(i); DCHECK(new_type->IsAny()); #endif UNREACHABLE(); } } else { DCHECK_EQ(kDescriptor, new_details.location()); if (old_details.location() == kField || old_descriptors->GetStrongValue(i) != new_descriptors->GetStrongValue(i)) { return nullptr; } } } if (new_map->NumberOfOwnDescriptors() != old_nof) return nullptr; return new_map; } // static Handle Map::Update(Isolate* isolate, Handle map) { if (!map->is_deprecated()) return map; MapUpdater mu(isolate, map); return mu.Update(); } Maybe JSObject::SetPropertyWithInterceptor(LookupIterator* it, ShouldThrow should_throw, Handle value) { DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); return SetPropertyWithInterceptorInternal(it, it->GetInterceptor(), should_throw, value); } MaybeHandle Object::SetProperty(Isolate* isolate, Handle object, Handle name, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { LookupIterator it(isolate, object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode)); return value; } Maybe Object::SetPropertyInternal(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode, bool* found) { it->UpdateProtector(); DCHECK(it->IsFound()); ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(it->isolate()); do { switch (it->state()) { case LookupIterator::NOT_FOUND: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; // Check whether it makes sense to reuse the lookup iterator. Here it // might still call into setters up the prototype chain. return JSObject::SetPropertyWithFailedAccessCheck(it, value, should_throw); case LookupIterator::JSPROXY: return JSProxy::SetProperty(it->GetHolder(), it->GetName(), value, it->GetReceiver(), language_mode); case LookupIterator::INTERCEPTOR: { if (it->HolderIsReceiverOrHiddenPrototype()) { Maybe result = JSObject::SetPropertyWithInterceptor(it, should_throw, value); if (result.IsNothing() || result.FromJust()) return result; } else { Maybe maybe_attributes = JSObject::GetPropertyAttributesWithInterceptor(it); if (maybe_attributes.IsNothing()) return Nothing(); if ((maybe_attributes.FromJust() & READ_ONLY) != 0) { return WriteToReadOnlyProperty(it, value, should_throw); } if (maybe_attributes.FromJust() == ABSENT) break; *found = false; return Nothing(); } break; } case LookupIterator::ACCESSOR: { if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, should_throw); } Handle accessors = it->GetAccessors(); if (accessors->IsAccessorInfo() && !it->HolderIsReceiverOrHiddenPrototype() && AccessorInfo::cast(*accessors)->is_special_data_property()) { *found = false; return Nothing(); } return SetPropertyWithAccessor(it, value, should_throw); } case LookupIterator::INTEGER_INDEXED_EXOTIC: { // IntegerIndexedElementSet converts value to a Number/BigInt prior to // the bounds check. The bounds check has already happened here, but // perform the possibly effectful ToNumber (or ToBigInt) operation // anyways. auto holder = it->GetHolder(); Handle throwaway_value; if (holder->type() == kExternalBigInt64Array || holder->type() == kExternalBigUint64Array) { ASSIGN_RETURN_ON_EXCEPTION_VALUE( it->isolate(), throwaway_value, BigInt::FromObject(it->isolate(), value), Nothing()); } else { ASSIGN_RETURN_ON_EXCEPTION_VALUE( it->isolate(), throwaway_value, Object::ToNumber(it->isolate(), value), Nothing()); } // FIXME: Throw a TypeError if the holder is neutered here // (IntegerIndexedElementSpec step 5). // TODO(verwaest): Per spec, we should return false here (steps 6-9 // in IntegerIndexedElementSpec), resulting in an exception being thrown // on OOB accesses in strict code. Historically, v8 has not done made // this change due to uncertainty about web compat. (v8:4901) return Just(true); } case LookupIterator::DATA: if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, should_throw); } if (it->HolderIsReceiverOrHiddenPrototype()) { return SetDataProperty(it, value); } V8_FALLTHROUGH; case LookupIterator::TRANSITION: *found = false; return Nothing(); } it->Next(); } while (it->IsFound()); *found = false; return Nothing(); } Maybe Object::SetProperty(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { if (it->IsFound()) { bool found = true; Maybe result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; } // If the receiver is the JSGlobalObject, the store was contextual. In case // the property did not exist yet on the global object itself, we have to // throw a reference error in strict mode. In sloppy mode, we continue. if (is_strict(language_mode) && it->GetReceiver()->IsJSGlobalObject()) { it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError( MessageTemplate::kNotDefined, it->name())); return Nothing(); } ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; return AddDataProperty(it, value, NONE, should_throw, store_mode); } Maybe Object::SetSuperProperty(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { Isolate* isolate = it->isolate(); if (it->IsFound()) { bool found = true; Maybe result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; } it->UpdateProtector(); // The property either doesn't exist on the holder or exists there as a data // property. ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; if (!it->GetReceiver()->IsJSReceiver()) { return WriteToReadOnlyProperty(it, value, should_throw); } Handle receiver = Handle::cast(it->GetReceiver()); LookupIterator::Configuration c = LookupIterator::OWN; LookupIterator own_lookup = it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c) : LookupIterator(isolate, receiver, it->name(), c); for (; own_lookup.IsFound(); own_lookup.Next()) { switch (own_lookup.state()) { case LookupIterator::ACCESS_CHECK: if (!own_lookup.HasAccess()) { return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value, should_throw); } break; case LookupIterator::ACCESSOR: if (own_lookup.GetAccessors()->IsAccessorInfo()) { if (own_lookup.IsReadOnly()) { return WriteToReadOnlyProperty(&own_lookup, value, should_throw); } return JSObject::SetPropertyWithAccessor(&own_lookup, value, should_throw); } V8_FALLTHROUGH; case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineIncompatibleProperty(isolate, it->GetName(), value, should_throw); case LookupIterator::DATA: { if (own_lookup.IsReadOnly()) { return WriteToReadOnlyProperty(&own_lookup, value, should_throw); } return SetDataProperty(&own_lookup, value); } case LookupIterator::INTERCEPTOR: case LookupIterator::JSPROXY: { PropertyDescriptor desc; Maybe owned = JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc); MAYBE_RETURN(owned, Nothing()); if (!owned.FromJust()) { return JSReceiver::CreateDataProperty(&own_lookup, value, should_throw); } if (PropertyDescriptor::IsAccessorDescriptor(&desc) || !desc.writable()) { return RedefineIncompatibleProperty(isolate, it->GetName(), value, should_throw); } PropertyDescriptor value_desc; value_desc.set_value(value); return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(), &value_desc, should_throw); } case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } } return AddDataProperty(&own_lookup, value, NONE, should_throw, store_mode); } Maybe Object::CannotCreateProperty(Isolate* isolate, Handle receiver, Handle name, Handle value, ShouldThrow should_throw) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name, Object::TypeOf(isolate, receiver), receiver)); } Maybe Object::WriteToReadOnlyProperty(LookupIterator* it, Handle value, ShouldThrow should_throw) { return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, should_throw); } Maybe Object::WriteToReadOnlyProperty(Isolate* isolate, Handle receiver, Handle name, Handle value, ShouldThrow should_throw) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name, Object::TypeOf(isolate, receiver), receiver)); } Maybe Object::RedefineIncompatibleProperty(Isolate* isolate, Handle name, Handle value, ShouldThrow should_throw) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, name)); } Maybe Object::SetDataProperty(LookupIterator* it, Handle value) { DCHECK_IMPLIES(it->GetReceiver()->IsJSProxy(), it->GetName()->IsPrivateField()); DCHECK_IMPLIES(!it->IsElement() && it->GetName()->IsPrivateField(), it->state() == LookupIterator::DATA); Handle receiver = Handle::cast(it->GetReceiver()); // Store on the holder which may be hidden behind the receiver. DCHECK(it->HolderIsReceiverOrHiddenPrototype()); Handle to_assign = value; // Convert the incoming value to a number for storing into typed arrays. if (it->IsElement() && receiver->IsJSObject() && JSObject::cast(*receiver)->HasFixedTypedArrayElements()) { ElementsKind elements_kind = JSObject::cast(*receiver)->GetElementsKind(); if (elements_kind == BIGINT64_ELEMENTS || elements_kind == BIGUINT64_ELEMENTS) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(it->isolate(), to_assign, BigInt::FromObject(it->isolate(), value), Nothing()); // We have to recheck the length. However, it can only change if the // underlying buffer was neutered, so just check that. if (Handle::cast(receiver)->WasNeutered()) { return Just(true); // TODO(neis): According to the spec, this should throw a TypeError. } } else if (!value->IsNumber() && !value->IsUndefined(it->isolate())) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(it->isolate(), to_assign, Object::ToNumber(it->isolate(), value), Nothing()); // We have to recheck the length. However, it can only change if the // underlying buffer was neutered, so just check that. if (Handle::cast(receiver)->WasNeutered()) { return Just(true); // TODO(neis): According to the spec, this should throw a TypeError. } } } // Possibly migrate to the most up-to-date map that will be able to store // |value| under it->name(). it->PrepareForDataProperty(to_assign); // Write the property value. it->WriteDataValue(to_assign, false); #if VERIFY_HEAP if (FLAG_verify_heap) { receiver->HeapObjectVerify(it->isolate()); } #endif return Just(true); } Maybe Object::AddDataProperty(LookupIterator* it, Handle value, PropertyAttributes attributes, ShouldThrow should_throw, StoreFromKeyed store_mode) { if (!it->GetReceiver()->IsJSReceiver()) { return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, should_throw); } // Private symbols should be installed on JSProxy using // JSProxy::SetPrivateSymbol. if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate() && !it->GetName()->IsPrivateField()) { RETURN_FAILURE(it->isolate(), should_throw, NewTypeError(MessageTemplate::kProxyPrivate)); } DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state()); Handle receiver = it->GetStoreTarget(); DCHECK_IMPLIES(receiver->IsJSProxy(), it->GetName()->IsPrivateField()); DCHECK_IMPLIES(receiver->IsJSProxy(), it->state() == LookupIterator::NOT_FOUND); // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject) // instead. If the prototype is Null, the proxy is detached. if (receiver->IsJSGlobalProxy()) return Just(true); Isolate* isolate = it->isolate(); if (it->ExtendingNonExtensible(receiver)) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName())); } if (it->IsElement()) { if (receiver->IsJSArray()) { Handle array = Handle::cast(receiver); if (JSArray::WouldChangeReadOnlyLength(array, it->index())) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kStrictReadOnlyProperty, isolate->factory()->length_string(), Object::TypeOf(isolate, array), array)); } if (FLAG_trace_external_array_abuse && array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "typed elements write", it->index(), true); } if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "elements write", it->index(), false); } } Handle receiver_obj = Handle::cast(receiver); JSObject::AddDataElement(receiver_obj, it->index(), value, attributes); JSObject::ValidateElements(*receiver_obj); return Just(true); } else { it->UpdateProtector(); // Migrate to the most up-to-date map that will be able to store |value| // under it->name() with |attributes|. it->PrepareTransitionToDataProperty(receiver, value, attributes, store_mode); DCHECK_EQ(LookupIterator::TRANSITION, it->state()); it->ApplyTransitionToDataProperty(receiver); // Write the property value. it->WriteDataValue(value, true); #if VERIFY_HEAP if (FLAG_verify_heap) { receiver->HeapObjectVerify(isolate); } #endif } return Just(true); } void Map::EnsureDescriptorSlack(Isolate* isolate, Handle map, int slack) { // Only supports adding slack to owned descriptors. DCHECK(map->owns_descriptors()); Handle descriptors(map->instance_descriptors(), isolate); int old_size = map->NumberOfOwnDescriptors(); if (slack <= descriptors->NumberOfSlackDescriptors()) return; Handle new_descriptors = DescriptorArray::CopyUpTo(isolate, descriptors, old_size, slack); DisallowHeapAllocation no_allocation; // The descriptors are still the same, so keep the layout descriptor. LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor(); if (old_size == 0) { map->UpdateDescriptors(*new_descriptors, layout_descriptor); return; } // If the source descriptors had an enum cache we copy it. This ensures // that the maps to which we push the new descriptor array back can rely // on a cache always being available once it is set. If the map has more // enumerated descriptors than available in the original cache, the cache // will be lazily replaced by the extended cache when needed. new_descriptors->CopyEnumCacheFrom(*descriptors); // Replace descriptors by new_descriptors in all maps that share it. The old // descriptors will not be trimmed in the mark-compactor, we need to mark // all its elements. MarkingBarrierForElements(isolate->heap(), *descriptors); Map* current = *map; while (current->instance_descriptors() == *descriptors) { Object* next = current->GetBackPointer(); if (next->IsUndefined(isolate)) break; // Stop overwriting at initial map. current->UpdateDescriptors(*new_descriptors, layout_descriptor); current = Map::cast(next); } map->UpdateDescriptors(*new_descriptors, layout_descriptor); } // static Handle Map::GetObjectCreateMap(Isolate* isolate, Handle prototype) { Handle map(isolate->native_context()->object_function()->initial_map(), isolate); if (map->prototype() == *prototype) return map; if (prototype->IsNull(isolate)) { return isolate->slow_object_with_null_prototype_map(); } if (prototype->IsJSObject()) { Handle js_prototype = Handle::cast(prototype); if (!js_prototype->map()->is_prototype_map()) { JSObject::OptimizeAsPrototype(js_prototype); } Handle info = Map::GetOrCreatePrototypeInfo(js_prototype, isolate); // TODO(verwaest): Use inobject slack tracking for this map. if (info->HasObjectCreateMap()) { map = handle(info->ObjectCreateMap(), isolate); } else { map = Map::CopyInitialMap(isolate, map); Map::SetPrototype(isolate, map, prototype); PrototypeInfo::SetObjectCreateMap(info, map); } return map; } return Map::TransitionToPrototype(isolate, map, prototype); } // static MaybeHandle Map::TryGetObjectCreateMap(Isolate* isolate, Handle prototype) { Handle map(isolate->native_context()->object_function()->initial_map(), isolate); if (map->prototype() == *prototype) return map; if (prototype->IsNull(isolate)) { return isolate->slow_object_with_null_prototype_map(); } if (!prototype->IsJSObject()) return MaybeHandle(); Handle js_prototype = Handle::cast(prototype); if (!js_prototype->map()->is_prototype_map()) return MaybeHandle(); Handle info = Map::GetOrCreatePrototypeInfo(js_prototype, isolate); if (!info->HasObjectCreateMap()) return MaybeHandle(); return handle(info->ObjectCreateMap(), isolate); } template static int AppendUniqueCallbacks(Isolate* isolate, Handle callbacks, Handle array, int valid_descriptors) { int nof_callbacks = callbacks->length(); // Fill in new callback descriptors. Process the callbacks from // back to front so that the last callback with a given name takes // precedence over previously added callbacks with that name. for (int i = nof_callbacks - 1; i >= 0; i--) { Handle entry(AccessorInfo::cast(callbacks->get(i)), isolate); Handle key(Name::cast(entry->name()), isolate); DCHECK(key->IsUniqueName()); // Check if a descriptor with this name already exists before writing. if (!T::Contains(key, entry, valid_descriptors, array)) { T::Insert(key, entry, valid_descriptors, array); valid_descriptors++; } } return valid_descriptors; } struct FixedArrayAppender { typedef FixedArray Array; static bool Contains(Handle key, Handle entry, int valid_descriptors, Handle array) { for (int i = 0; i < valid_descriptors; i++) { if (*key == AccessorInfo::cast(array->get(i))->name()) return true; } return false; } static void Insert(Handle key, Handle entry, int valid_descriptors, Handle array) { DisallowHeapAllocation no_gc; array->set(valid_descriptors, *entry); } }; int AccessorInfo::AppendUnique(Isolate* isolate, Handle descriptors, Handle array, int valid_descriptors) { Handle callbacks = Handle::cast(descriptors); DCHECK_GE(array->length(), callbacks->length() + valid_descriptors); return AppendUniqueCallbacks(isolate, callbacks, array, valid_descriptors); } static bool ContainsMap(MapHandles const& maps, Map* map) { DCHECK_NOT_NULL(map); for (Handle current : maps) { if (!current.is_null() && *current == map) return true; } return false; } Map* Map::FindElementsKindTransitionedMap(Isolate* isolate, MapHandles const& candidates) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(isolate); if (is_prototype_map()) return nullptr; ElementsKind kind = elements_kind(); bool packed = IsFastPackedElementsKind(kind); Map* transition = nullptr; if (IsTransitionableFastElementsKind(kind)) { // Check the state of the root map. Map* root_map = FindRootMap(isolate); if (!EquivalentToForElementsKindTransition(root_map)) return nullptr; root_map = root_map->LookupElementsTransitionMap(isolate, kind); DCHECK_NOT_NULL(root_map); // Starting from the next existing elements kind transition try to // replay the property transitions that does not involve instance rewriting // (ElementsTransitionAndStoreStub does not support that). for (root_map = root_map->ElementsTransitionMap(); root_map != nullptr && root_map->has_fast_elements(); root_map = root_map->ElementsTransitionMap()) { Map* current = root_map->TryReplayPropertyTransitions(isolate, this); if (current == nullptr) continue; if (InstancesNeedRewriting(current)) continue; if (ContainsMap(candidates, current) && (packed || !IsFastPackedElementsKind(current->elements_kind()))) { transition = current; packed = packed && IsFastPackedElementsKind(current->elements_kind()); } } } return transition; } static Map* FindClosestElementsTransition(Isolate* isolate, Map* map, ElementsKind to_kind) { // Ensure we are requested to search elements kind transition "near the root". DCHECK_EQ(map->FindRootMap(isolate)->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors()); Map* current_map = map; ElementsKind kind = map->elements_kind(); while (kind != to_kind) { Map* next_map = current_map->ElementsTransitionMap(); if (next_map == nullptr) return current_map; kind = next_map->elements_kind(); current_map = next_map; } DCHECK_EQ(to_kind, current_map->elements_kind()); return current_map; } Map* Map::LookupElementsTransitionMap(Isolate* isolate, ElementsKind to_kind) { Map* to_map = FindClosestElementsTransition(isolate, this, to_kind); if (to_map->elements_kind() == to_kind) return to_map; return nullptr; } bool Map::IsMapInArrayPrototypeChain(Isolate* isolate) const { if (isolate->initial_array_prototype()->map() == this) { return true; } if (isolate->initial_object_prototype()->map() == this) { return true; } return false; } static Handle AddMissingElementsTransitions(Isolate* isolate, Handle map, ElementsKind to_kind) { DCHECK(IsTransitionElementsKind(map->elements_kind())); Handle current_map = map; ElementsKind kind = map->elements_kind(); TransitionFlag flag; if (map->is_prototype_map()) { flag = OMIT_TRANSITION; } else { flag = INSERT_TRANSITION; if (IsFastElementsKind(kind)) { while (kind != to_kind && !IsTerminalElementsKind(kind)) { kind = GetNextTransitionElementsKind(kind); current_map = Map::CopyAsElementsKind(isolate, current_map, kind, flag); } } } // In case we are exiting the fast elements kind system, just add the map in // the end. if (kind != to_kind) { current_map = Map::CopyAsElementsKind(isolate, current_map, to_kind, flag); } DCHECK(current_map->elements_kind() == to_kind); return current_map; } Handle Map::TransitionElementsTo(Isolate* isolate, Handle map, ElementsKind to_kind) { ElementsKind from_kind = map->elements_kind(); if (from_kind == to_kind) return map; Context* native_context = isolate->context()->native_context(); if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->fast_aliased_arguments_map()) { DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->slow_aliased_arguments_map(), isolate); } } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->slow_aliased_arguments_map()) { DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->fast_aliased_arguments_map(), isolate); } } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) { // Reuse map transitions for JSArrays. DisallowHeapAllocation no_gc; if (native_context->GetInitialJSArrayMap(from_kind) == *map) { Object* maybe_transitioned_map = native_context->get(Context::ArrayMapIndex(to_kind)); if (maybe_transitioned_map->IsMap()) { return handle(Map::cast(maybe_transitioned_map), isolate); } } } DCHECK(!map->IsUndefined(isolate)); // Check if we can go back in the elements kind transition chain. if (IsHoleyElementsKind(from_kind) && to_kind == GetPackedElementsKind(from_kind) && map->GetBackPointer()->IsMap() && Map::cast(map->GetBackPointer())->elements_kind() == to_kind) { return handle(Map::cast(map->GetBackPointer()), isolate); } bool allow_store_transition = IsTransitionElementsKind(from_kind); // Only store fast element maps in ascending generality. if (IsFastElementsKind(to_kind)) { allow_store_transition = allow_store_transition && IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind); } if (!allow_store_transition) { return Map::CopyAsElementsKind(isolate, map, to_kind, OMIT_TRANSITION); } return Map::ReconfigureElementsKind(isolate, map, to_kind); } // static Handle Map::AsElementsKind(Isolate* isolate, Handle map, ElementsKind kind) { Handle closest_map(FindClosestElementsTransition(isolate, *map, kind), isolate); if (closest_map->elements_kind() == kind) { return closest_map; } return AddMissingElementsTransitions(isolate, closest_map, kind); } Handle JSObject::GetElementsTransitionMap(Handle object, ElementsKind to_kind) { Handle map(object->map(), object->GetIsolate()); return Map::TransitionElementsTo(object->GetIsolate(), map, to_kind); } void JSProxy::Revoke(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); // ES#sec-proxy-revocation-functions if (!proxy->IsRevoked()) { // 5. Set p.[[ProxyTarget]] to null. proxy->set_target(ReadOnlyRoots(isolate).null_value()); // 6. Set p.[[ProxyHandler]] to null. proxy->set_handler(ReadOnlyRoots(isolate).null_value()); } DCHECK(proxy->IsRevoked()); } // static Maybe JSProxy::IsArray(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); Handle object = Handle::cast(proxy); for (int i = 0; i < JSProxy::kMaxIterationLimit; i++) { Handle proxy = Handle::cast(object); if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate->factory()->NewStringFromAsciiChecked("IsArray"))); return Nothing(); } object = handle(JSReceiver::cast(proxy->target()), isolate); if (object->IsJSArray()) return Just(true); if (!object->IsJSProxy()) return Just(false); } // Too deep recursion, throw a RangeError. isolate->StackOverflow(); return Nothing(); } Maybe JSProxy::HasProperty(Isolate* isolate, Handle proxy, Handle name) { DCHECK(!name->IsPrivate()); STACK_CHECK(isolate, Nothing()); // 1. (Assert) // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate->factory()->has_string())); return Nothing(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle target(JSReceiver::cast(proxy->target()), isolate); // 6. Let trap be ? GetMethod(handler, "has"). Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle::cast(handler), isolate->factory()->has_string()), Nothing()); // 7. If trap is undefined, then if (trap->IsUndefined(isolate)) { // 7a. Return target.[[HasProperty]](P). return JSReceiver::HasProperty(target, name); } // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, P»)). Handle trap_result_obj; Handle args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); bool boolean_trap_result = trap_result_obj->BooleanValue(isolate); // 9. If booleanTrapResult is false, then: if (!boolean_trap_result) { MAYBE_RETURN(JSProxy::CheckHasTrap(isolate, name, target), Nothing()); } // 10. Return booleanTrapResult. return Just(boolean_trap_result); } Maybe JSProxy::CheckHasTrap(Isolate* isolate, Handle name, Handle target) { // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe target_found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(target_found, Nothing()); // 9b. If targetDesc is not undefined, then: if (target_found.FromJust()) { // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError // exception. if (!target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyHasNonConfigurable, name)); return Nothing(); } // 9b ii. Let extensibleTarget be ? IsExtensible(target). Maybe extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing()); // 9b iii. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyHasNonExtensible, name)); return Nothing(); } } return Just(true); } Maybe JSProxy::SetProperty(Handle proxy, Handle name, Handle value, Handle receiver, LanguageMode language_mode) { DCHECK(!name->IsPrivate()); Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(isolate, Nothing()); Factory* factory = isolate->factory(); Handle trap_name = factory->set_string(); ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } Handle target(JSReceiver::cast(proxy->target()), isolate); Handle handler(JSReceiver::cast(proxy->handler()), isolate); Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing()); if (trap->IsUndefined(isolate)) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, receiver, name, target); return Object::SetSuperProperty(&it, value, language_mode, Object::MAY_BE_STORE_FROM_KEYED); } Handle trap_result; Handle args[] = {target, name, value, receiver}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); if (!trap_result->BooleanValue(isolate)) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, name)); } MaybeHandle result = JSProxy::CheckGetSetTrapResult(isolate, name, target, value, kSet); if (result.is_null()) { return Nothing(); } return Just(true); } Maybe JSProxy::DeletePropertyOrElement(Handle proxy, Handle name, LanguageMode language_mode) { DCHECK(!name->IsPrivate()); ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(isolate, Nothing()); Factory* factory = isolate->factory(); Handle trap_name = factory->deleteProperty_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } Handle target(JSReceiver::cast(proxy->target()), isolate); Handle handler(JSReceiver::cast(proxy->handler()), isolate); Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing()); if (trap->IsUndefined(isolate)) { return JSReceiver::DeletePropertyOrElement(target, name, language_mode); } Handle trap_result; Handle args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); if (!trap_result->BooleanValue(isolate)) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, name)); } // Enforce the invariant. PropertyDescriptor target_desc; Maybe owned = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(owned, Nothing()); if (owned.FromJust() && !target_desc.configurable()) { isolate->Throw(*factory->NewTypeError( MessageTemplate::kProxyDeletePropertyNonConfigurable, name)); return Nothing(); } return Just(true); } // static MaybeHandle JSProxy::New(Isolate* isolate, Handle target, Handle handler) { if (!target->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject), JSProxy); } if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked), JSProxy); } if (!handler->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject), JSProxy); } if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked), JSProxy); } return isolate->factory()->NewJSProxy(Handle::cast(target), Handle::cast(handler)); } // static MaybeHandle JSProxy::GetFunctionRealm(Handle proxy) { DCHECK(proxy->map()->is_constructor()); if (proxy->IsRevoked()) { THROW_NEW_ERROR(proxy->GetIsolate(), NewTypeError(MessageTemplate::kProxyRevoked), Context); } Handle target(JSReceiver::cast(proxy->target()), proxy->GetIsolate()); return JSReceiver::GetFunctionRealm(target); } // static MaybeHandle JSBoundFunction::GetFunctionRealm( Handle function) { DCHECK(function->map()->is_constructor()); return JSReceiver::GetFunctionRealm( handle(function->bound_target_function(), function->GetIsolate())); } // static MaybeHandle JSBoundFunction::GetName(Isolate* isolate, Handle function) { Handle prefix = isolate->factory()->bound__string(); Handle target_name = prefix; Factory* factory = isolate->factory(); // Concatenate the "bound " up to the last non-bound target. while (function->bound_target_function()->IsJSBoundFunction()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, target_name, factory->NewConsString(prefix, target_name), String); function = handle(JSBoundFunction::cast(function->bound_target_function()), isolate); } if (function->bound_target_function()->IsJSFunction()) { Handle target( JSFunction::cast(function->bound_target_function()), isolate); Handle name = JSFunction::GetName(isolate, target); if (!name->IsString()) return target_name; return factory->NewConsString(target_name, Handle::cast(name)); } // This will omit the proper target name for bound JSProxies. return target_name; } // static Maybe JSBoundFunction::GetLength(Isolate* isolate, Handle function) { int nof_bound_arguments = function->bound_arguments()->length(); while (function->bound_target_function()->IsJSBoundFunction()) { function = handle(JSBoundFunction::cast(function->bound_target_function()), isolate); // Make sure we never overflow {nof_bound_arguments}, the number of // arguments of a function is strictly limited by the max length of an // JSAarray, Smi::kMaxValue is thus a reasonably good overestimate. int length = function->bound_arguments()->length(); if (V8_LIKELY(Smi::kMaxValue - nof_bound_arguments > length)) { nof_bound_arguments += length; } else { nof_bound_arguments = Smi::kMaxValue; } } // All non JSFunction targets get a direct property and don't use this // accessor. Handle target(JSFunction::cast(function->bound_target_function()), isolate); Maybe target_length = JSFunction::GetLength(isolate, target); if (target_length.IsNothing()) return target_length; int length = Max(0, target_length.FromJust() - nof_bound_arguments); return Just(length); } // static Handle JSFunction::GetName(Isolate* isolate, Handle function) { if (function->shared()->name_should_print_as_anonymous()) { return isolate->factory()->anonymous_string(); } return handle(function->shared()->Name(), isolate); } // static Maybe JSFunction::GetLength(Isolate* isolate, Handle function) { int length = 0; if (function->shared()->is_compiled()) { length = function->shared()->GetLength(); } else { // If the function isn't compiled yet, the length is not computed // correctly yet. Compile it now and return the right length. if (Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) { length = function->shared()->GetLength(); } if (isolate->has_pending_exception()) return Nothing(); } DCHECK_GE(length, 0); return Just(length); } // static Handle JSFunction::GetFunctionRealm(Handle function) { DCHECK(function->map()->is_constructor()); return handle(function->context()->native_context(), function->GetIsolate()); } // static MaybeHandle JSObject::GetFunctionRealm(Handle object) { DCHECK(object->map()->is_constructor()); DCHECK(!object->IsJSFunction()); return object->GetCreationContext(); } // static MaybeHandle JSReceiver::GetFunctionRealm(Handle receiver) { if (receiver->IsJSProxy()) { return JSProxy::GetFunctionRealm(Handle::cast(receiver)); } if (receiver->IsJSFunction()) { return JSFunction::GetFunctionRealm(Handle::cast(receiver)); } if (receiver->IsJSBoundFunction()) { return JSBoundFunction::GetFunctionRealm( Handle::cast(receiver)); } return JSObject::GetFunctionRealm(Handle::cast(receiver)); } Maybe JSProxy::GetPropertyAttributes(LookupIterator* it) { PropertyDescriptor desc; Maybe found = JSProxy::GetOwnPropertyDescriptor( it->isolate(), it->GetHolder(), it->GetName(), &desc); MAYBE_RETURN(found, Nothing()); if (!found.FromJust()) return Just(ABSENT); return Just(desc.ToAttributes()); } void JSObject::AllocateStorageForMap(Handle object, Handle map) { DCHECK(object->map()->GetInObjectProperties() == map->GetInObjectProperties()); ElementsKind obj_kind = object->map()->elements_kind(); ElementsKind map_kind = map->elements_kind(); if (map_kind != obj_kind) { ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind); if (IsDictionaryElementsKind(obj_kind)) { to_kind = obj_kind; } if (IsDictionaryElementsKind(to_kind)) { NormalizeElements(object); } else { TransitionElementsKind(object, to_kind); } map = Map::ReconfigureElementsKind(object->GetIsolate(), map, to_kind); } int number_of_fields = map->NumberOfFields(); int inobject = map->GetInObjectProperties(); int unused = map->UnusedPropertyFields(); int total_size = number_of_fields + unused; int external = total_size - inobject; // Allocate mutable double boxes if necessary. It is always necessary if we // have external properties, but is also necessary if we only have inobject // properties but don't unbox double fields. if (!FLAG_unbox_double_fields || external > 0) { Isolate* isolate = object->GetIsolate(); Handle descriptors(map->instance_descriptors(), isolate); Handle storage; if (!FLAG_unbox_double_fields) { storage = isolate->factory()->NewFixedArray(inobject); } Handle array = isolate->factory()->NewPropertyArray(external); for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) { PropertyDetails details = descriptors->GetDetails(i); Representation representation = details.representation(); if (!representation.IsDouble()) continue; FieldIndex index = FieldIndex::ForDescriptor(*map, i); if (map->IsUnboxedDoubleField(index)) continue; auto box = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); if (index.is_inobject()) { storage->set(index.property_index(), *box); } else { array->set(index.outobject_array_index(), *box); } } object->SetProperties(*array); if (!FLAG_unbox_double_fields) { for (int i = 0; i < inobject; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*map, i); Object* value = storage->get(i); object->RawFastPropertyAtPut(index, value); } } } object->synchronized_set_map(*map); } void JSObject::MigrateInstance(Handle object) { Handle original_map(object->map(), object->GetIsolate()); Handle map = Map::Update(object->GetIsolate(), original_map); map->set_is_migration_target(true); MigrateToMap(object, map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, *map); } #if VERIFY_HEAP if (FLAG_verify_heap) { object->JSObjectVerify(object->GetIsolate()); } #endif } // static bool JSObject::TryMigrateInstance(Handle object) { Isolate* isolate = object->GetIsolate(); DisallowDeoptimization no_deoptimization(isolate); Handle original_map(object->map(), isolate); Handle new_map; if (!Map::TryUpdate(isolate, original_map).ToHandle(&new_map)) { return false; } JSObject::MigrateToMap(object, new_map); if (FLAG_trace_migration && *original_map != object->map()) { object->PrintInstanceMigration(stdout, *original_map, object->map()); } #if VERIFY_HEAP if (FLAG_verify_heap) { object->JSObjectVerify(isolate); } #endif return true; } void JSObject::AddProperty(Isolate* isolate, Handle object, Handle name, Handle value, PropertyAttributes attributes) { LookupIterator it(isolate, object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_NE(LookupIterator::ACCESS_CHECK, it.state()); #ifdef DEBUG uint32_t index; DCHECK(!object->IsJSProxy()); DCHECK(!name->AsArrayIndex(&index)); Maybe maybe = GetPropertyAttributes(&it); DCHECK(maybe.IsJust()); DCHECK(!it.IsFound()); DCHECK(object->map()->is_extensible() || name->IsPrivate()); #endif CHECK(AddDataProperty(&it, value, attributes, kThrowOnError, CERTAINLY_NOT_STORE_FROM_KEYED) .IsJust()); } // Reconfigures a property to a data property with attributes, even if it is not // reconfigurable. // Requires a LookupIterator that does not look at the prototype chain beyond // hidden prototypes. MaybeHandle JSObject::DefineOwnPropertyIgnoreAttributes( LookupIterator* it, Handle value, PropertyAttributes attributes, AccessorInfoHandling handling) { MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes(it, value, attributes, kThrowOnError, handling)); return value; } Maybe JSObject::DefineOwnPropertyIgnoreAttributes( LookupIterator* it, Handle value, PropertyAttributes attributes, ShouldThrow should_throw, AccessorInfoHandling handling) { it->UpdateProtector(); Handle object = Handle::cast(it->GetReceiver()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (!it->HasAccess()) { it->isolate()->ReportFailedAccessCheck(it->GetHolder()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing()); return Just(true); } break; // If there's an interceptor, try to store the property with the // interceptor. // In case of success, the attributes will have been reset to the default // attributes of the interceptor, rather than the incoming attributes. // // TODO(verwaest): JSProxy afterwards verify the attributes that the // JSProxy claims it has, and verifies that they are compatible. If not, // they throw. Here we should do the same. case LookupIterator::INTERCEPTOR: if (handling == DONT_FORCE_FIELD) { Maybe result = JSObject::SetPropertyWithInterceptor(it, should_throw, value); if (result.IsNothing() || result.FromJust()) return result; } break; case LookupIterator::ACCESSOR: { Handle accessors = it->GetAccessors(); // Special handling for AccessorInfo, which behaves like a data // property. if (accessors->IsAccessorInfo() && handling == DONT_FORCE_FIELD) { PropertyAttributes current_attributes = it->property_attributes(); // Ensure the context isn't changed after calling into accessors. AssertNoContextChange ncc(it->isolate()); // Update the attributes before calling the setter. The setter may // later change the shape of the property. if (current_attributes != attributes) { it->TransitionToAccessorPair(accessors, attributes); } return JSObject::SetPropertyWithAccessor(it, value, should_throw); } it->ReconfigureDataProperty(value, attributes); return Just(true); } case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value, should_throw); case LookupIterator::DATA: { // Regular property update if the attributes match. if (it->property_attributes() == attributes) { return SetDataProperty(it, value); } // Special case: properties of typed arrays cannot be reconfigured to // non-writable nor to non-enumerable. if (it->IsElement() && object->HasFixedTypedArrayElements()) { return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value, should_throw); } // Reconfigure the data property if the attributes mismatch. it->ReconfigureDataProperty(value, attributes); return Just(true); } } } return AddDataProperty(it, value, attributes, should_throw, CERTAINLY_NOT_STORE_FROM_KEYED); } MaybeHandle JSObject::SetOwnPropertyIgnoreAttributes( Handle object, Handle name, Handle value, PropertyAttributes attributes) { DCHECK(!value->IsTheHole()); LookupIterator it(object, name, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } MaybeHandle JSObject::SetOwnElementIgnoreAttributes( Handle object, uint32_t index, Handle value, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } MaybeHandle JSObject::DefinePropertyOrElementIgnoreAttributes( Handle object, Handle name, Handle value, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } Maybe JSObject::GetPropertyAttributesWithInterceptor( LookupIterator* it) { return GetPropertyAttributesWithInterceptorInternal(it, it->GetInterceptor()); } Maybe JSReceiver::GetPropertyAttributes( LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyAttributes(it); case LookupIterator::INTERCEPTOR: { Maybe result = JSObject::GetPropertyAttributesWithInterceptor(it); if (result.IsNothing()) return result; if (result.FromJust() != ABSENT) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyAttributesWithFailedAccessCheck(it); case LookupIterator::INTEGER_INDEXED_EXOTIC: return Just(ABSENT); case LookupIterator::ACCESSOR: if (it->GetHolder()->IsJSModuleNamespace()) { return JSModuleNamespace::GetPropertyAttributes(it); } else { return Just(it->property_attributes()); } case LookupIterator::DATA: return Just(it->property_attributes()); } } return Just(ABSENT); } Handle NormalizedMapCache::New(Isolate* isolate) { Handle array( isolate->factory()->NewWeakFixedArray(kEntries, TENURED)); return Handle::cast(array); } MaybeHandle NormalizedMapCache::Get(Handle fast_map, PropertyNormalizationMode mode) { DisallowHeapAllocation no_gc; MaybeObject* value = WeakFixedArray::Get(GetIndex(fast_map)); HeapObject* heap_object; if (!value->ToWeakHeapObject(&heap_object)) { return MaybeHandle(); } Map* normalized_map = Map::cast(heap_object); if (!normalized_map->EquivalentToForNormalization(*fast_map, mode)) { return MaybeHandle(); } return handle(normalized_map, GetIsolate()); } void NormalizedMapCache::Set(Handle fast_map, Handle normalized_map) { DisallowHeapAllocation no_gc; DCHECK(normalized_map->is_dictionary_map()); WeakFixedArray::Set(GetIndex(fast_map), HeapObjectReference::Weak(*normalized_map)); } void JSObject::NormalizeProperties(Handle object, PropertyNormalizationMode mode, int expected_additional_properties, const char* reason) { if (!object->HasFastProperties()) return; Handle map(object->map(), object->GetIsolate()); Handle new_map = Map::Normalize(object->GetIsolate(), map, mode, reason); MigrateToMap(object, new_map, expected_additional_properties); } void JSObject::MigrateSlowToFast(Handle object, int unused_property_fields, const char* reason) { if (object->HasFastProperties()) return; DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); Handle dictionary(object->property_dictionary(), isolate); // Make sure we preserve dictionary representation if there are too many // descriptors. int number_of_elements = dictionary->NumberOfElements(); if (number_of_elements > kMaxNumberOfDescriptors) return; Handle iteration_order = NameDictionary::IterationIndices(isolate, dictionary); int instance_descriptor_length = iteration_order->length(); int number_of_fields = 0; // Compute the length of the instance descriptor. ReadOnlyRoots roots(isolate); for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::ToInt(iteration_order->get(i)); DCHECK(dictionary->IsKey(roots, dictionary->KeyAt(index))); PropertyKind kind = dictionary->DetailsAt(index).kind(); if (kind == kData) { if (FLAG_track_constant_fields) { number_of_fields += 1; } else { Object* value = dictionary->ValueAt(index); if (!value->IsJSFunction()) { number_of_fields += 1; } } } } Handle old_map(object->map(), isolate); int inobject_props = old_map->GetInObjectProperties(); // Allocate new map. Handle new_map = Map::CopyDropDescriptors(isolate, old_map); if (new_map->has_named_interceptor() || new_map->is_access_check_needed()) { // Force certain slow paths when API interceptors are used, or if an access // check is required. new_map->set_may_have_interesting_symbols(true); } new_map->set_is_dictionary_map(false); NotifyMapChange(old_map, new_map, isolate); if (FLAG_trace_maps) { LOG(isolate, MapEvent("SlowToFast", *old_map, *new_map, reason)); } if (instance_descriptor_length == 0) { DisallowHeapAllocation no_gc; DCHECK_LE(unused_property_fields, inobject_props); // Transform the object. new_map->SetInObjectUnusedPropertyFields(inobject_props); object->synchronized_set_map(*new_map); object->SetProperties(ReadOnlyRoots(isolate).empty_fixed_array()); // Check that it really works. DCHECK(object->HasFastProperties()); return; } // Allocate the instance descriptor. Handle descriptors = DescriptorArray::Allocate( isolate, instance_descriptor_length, 0, TENURED); int number_of_allocated_fields = number_of_fields + unused_property_fields - inobject_props; if (number_of_allocated_fields < 0) { // There is enough inobject space for all fields (including unused). number_of_allocated_fields = 0; unused_property_fields = inobject_props - number_of_fields; } // Allocate the property array for the fields. Handle fields = factory->NewPropertyArray(number_of_allocated_fields); bool is_transitionable_elements_kind = IsTransitionableFastElementsKind(old_map->elements_kind()); // Fill in the instance descriptor and the fields. int current_offset = 0; for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::ToInt(iteration_order->get(i)); Name* k = dictionary->NameAt(index); // Dictionary keys are internalized upon insertion. // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild. CHECK(k->IsUniqueName()); Handle key(k, isolate); // Properly mark the {new_map} if the {key} is an "interesting symbol". if (key->IsInterestingSymbol()) { new_map->set_may_have_interesting_symbols(true); } Object* value = dictionary->ValueAt(index); PropertyDetails details = dictionary->DetailsAt(index); DCHECK_EQ(kField, details.location()); DCHECK_EQ(PropertyConstness::kMutable, details.constness()); Descriptor d; if (details.kind() == kData) { if (!FLAG_track_constant_fields && value->IsJSFunction()) { d = Descriptor::DataConstant(key, handle(value, isolate), details.attributes()); } else { // Ensure that we make constant field only when elements kind is not // transitionable. PropertyConstness constness = FLAG_track_constant_fields && !is_transitionable_elements_kind ? PropertyConstness::kConst : PropertyConstness::kMutable; d = Descriptor::DataField( key, current_offset, details.attributes(), constness, // TODO(verwaest): value->OptimalRepresentation(); Representation::Tagged(), MaybeObjectHandle(FieldType::Any(isolate))); } } else { DCHECK_EQ(kAccessor, details.kind()); d = Descriptor::AccessorConstant(key, handle(value, isolate), details.attributes()); } details = d.GetDetails(); if (details.location() == kField) { if (current_offset < inobject_props) { object->InObjectPropertyAtPut(current_offset, value, UPDATE_WRITE_BARRIER); } else { int offset = current_offset - inobject_props; fields->set(offset, value); } current_offset += details.field_width_in_words(); } descriptors->Set(i, &d); } DCHECK(current_offset == number_of_fields); descriptors->Sort(); Handle layout_descriptor = LayoutDescriptor::New( isolate, new_map, descriptors, descriptors->number_of_descriptors()); DisallowHeapAllocation no_gc; new_map->InitializeDescriptors(*descriptors, *layout_descriptor); if (number_of_allocated_fields == 0) { new_map->SetInObjectUnusedPropertyFields(unused_property_fields); } else { new_map->SetOutOfObjectUnusedPropertyFields(unused_property_fields); } // Transform the object. object->synchronized_set_map(*new_map); object->SetProperties(*fields); DCHECK(object->IsJSObject()); // Check that it really works. DCHECK(object->HasFastProperties()); } void JSObject::RequireSlowElements(NumberDictionary* dictionary) { if (dictionary->requires_slow_elements()) return; dictionary->set_requires_slow_elements(); if (map()->is_prototype_map()) { // If this object is a prototype (the callee will check), invalidate any // prototype chains involving it. InvalidatePrototypeChains(map()); } } Handle JSObject::NormalizeElements(Handle object) { DCHECK(!object->HasFixedTypedArrayElements()); Isolate* isolate = object->GetIsolate(); bool is_sloppy_arguments = object->HasSloppyArgumentsElements(); { DisallowHeapAllocation no_gc; FixedArrayBase* elements = object->elements(); if (is_sloppy_arguments) { elements = SloppyArgumentsElements::cast(elements)->arguments(); } if (elements->IsNumberDictionary()) { return handle(NumberDictionary::cast(elements), isolate); } } DCHECK(object->HasSmiOrObjectElements() || object->HasDoubleElements() || object->HasFastArgumentsElements() || object->HasFastStringWrapperElements()); Handle dictionary = object->GetElementsAccessor()->Normalize(object); // Switch to using the dictionary as the backing storage for elements. ElementsKind target_kind = is_sloppy_arguments ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS : object->HasFastStringWrapperElements() ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; Handle new_map = JSObject::GetElementsTransitionMap(object, target_kind); // Set the new map first to satify the elements type assert in set_elements(). JSObject::MigrateToMap(object, new_map); if (is_sloppy_arguments) { SloppyArgumentsElements::cast(object->elements()) ->set_arguments(*dictionary); } else { object->set_elements(*dictionary); } isolate->counters()->elements_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { StdoutStream os; os << "Object elements have been normalized:\n"; object->Print(os); } #endif DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements() || object->HasSlowStringWrapperElements()); return dictionary; } namespace { Object* SetHashAndUpdateProperties(Isolate* isolate, HeapObject* properties, int hash) { DCHECK_NE(PropertyArray::kNoHashSentinel, hash); DCHECK(PropertyArray::HashField::is_valid(hash)); Heap* heap = isolate->heap(); ReadOnlyRoots roots(heap); if (properties == roots.empty_fixed_array() || properties == roots.empty_property_array() || properties == heap->empty_property_dictionary()) { return Smi::FromInt(hash); } if (properties->IsPropertyArray()) { PropertyArray::cast(properties)->SetHash(hash); DCHECK_LT(0, PropertyArray::cast(properties)->length()); return properties; } DCHECK(properties->IsNameDictionary()); NameDictionary::cast(properties)->SetHash(hash); return properties; } int GetIdentityHashHelper(Isolate* isolate, JSReceiver* object) { DisallowHeapAllocation no_gc; Object* properties = object->raw_properties_or_hash(); if (properties->IsSmi()) { return Smi::ToInt(properties); } if (properties->IsPropertyArray()) { return PropertyArray::cast(properties)->Hash(); } if (properties->IsNameDictionary()) { return NameDictionary::cast(properties)->Hash(); } if (properties->IsGlobalDictionary()) { return GlobalDictionary::cast(properties)->Hash(); } #ifdef DEBUG FixedArray* empty_fixed_array = ReadOnlyRoots(isolate).empty_fixed_array(); FixedArray* empty_property_dictionary = isolate->heap()->empty_property_dictionary(); DCHECK(properties == empty_fixed_array || properties == empty_property_dictionary); #endif return PropertyArray::kNoHashSentinel; } } // namespace void JSReceiver::SetIdentityHash(int hash) { DisallowHeapAllocation no_gc; DCHECK_NE(PropertyArray::kNoHashSentinel, hash); DCHECK(PropertyArray::HashField::is_valid(hash)); HeapObject* existing_properties = HeapObject::cast(raw_properties_or_hash()); Object* new_properties = SetHashAndUpdateProperties(GetIsolate(), existing_properties, hash); set_raw_properties_or_hash(new_properties); } void JSReceiver::SetProperties(HeapObject* properties) { DCHECK_IMPLIES(properties->IsPropertyArray() && PropertyArray::cast(properties)->length() == 0, properties == GetReadOnlyRoots().empty_property_array()); DisallowHeapAllocation no_gc; Isolate* isolate = GetIsolate(); int hash = GetIdentityHashHelper(isolate, this); Object* new_properties = properties; // TODO(cbruni): Make GetIdentityHashHelper return a bool so that we // don't have to manually compare against kNoHashSentinel. if (hash != PropertyArray::kNoHashSentinel) { new_properties = SetHashAndUpdateProperties(isolate, properties, hash); } set_raw_properties_or_hash(new_properties); } Object* JSReceiver::GetIdentityHash(Isolate* isolate) { DisallowHeapAllocation no_gc; int hash = GetIdentityHashHelper(isolate, this); if (hash == PropertyArray::kNoHashSentinel) { return ReadOnlyRoots(isolate).undefined_value(); } return Smi::FromInt(hash); } // static Smi* JSReceiver::CreateIdentityHash(Isolate* isolate, JSReceiver* key) { DisallowHeapAllocation no_gc; int hash = isolate->GenerateIdentityHash(PropertyArray::HashField::kMax); DCHECK_NE(PropertyArray::kNoHashSentinel, hash); key->SetIdentityHash(hash); return Smi::FromInt(hash); } Smi* JSReceiver::GetOrCreateIdentityHash(Isolate* isolate) { DisallowHeapAllocation no_gc; Object* hash_obj = GetIdentityHash(isolate); if (!hash_obj->IsUndefined(isolate)) { return Smi::cast(hash_obj); } return JSReceiver::CreateIdentityHash(isolate, this); } Maybe JSObject::DeletePropertyWithInterceptor(LookupIterator* it, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle interceptor(it->GetInterceptor()); if (interceptor->deleter()->IsUndefined(isolate)) return Nothing(); Handle holder = it->GetHolder(); Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, should_throw); Handle result; if (it->IsElement()) { result = args.CallIndexedDeleter(interceptor, it->index()); } else { result = args.CallNamedDeleter(interceptor, it->name()); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); if (result.is_null()) return Nothing(); DCHECK(result->IsBoolean()); // Rebox CustomArguments::kReturnValueOffset before returning. return Just(result->IsTrue(isolate)); } void JSReceiver::DeleteNormalizedProperty(Handle object, int entry) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); if (object->IsJSGlobalObject()) { // If we have a global object, invalidate the cell and swap in a new one. Handle dictionary( JSGlobalObject::cast(*object)->global_dictionary(), isolate); DCHECK_NE(GlobalDictionary::kNotFound, entry); auto cell = PropertyCell::InvalidateEntry(isolate, dictionary, entry); cell->set_value(ReadOnlyRoots(isolate).the_hole_value()); cell->set_property_details( PropertyDetails::Empty(PropertyCellType::kUninitialized)); } else { Handle dictionary(object->property_dictionary(), isolate); DCHECK_NE(NameDictionary::kNotFound, entry); dictionary = NameDictionary::DeleteEntry(isolate, dictionary, entry); object->SetProperties(*dictionary); } if (object->map()->is_prototype_map()) { // Invalidate prototype validity cell as this may invalidate transitioning // store IC handlers. JSObject::InvalidatePrototypeChains(object->map()); } } Maybe JSReceiver::DeleteProperty(LookupIterator* it, LanguageMode language_mode) { it->UpdateProtector(); Isolate* isolate = it->isolate(); if (it->state() == LookupIterator::JSPROXY) { return JSProxy::DeletePropertyOrElement(it->GetHolder(), it->GetName(), language_mode); } if (it->GetReceiver()->IsJSProxy()) { if (it->state() != LookupIterator::NOT_FOUND) { DCHECK_EQ(LookupIterator::DATA, it->state()); DCHECK(it->name()->IsPrivate()); it->Delete(); } return Just(true); } Handle receiver = Handle::cast(it->GetReceiver()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; isolate->ReportFailedAccessCheck(it->GetHolder()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(false); case LookupIterator::INTERCEPTOR: { ShouldThrow should_throw = is_sloppy(language_mode) ? kDontThrow : kThrowOnError; Maybe result = JSObject::DeletePropertyWithInterceptor(it, should_throw); // An exception was thrown in the interceptor. Propagate. if (isolate->has_pending_exception()) return Nothing(); // Delete with interceptor succeeded. Return result. // TODO(neis): In strict mode, we should probably throw if the // interceptor returns false. if (result.IsJust()) return result; break; } case LookupIterator::INTEGER_INDEXED_EXOTIC: return Just(true); case LookupIterator::DATA: case LookupIterator::ACCESSOR: { if (!it->IsConfigurable()) { // Fail if the property is not configurable. if (is_strict(language_mode)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kStrictDeleteProperty, it->GetName(), receiver)); return Nothing(); } return Just(false); } it->Delete(); return Just(true); } } } return Just(true); } Maybe JSReceiver::DeleteElement(Handle object, uint32_t index, LanguageMode language_mode) { LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::OWN); return DeleteProperty(&it, language_mode); } Maybe JSReceiver::DeleteProperty(Handle object, Handle name, LanguageMode language_mode) { LookupIterator it(object, name, object, LookupIterator::OWN); return DeleteProperty(&it, language_mode); } Maybe JSReceiver::DeletePropertyOrElement(Handle object, Handle name, LanguageMode language_mode) { LookupIterator it = LookupIterator::PropertyOrElement( object->GetIsolate(), object, name, object, LookupIterator::OWN); return DeleteProperty(&it, language_mode); } // ES6 19.1.2.4 // static Object* JSReceiver::DefineProperty(Isolate* isolate, Handle object, Handle key, Handle attributes) { // 1. If Type(O) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { Handle fun_name = isolate->factory()->InternalizeUtf8String("Object.defineProperty"); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name)); } // 2. Let key be ToPropertyKey(P). // 3. ReturnIfAbrupt(key). ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key)); // 4. Let desc be ToPropertyDescriptor(Attributes). // 5. ReturnIfAbrupt(desc). PropertyDescriptor desc; if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) { return ReadOnlyRoots(isolate).exception(); } // 6. Let success be DefinePropertyOrThrow(O,key, desc). Maybe success = DefineOwnProperty( isolate, Handle::cast(object), key, &desc, kThrowOnError); // 7. ReturnIfAbrupt(success). MAYBE_RETURN(success, ReadOnlyRoots(isolate).exception()); CHECK(success.FromJust()); // 8. Return O. return *object; } // ES6 19.1.2.3.1 // static MaybeHandle JSReceiver::DefineProperties(Isolate* isolate, Handle object, Handle properties) { // 1. If Type(O) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { Handle fun_name = isolate->factory()->InternalizeUtf8String("Object.defineProperties"); THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name), Object); } // 2. Let props be ToObject(Properties). // 3. ReturnIfAbrupt(props). Handle props; ASSIGN_RETURN_ON_EXCEPTION(isolate, props, Object::ToObject(isolate, properties), Object); // 4. Let keys be props.[[OwnPropertyKeys]](). // 5. ReturnIfAbrupt(keys). Handle keys; ASSIGN_RETURN_ON_EXCEPTION( isolate, keys, KeyAccumulator::GetKeys(props, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES), Object); // 6. Let descriptors be an empty List. int capacity = keys->length(); std::vector descriptors(capacity); size_t descriptors_index = 0; // 7. Repeat for each element nextKey of keys in List order, for (int i = 0; i < keys->length(); ++i) { Handle next_key(keys->get(i), isolate); // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey). // 7b. ReturnIfAbrupt(propDesc). bool success = false; LookupIterator it = LookupIterator::PropertyOrElement( isolate, props, next_key, &success, LookupIterator::OWN); DCHECK(success); Maybe maybe = JSReceiver::GetPropertyAttributes(&it); if (maybe.IsNothing()) return MaybeHandle(); PropertyAttributes attrs = maybe.FromJust(); // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true: if (attrs == ABSENT) continue; if (attrs & DONT_ENUM) continue; // 7c i. Let descObj be Get(props, nextKey). // 7c ii. ReturnIfAbrupt(descObj). Handle desc_obj; ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it), Object); // 7c iii. Let desc be ToPropertyDescriptor(descObj). success = PropertyDescriptor::ToPropertyDescriptor( isolate, desc_obj, &descriptors[descriptors_index]); // 7c iv. ReturnIfAbrupt(desc). if (!success) return MaybeHandle(); // 7c v. Append the pair (a two element List) consisting of nextKey and // desc to the end of descriptors. descriptors[descriptors_index].set_name(next_key); descriptors_index++; } // 8. For each pair from descriptors in list order, for (size_t i = 0; i < descriptors_index; ++i) { PropertyDescriptor* desc = &descriptors[i]; // 8a. Let P be the first element of pair. // 8b. Let desc be the second element of pair. // 8c. Let status be DefinePropertyOrThrow(O, P, desc). Maybe status = DefineOwnProperty(isolate, Handle::cast(object), desc->name(), desc, kThrowOnError); // 8d. ReturnIfAbrupt(status). if (status.IsNothing()) return MaybeHandle(); CHECK(status.FromJust()); } // 9. Return o. return object; } // static Maybe JSReceiver::DefineOwnProperty(Isolate* isolate, Handle object, Handle key, PropertyDescriptor* desc, ShouldThrow should_throw) { if (object->IsJSArray()) { return JSArray::DefineOwnProperty(isolate, Handle::cast(object), key, desc, should_throw); } if (object->IsJSProxy()) { return JSProxy::DefineOwnProperty(isolate, Handle::cast(object), key, desc, should_throw); } if (object->IsJSTypedArray()) { return JSTypedArray::DefineOwnProperty( isolate, Handle::cast(object), key, desc, should_throw); } // OrdinaryDefineOwnProperty, by virtue of calling // DefineOwnPropertyIgnoreAttributes, can handle arguments // (ES#sec-arguments-exotic-objects-defineownproperty-p-desc). return OrdinaryDefineOwnProperty(isolate, Handle::cast(object), key, desc, should_throw); } // static Maybe JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate, Handle object, Handle key, PropertyDescriptor* desc, ShouldThrow should_throw) { bool success = false; DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey... LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, key, &success, LookupIterator::OWN); DCHECK(success); // ...so creating a LookupIterator can't fail. // Deal with access checks first. if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(it.GetHolder()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(true); } it.Next(); } return OrdinaryDefineOwnProperty(&it, desc, should_throw); } // ES6 9.1.6.1 // static Maybe JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it, PropertyDescriptor* desc, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); // 1. Let current be O.[[GetOwnProperty]](P). // 2. ReturnIfAbrupt(current). PropertyDescriptor current; MAYBE_RETURN(GetOwnPropertyDescriptor(it, ¤t), Nothing()); it->Restart(); // Handle interceptor for (; it->IsFound(); it->Next()) { if (it->state() == LookupIterator::INTERCEPTOR) { if (it->HolderIsReceiverOrHiddenPrototype()) { Maybe result = DefinePropertyWithInterceptorInternal( it, it->GetInterceptor(), should_throw, *desc); if (result.IsNothing() || result.FromJust()) { return result; } } } } // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset // the iterator every time. Currently, the reasons why we need it are: // - handle interceptors correctly // - handle accessors correctly (which might change the holder's map) it->Restart(); // 3. Let extensible be the value of the [[Extensible]] internal slot of O. Handle object = Handle::cast(it->GetReceiver()); bool extensible = JSObject::IsExtensible(object); return ValidateAndApplyPropertyDescriptor( isolate, it, extensible, desc, ¤t, should_throw, Handle()); } // ES6 9.1.6.2 // static Maybe JSReceiver::IsCompatiblePropertyDescriptor( Isolate* isolate, bool extensible, PropertyDescriptor* desc, PropertyDescriptor* current, Handle property_name, ShouldThrow should_throw) { // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, // Extensible, Desc, Current). return ValidateAndApplyPropertyDescriptor( isolate, nullptr, extensible, desc, current, should_throw, property_name); } // ES6 9.1.6.3 // static Maybe JSReceiver::ValidateAndApplyPropertyDescriptor( Isolate* isolate, LookupIterator* it, bool extensible, PropertyDescriptor* desc, PropertyDescriptor* current, ShouldThrow should_throw, Handle property_name) { // We either need a LookupIterator, or a property name. DCHECK((it == nullptr) != property_name.is_null()); Handle object; if (it != nullptr) object = Handle::cast(it->GetReceiver()); bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc); bool desc_is_accessor_descriptor = PropertyDescriptor::IsAccessorDescriptor(desc); bool desc_is_generic_descriptor = PropertyDescriptor::IsGenericDescriptor(desc); // 1. (Assert) // 2. If current is undefined, then if (current->is_empty()) { // 2a. If extensible is false, return false. if (!extensible) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, it != nullptr ? it->GetName() : property_name)); } // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then: // (This is equivalent to !IsAccessorDescriptor(desc).) DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) == !desc_is_accessor_descriptor); if (!desc_is_accessor_descriptor) { // 2c i. If O is not undefined, create an own data property named P of // object O whose [[Value]], [[Writable]], [[Enumerable]] and // [[Configurable]] attribute values are described by Desc. If the value // of an attribute field of Desc is absent, the attribute of the newly // created property is set to its default value. if (it != nullptr) { if (!desc->has_writable()) desc->set_writable(false); if (!desc->has_enumerable()) desc->set_enumerable(false); if (!desc->has_configurable()) desc->set_configurable(false); Handle value( desc->has_value() ? desc->value() : Handle::cast(isolate->factory()->undefined_value())); MaybeHandle result = JSObject::DefineOwnPropertyIgnoreAttributes(it, value, desc->ToAttributes()); if (result.is_null()) return Nothing(); } } else { // 2d. Else Desc must be an accessor Property Descriptor, DCHECK(desc_is_accessor_descriptor); // 2d i. If O is not undefined, create an own accessor property named P // of object O whose [[Get]], [[Set]], [[Enumerable]] and // [[Configurable]] attribute values are described by Desc. If the value // of an attribute field of Desc is absent, the attribute of the newly // created property is set to its default value. if (it != nullptr) { if (!desc->has_enumerable()) desc->set_enumerable(false); if (!desc->has_configurable()) desc->set_configurable(false); Handle getter( desc->has_get() ? desc->get() : Handle::cast(isolate->factory()->null_value())); Handle setter( desc->has_set() ? desc->set() : Handle::cast(isolate->factory()->null_value())); MaybeHandle result = JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes()); if (result.is_null()) return Nothing(); } } // 2e. Return true. return Just(true); } // 3. Return true, if every field in Desc is absent. // 4. Return true, if every field in Desc also occurs in current and the // value of every field in Desc is the same value as the corresponding field // in current when compared using the SameValue algorithm. if ((!desc->has_enumerable() || desc->enumerable() == current->enumerable()) && (!desc->has_configurable() || desc->configurable() == current->configurable()) && (!desc->has_value() || (current->has_value() && current->value()->SameValue(*desc->value()))) && (!desc->has_writable() || (current->has_writable() && current->writable() == desc->writable())) && (!desc->has_get() || (current->has_get() && current->get()->SameValue(*desc->get()))) && (!desc->has_set() || (current->has_set() && current->set()->SameValue(*desc->set())))) { return Just(true); } // 5. If the [[Configurable]] field of current is false, then if (!current->configurable()) { // 5a. Return false, if the [[Configurable]] field of Desc is true. if (desc->has_configurable() && desc->configurable()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } // 5b. Return false, if the [[Enumerable]] field of Desc is present and the // [[Enumerable]] fields of current and Desc are the Boolean negation of // each other. if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } } bool current_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(current); // 6. If IsGenericDescriptor(Desc) is true, no further validation is required. if (desc_is_generic_descriptor) { // Nothing to see here. // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have // different results, then: } else if (current_is_data_descriptor != desc_is_data_descriptor) { // 7a. Return false, if the [[Configurable]] field of current is false. if (!current->configurable()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } // 7b. If IsDataDescriptor(current) is true, then: if (current_is_data_descriptor) { // 7b i. If O is not undefined, convert the property named P of object O // from a data property to an accessor property. Preserve the existing // values of the converted property's [[Configurable]] and [[Enumerable]] // attributes and set the rest of the property's attributes to their // default values. // --> Folded into step 10. } else { // 7c i. If O is not undefined, convert the property named P of object O // from an accessor property to a data property. Preserve the existing // values of the converted property’s [[Configurable]] and [[Enumerable]] // attributes and set the rest of the property’s attributes to their // default values. // --> Folded into step 10. } // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both // true, then: } else if (current_is_data_descriptor && desc_is_data_descriptor) { // 8a. If the [[Configurable]] field of current is false, then: if (!current->configurable()) { // 8a i. Return false, if the [[Writable]] field of current is false and // the [[Writable]] field of Desc is true. if (!current->writable() && desc->has_writable() && desc->writable()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } // 8a ii. If the [[Writable]] field of current is false, then: if (!current->writable()) { // 8a ii 1. Return false, if the [[Value]] field of Desc is present and // SameValue(Desc.[[Value]], current.[[Value]]) is false. if (desc->has_value() && !desc->value()->SameValue(*current->value())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } } } } else { // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) // are both true, DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) && desc_is_accessor_descriptor); // 9a. If the [[Configurable]] field of current is false, then: if (!current->configurable()) { // 9a i. Return false, if the [[Set]] field of Desc is present and // SameValue(Desc.[[Set]], current.[[Set]]) is false. if (desc->has_set() && !desc->set()->SameValue(*current->set())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } // 9a ii. Return false, if the [[Get]] field of Desc is present and // SameValue(Desc.[[Get]], current.[[Get]]) is false. if (desc->has_get() && !desc->get()->SameValue(*current->get())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != nullptr ? it->GetName() : property_name)); } } } // 10. If O is not undefined, then: if (it != nullptr) { // 10a. For each field of Desc that is present, set the corresponding // attribute of the property named P of object O to the value of the field. PropertyAttributes attrs = NONE; if (desc->has_enumerable()) { attrs = static_cast( attrs | (desc->enumerable() ? NONE : DONT_ENUM)); } else { attrs = static_cast( attrs | (current->enumerable() ? NONE : DONT_ENUM)); } if (desc->has_configurable()) { attrs = static_cast( attrs | (desc->configurable() ? NONE : DONT_DELETE)); } else { attrs = static_cast( attrs | (current->configurable() ? NONE : DONT_DELETE)); } if (desc_is_data_descriptor || (desc_is_generic_descriptor && current_is_data_descriptor)) { if (desc->has_writable()) { attrs = static_cast( attrs | (desc->writable() ? NONE : READ_ONLY)); } else { attrs = static_cast( attrs | (current->writable() ? NONE : READ_ONLY)); } Handle value( desc->has_value() ? desc->value() : current->has_value() ? current->value() : Handle::cast( isolate->factory()->undefined_value())); return JSObject::DefineOwnPropertyIgnoreAttributes(it, value, attrs, should_throw); } else { DCHECK(desc_is_accessor_descriptor || (desc_is_generic_descriptor && PropertyDescriptor::IsAccessorDescriptor(current))); Handle getter( desc->has_get() ? desc->get() : current->has_get() ? current->get() : Handle::cast(isolate->factory()->null_value())); Handle setter( desc->has_set() ? desc->set() : current->has_set() ? current->set() : Handle::cast(isolate->factory()->null_value())); MaybeHandle result = JSObject::DefineAccessor(it, getter, setter, attrs); if (result.is_null()) return Nothing(); } } // 11. Return true. return Just(true); } // static Maybe JSReceiver::CreateDataProperty(Isolate* isolate, Handle object, Handle key, Handle value, ShouldThrow should_throw) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, key, LookupIterator::OWN); return CreateDataProperty(&it, value, should_throw); } // static Maybe JSReceiver::CreateDataProperty(LookupIterator* it, Handle value, ShouldThrow should_throw) { DCHECK(!it->check_prototype_chain()); Handle receiver = Handle::cast(it->GetReceiver()); Isolate* isolate = receiver->GetIsolate(); if (receiver->IsJSObject()) { return JSObject::CreateDataProperty(it, value, should_throw); // Shortcut. } PropertyDescriptor new_desc; new_desc.set_value(value); new_desc.set_writable(true); new_desc.set_enumerable(true); new_desc.set_configurable(true); return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(), &new_desc, should_throw); } Maybe JSObject::CreateDataProperty(LookupIterator* it, Handle value, ShouldThrow should_throw) { DCHECK(it->GetReceiver()->IsJSObject()); MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing()); Handle receiver = Handle::cast(it->GetReceiver()); Isolate* isolate = receiver->GetIsolate(); if (it->IsFound()) { Maybe attributes = GetPropertyAttributes(it); MAYBE_RETURN(attributes, Nothing()); if ((attributes.FromJust() & DONT_DELETE) != 0) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it->GetName())); } } else { if (!JSObject::IsExtensible(Handle::cast(it->GetReceiver()))) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, it->GetName())); } } RETURN_ON_EXCEPTION_VALUE(it->isolate(), DefineOwnPropertyIgnoreAttributes(it, value, NONE), Nothing()); return Just(true); } // TODO(jkummerow): Consider unification with FastAsArrayLength() in // accessors.cc. bool PropertyKeyToArrayLength(Handle value, uint32_t* length) { DCHECK(value->IsNumber() || value->IsName()); if (value->ToArrayLength(length)) return true; if (value->IsString()) return String::cast(*value)->AsArrayIndex(length); return false; } bool PropertyKeyToArrayIndex(Handle index_obj, uint32_t* output) { return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32; } // ES6 9.4.2.1 // static Maybe JSArray::DefineOwnProperty(Isolate* isolate, Handle o, Handle name, PropertyDescriptor* desc, ShouldThrow should_throw) { // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.) // 2. If P is "length", then: // TODO(jkummerow): Check if we need slow string comparison. if (*name == ReadOnlyRoots(isolate).length_string()) { // 2a. Return ArraySetLength(A, Desc). return ArraySetLength(isolate, o, desc, should_throw); } // 3. Else if P is an array index, then: uint32_t index = 0; if (PropertyKeyToArrayIndex(name, &index)) { // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length"). PropertyDescriptor old_len_desc; Maybe success = GetOwnPropertyDescriptor( isolate, o, isolate->factory()->length_string(), &old_len_desc); // 3b. (Assert) DCHECK(success.FromJust()); USE(success); // 3c. Let oldLen be oldLenDesc.[[Value]]. uint32_t old_len = 0; CHECK(old_len_desc.value()->ToArrayLength(&old_len)); // 3d. Let index be ToUint32(P). // (Already done above.) // 3e. (Assert) // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false, // return false. if (index >= old_len && old_len_desc.has_writable() && !old_len_desc.writable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, name)); } // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc). Maybe succeeded = OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw); // 3h. Assert: succeeded is not an abrupt completion. // In our case, if should_throw == kThrowOnError, it can be! // 3i. If succeeded is false, return false. if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded; // 3j. If index >= oldLen, then: if (index >= old_len) { // 3j i. Set oldLenDesc.[[Value]] to index + 1. old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1)); // 3j ii. Let succeeded be // OrdinaryDefineOwnProperty(A, "length", oldLenDesc). succeeded = OrdinaryDefineOwnProperty(isolate, o, isolate->factory()->length_string(), &old_len_desc, should_throw); // 3j iii. Assert: succeeded is true. DCHECK(succeeded.FromJust()); USE(succeeded); } // 3k. Return true. return Just(true); } // 4. Return OrdinaryDefineOwnProperty(A, P, Desc). return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw); } // Part of ES6 9.4.2.4 ArraySetLength. // static bool JSArray::AnythingToArrayLength(Isolate* isolate, Handle length_object, uint32_t* output) { // Fast path: check numbers and strings that can be converted directly // and unobservably. if (length_object->ToArrayLength(output)) return true; if (length_object->IsString() && Handle::cast(length_object)->AsArrayIndex(output)) { return true; } // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength". // 3. Let newLen be ToUint32(Desc.[[Value]]). Handle uint32_v; if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) { // 4. ReturnIfAbrupt(newLen). return false; } // 5. Let numberLen be ToNumber(Desc.[[Value]]). Handle number_v; if (!Object::ToNumber(isolate, length_object).ToHandle(&number_v)) { // 6. ReturnIfAbrupt(newLen). return false; } // 7. If newLen != numberLen, throw a RangeError exception. if (uint32_v->Number() != number_v->Number()) { Handle exception = isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength); isolate->Throw(*exception); return false; } CHECK(uint32_v->ToArrayLength(output)); return true; } // ES6 9.4.2.4 // static Maybe JSArray::ArraySetLength(Isolate* isolate, Handle a, PropertyDescriptor* desc, ShouldThrow should_throw) { // 1. If the [[Value]] field of Desc is absent, then if (!desc->has_value()) { // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc). return OrdinaryDefineOwnProperty( isolate, a, isolate->factory()->length_string(), desc, should_throw); } // 2. Let newLenDesc be a copy of Desc. // (Actual copying is not necessary.) PropertyDescriptor* new_len_desc = desc; // 3. - 7. Convert Desc.[[Value]] to newLen. uint32_t new_len = 0; if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) { DCHECK(isolate->has_pending_exception()); return Nothing(); } // 8. Set newLenDesc.[[Value]] to newLen. // (Done below, if needed.) // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length"). PropertyDescriptor old_len_desc; Maybe success = GetOwnPropertyDescriptor( isolate, a, isolate->factory()->length_string(), &old_len_desc); // 10. (Assert) DCHECK(success.FromJust()); USE(success); // 11. Let oldLen be oldLenDesc.[[Value]]. uint32_t old_len = 0; CHECK(old_len_desc.value()->ToArrayLength(&old_len)); // 12. If newLen >= oldLen, then if (new_len >= old_len) { // 8. Set newLenDesc.[[Value]] to newLen. // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc). new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len)); return OrdinaryDefineOwnProperty(isolate, a, isolate->factory()->length_string(), new_len_desc, should_throw); } // 13. If oldLenDesc.[[Writable]] is false, return false. if (!old_len_desc.writable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, isolate->factory()->length_string())); } // 14. If newLenDesc.[[Writable]] is absent or has the value true, // let newWritable be true. bool new_writable = false; if (!new_len_desc->has_writable() || new_len_desc->writable()) { new_writable = true; } else { // 15. Else, // 15a. Need to defer setting the [[Writable]] attribute to false in case // any elements cannot be deleted. // 15b. Let newWritable be false. (It's initialized as "false" anyway.) // 15c. Set newLenDesc.[[Writable]] to true. // (Not needed.) } // Most of steps 16 through 19 is implemented by JSArray::SetLength. JSArray::SetLength(a, new_len); // Steps 19d-ii, 20. if (!new_writable) { PropertyDescriptor readonly; readonly.set_writable(false); Maybe success = OrdinaryDefineOwnProperty( isolate, a, isolate->factory()->length_string(), &readonly, should_throw); DCHECK(success.FromJust()); USE(success); } uint32_t actual_new_len = 0; CHECK(a->length()->ToArrayLength(&actual_new_len)); // Steps 19d-v, 21. Return false if there were non-deletable elements. bool result = actual_new_len == new_len; if (!result) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kStrictDeleteProperty, isolate->factory()->NewNumberFromUint(actual_new_len - 1), a)); } return Just(result); } // ES6 9.5.6 // static Maybe JSProxy::DefineOwnProperty(Isolate* isolate, Handle proxy, Handle key, PropertyDescriptor* desc, ShouldThrow should_throw) { STACK_CHECK(isolate, Nothing()); if (key->IsSymbol() && Handle::cast(key)->IsPrivate()) { DCHECK(!Handle::cast(key)->IsPrivateField()); return JSProxy::SetPrivateSymbol(isolate, proxy, Handle::cast(key), desc, should_throw); } Handle trap_name = isolate->factory()->defineProperty_string(); // 1. Assert: IsPropertyKey(P) is true. DCHECK(key->IsName() || key->IsNumber()); // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle target(JSReceiver::cast(proxy->target()), isolate); // 6. Let trap be ? GetMethod(handler, "defineProperty"). Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle::cast(handler), trap_name), Nothing()); // 7. If trap is undefined, then: if (trap->IsUndefined(isolate)) { // 7a. Return target.[[DefineOwnProperty]](P, Desc). return JSReceiver::DefineOwnProperty(isolate, target, key, desc, should_throw); } // 8. Let descObj be FromPropertyDescriptor(Desc). Handle desc_obj = desc->ToObject(isolate); // 9. Let booleanTrapResult be // ToBoolean(? Call(trap, handler, «target, P, descObj»)). Handle property_name = key->IsName() ? Handle::cast(key) : Handle::cast(isolate->factory()->NumberToString(key)); // Do not leak private property names. DCHECK(!property_name->IsPrivate()); Handle trap_result_obj; Handle args[] = {target, property_name, desc_obj}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); // 10. If booleanTrapResult is false, return false. if (!trap_result_obj->BooleanValue(isolate)) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, property_name)); } // 11. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe target_found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc); MAYBE_RETURN(target_found, Nothing()); // 12. Let extensibleTarget be ? IsExtensible(target). Maybe maybe_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN(maybe_extensible, Nothing()); bool extensible_target = maybe_extensible.FromJust(); // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] // is false, then: // 13a. Let settingConfigFalse be true. // 14. Else let settingConfigFalse be false. bool setting_config_false = desc->has_configurable() && !desc->configurable(); // 15. If targetDesc is undefined, then if (!target_found.FromJust()) { // 15a. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonExtensible, property_name)); return Nothing(); } // 15b. If settingConfigFalse is true, throw a TypeError exception. if (setting_config_false) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name)); return Nothing(); } } else { // 16. Else targetDesc is not undefined, // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, // targetDesc) is false, throw a TypeError exception. Maybe valid = IsCompatiblePropertyDescriptor(isolate, extensible_target, desc, &target_desc, property_name, kDontThrow); MAYBE_RETURN(valid, Nothing()); if (!valid.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyIncompatible, property_name)); return Nothing(); } // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is // true, throw a TypeError exception. if (setting_config_false && target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name)); return Nothing(); } } // 17. Return true. return Just(true); } // static Maybe JSProxy::SetPrivateSymbol(Isolate* isolate, Handle proxy, Handle private_name, PropertyDescriptor* desc, ShouldThrow should_throw) { DCHECK(!private_name->IsPrivateField()); // Despite the generic name, this can only add private data properties. if (!PropertyDescriptor::IsDataDescriptor(desc) || desc->ToAttributes() != DONT_ENUM) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyPrivate)); } DCHECK(proxy->map()->is_dictionary_map()); Handle value = desc->has_value() ? desc->value() : Handle::cast(isolate->factory()->undefined_value()); LookupIterator it(proxy, private_name, proxy); if (it.IsFound()) { DCHECK_EQ(LookupIterator::DATA, it.state()); DCHECK_EQ(DONT_ENUM, it.property_attributes()); it.WriteDataValue(value, false); return Just(true); } Handle dict(proxy->property_dictionary(), isolate); PropertyDetails details(kData, DONT_ENUM, PropertyCellType::kNoCell); Handle result = NameDictionary::Add(isolate, dict, private_name, value, details); if (!dict.is_identical_to(result)) proxy->SetProperties(*result); return Just(true); } // static Maybe JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate, Handle object, Handle key, PropertyDescriptor* desc) { bool success = false; DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey... LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, key, &success, LookupIterator::OWN); DCHECK(success); // ...so creating a LookupIterator can't fail. return GetOwnPropertyDescriptor(&it, desc); } namespace { Maybe GetPropertyDescriptorWithInterceptor(LookupIterator* it, PropertyDescriptor* desc) { if (it->state() == LookupIterator::ACCESS_CHECK) { if (it->HasAccess()) { it->Next(); } else if (!JSObject::AllCanRead(it) || it->state() != LookupIterator::INTERCEPTOR) { it->Restart(); return Just(false); } } if (it->state() != LookupIterator::INTERCEPTOR) return Just(false); Isolate* isolate = it->isolate(); Handle interceptor = it->GetInterceptor(); if (interceptor->descriptor()->IsUndefined(isolate)) return Just(false); Handle result; Handle holder = it->GetHolder(); Handle receiver = it->GetReceiver(); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver, Object::ConvertReceiver(isolate, receiver), Nothing()); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder, kDontThrow); if (it->IsElement()) { result = args.CallIndexedDescriptor(interceptor, it->index()); } else { result = args.CallNamedDescriptor(interceptor, it->name()); } if (!result.is_null()) { // Request successfully intercepted, try to set the property // descriptor. Utils::ApiCheck( PropertyDescriptor::ToPropertyDescriptor(isolate, result, desc), it->IsElement() ? "v8::IndexedPropertyDescriptorCallback" : "v8::NamedPropertyDescriptorCallback", "Invalid property descriptor."); return Just(true); } it->Next(); return Just(false); } } // namespace // ES6 9.1.5.1 // Returns true on success, false if the property didn't exist, nothing if // an exception was thrown. // static Maybe JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it, PropertyDescriptor* desc) { Isolate* isolate = it->isolate(); // "Virtual" dispatch. if (it->IsFound() && it->GetHolder()->IsJSProxy()) { return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder(), it->GetName(), desc); } Maybe intercepted = GetPropertyDescriptorWithInterceptor(it, desc); MAYBE_RETURN(intercepted, Nothing()); if (intercepted.FromJust()) { return Just(true); } // Request was not intercepted, continue as normal. // 1. (Assert) // 2. If O does not have an own property with key P, return undefined. Maybe maybe = JSObject::GetPropertyAttributes(it); MAYBE_RETURN(maybe, Nothing()); PropertyAttributes attrs = maybe.FromJust(); if (attrs == ABSENT) return Just(false); DCHECK(!isolate->has_pending_exception()); // 3. Let D be a newly created Property Descriptor with no fields. DCHECK(desc->is_empty()); // 4. Let X be O's own property whose key is P. // 5. If X is a data property, then bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR && it->GetAccessors()->IsAccessorPair(); if (!is_accessor_pair) { // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute. Handle value; if (!Object::GetProperty(it).ToHandle(&value)) { DCHECK(isolate->has_pending_exception()); return Nothing(); } desc->set_value(value); // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute desc->set_writable((attrs & READ_ONLY) == 0); } else { // 6. Else X is an accessor property, so Handle accessors = Handle::cast(it->GetAccessors()); // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute. desc->set_get( AccessorPair::GetComponent(isolate, accessors, ACCESSOR_GETTER)); // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute. desc->set_set( AccessorPair::GetComponent(isolate, accessors, ACCESSOR_SETTER)); } // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute. desc->set_enumerable((attrs & DONT_ENUM) == 0); // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute. desc->set_configurable((attrs & DONT_DELETE) == 0); // 9. Return D. DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) != PropertyDescriptor::IsDataDescriptor(desc)); return Just(true); } // ES6 9.5.5 // static Maybe JSProxy::GetOwnPropertyDescriptor(Isolate* isolate, Handle proxy, Handle name, PropertyDescriptor* desc) { DCHECK(!name->IsPrivate()); STACK_CHECK(isolate, Nothing()); Handle trap_name = isolate->factory()->getOwnPropertyDescriptor_string(); // 1. (Assert) // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle target(JSReceiver::cast(proxy->target()), isolate); // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor"). Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle::cast(handler), trap_name), Nothing()); // 7. If trap is undefined, then if (trap->IsUndefined(isolate)) { // 7a. Return target.[[GetOwnProperty]](P). return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc); } // 8. Let trapResultObj be ? Call(trap, handler, «target, P»). Handle trap_result_obj; Handle args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a // TypeError exception. if (!trap_result_obj->IsJSReceiver() && !trap_result_obj->IsUndefined(isolate)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name)); return Nothing(); } // 10. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(found, Nothing()); // 11. If trapResultObj is undefined, then if (trap_result_obj->IsUndefined(isolate)) { // 11a. If targetDesc is undefined, return undefined. if (!found.FromJust()) return Just(false); // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError // exception. if (!target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name)); return Nothing(); } // 11c. Let extensibleTarget be ? IsExtensible(target). Maybe extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing()); // 11d. (Assert) // 11e. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name)); return Nothing(); } // 11f. Return undefined. return Just(false); } // 12. Let extensibleTarget be ? IsExtensible(target). Maybe extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing()); // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj). if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj, desc)) { DCHECK(isolate->has_pending_exception()); return Nothing(); } // 14. Call CompletePropertyDescriptor(resultDesc). PropertyDescriptor::CompletePropertyDescriptor(isolate, desc); // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget, // resultDesc, targetDesc). Maybe valid = IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(), desc, &target_desc, name, kDontThrow); MAYBE_RETURN(valid, Nothing()); // 16. If valid is false, throw a TypeError exception. if (!valid.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name)); return Nothing(); } // 17. If resultDesc.[[Configurable]] is false, then if (!desc->configurable()) { // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true: if (target_desc.is_empty() || target_desc.configurable()) { // 17a i. Throw a TypeError exception. isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable, name)); return Nothing(); } } // 18. Return resultDesc. return Just(true); } bool JSObject::ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object) { Isolate* isolate = GetIsolate(); if (IsObjectElementsKind(kind) || kind == FAST_STRING_WRAPPER_ELEMENTS) { int length = IsJSArray() ? Smi::ToInt(JSArray::cast(this)->length()) : elements->length(); for (int i = 0; i < length; ++i) { Object* element = elements->get(i); if (!element->IsTheHole(isolate) && element == object) return true; } } else { DCHECK(kind == DICTIONARY_ELEMENTS || kind == SLOW_STRING_WRAPPER_ELEMENTS); Object* key = NumberDictionary::cast(elements)->SlowReverseLookup(object); if (!key->IsUndefined(isolate)) return true; } return false; } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = GetHeap(); DisallowHeapAllocation no_allocation; // Is the object the constructor for this object? if (map_of_this->GetConstructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined(heap->isolate())) { return true; } // Check if the object is among the indexed properties. ElementsKind kind = GetElementsKind(); switch (kind) { // Raw pixels and external arrays do not reference other // objects. #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \ case TYPE##_ELEMENTS: \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case PACKED_DOUBLE_ELEMENTS: case HOLEY_DOUBLE_ELEMENTS: break; case PACKED_SMI_ELEMENTS: case HOLEY_SMI_ELEMENTS: break; case PACKED_ELEMENTS: case HOLEY_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: { FixedArray* elements = FixedArray::cast(this->elements()); if (ReferencesObjectFromElements(elements, kind, obj)) return true; break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { SloppyArgumentsElements* elements = SloppyArgumentsElements::cast(this->elements()); // Check the mapped parameters. for (uint32_t i = 0; i < elements->parameter_map_length(); ++i) { Object* value = elements->get_mapped_entry(i); if (!value->IsTheHole(heap->isolate()) && value == obj) return true; } // Check the arguments. FixedArray* arguments = elements->arguments(); kind = arguments->IsNumberDictionary() ? DICTIONARY_ELEMENTS : HOLEY_ELEMENTS; if (ReferencesObjectFromElements(arguments, kind, obj)) return true; break; } case NO_ELEMENTS: break; } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. Map* arguments_map = heap->isolate()->context()->native_context()->sloppy_arguments_map(); JSFunction* arguments_function = JSFunction::cast(arguments_map->GetConstructor()); // Get the context and don't check if it is the native context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsNativeContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->GetConstructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension (if any) if it can have references. if (context->has_extension() && !context->IsCatchContext() && !context->IsModuleContext()) { // With harmony scoping, a JSFunction may have a script context. // TODO(mvstanton): walk into the ScopeInfo. if (context->IsScriptContext()) { return false; } return context->extension_object()->ReferencesObject(obj); } } // No references to object. return false; } Maybe JSReceiver::SetIntegrityLevel(Handle receiver, IntegrityLevel level, ShouldThrow should_throw) { DCHECK(level == SEALED || level == FROZEN); if (receiver->IsJSObject()) { Handle object = Handle::cast(receiver); if (!object->HasSloppyArgumentsElements() && !object->IsJSModuleNamespace()) { // Fast path. // Prevent memory leaks by not adding unnecessary transitions. Maybe test = JSObject::TestIntegrityLevel(object, level); MAYBE_RETURN(test, Nothing()); if (test.FromJust()) return test; if (level == SEALED) { return JSObject::PreventExtensionsWithTransition(object, should_throw); } else { return JSObject::PreventExtensionsWithTransition(object, should_throw); } } } Isolate* isolate = receiver->GetIsolate(); MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw), Nothing()); Handle keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing()); PropertyDescriptor no_conf; no_conf.set_configurable(false); PropertyDescriptor no_conf_no_write; no_conf_no_write.set_configurable(false); no_conf_no_write.set_writable(false); if (level == SEALED) { for (int i = 0; i < keys->length(); ++i) { Handle key(keys->get(i), isolate); MAYBE_RETURN( DefineOwnProperty(isolate, receiver, key, &no_conf, kThrowOnError), Nothing()); } return Just(true); } for (int i = 0; i < keys->length(); ++i) { Handle key(keys->get(i), isolate); PropertyDescriptor current_desc; Maybe owned = JSReceiver::GetOwnPropertyDescriptor( isolate, receiver, key, ¤t_desc); MAYBE_RETURN(owned, Nothing()); if (owned.FromJust()) { PropertyDescriptor desc = PropertyDescriptor::IsAccessorDescriptor(¤t_desc) ? no_conf : no_conf_no_write; MAYBE_RETURN( DefineOwnProperty(isolate, receiver, key, &desc, kThrowOnError), Nothing()); } } return Just(true); } namespace { template bool TestDictionaryPropertiesIntegrityLevel(Dictionary* dict, ReadOnlyRoots roots, PropertyAttributes level) { DCHECK(level == SEALED || level == FROZEN); uint32_t capacity = dict->Capacity(); for (uint32_t i = 0; i < capacity; i++) { Object* key; if (!dict->ToKey(roots, i, &key)) continue; if (key->FilterKey(ALL_PROPERTIES)) continue; PropertyDetails details = dict->DetailsAt(i); if (details.IsConfigurable()) return false; if (level == FROZEN && details.kind() == kData && !details.IsReadOnly()) { return false; } } return true; } bool TestFastPropertiesIntegrityLevel(Map* map, PropertyAttributes level) { DCHECK(level == SEALED || level == FROZEN); DCHECK(!map->IsCustomElementsReceiverMap()); DCHECK(!map->is_dictionary_map()); DescriptorArray* descriptors = map->instance_descriptors(); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { if (descriptors->GetKey(i)->IsPrivate()) continue; PropertyDetails details = descriptors->GetDetails(i); if (details.IsConfigurable()) return false; if (level == FROZEN && details.kind() == kData && !details.IsReadOnly()) { return false; } } return true; } bool TestPropertiesIntegrityLevel(JSObject* object, PropertyAttributes level) { DCHECK(!object->map()->IsCustomElementsReceiverMap()); if (object->HasFastProperties()) { return TestFastPropertiesIntegrityLevel(object->map(), level); } return TestDictionaryPropertiesIntegrityLevel( object->property_dictionary(), object->GetReadOnlyRoots(), level); } bool TestElementsIntegrityLevel(JSObject* object, PropertyAttributes level) { DCHECK(!object->HasSloppyArgumentsElements()); ElementsKind kind = object->GetElementsKind(); if (IsDictionaryElementsKind(kind)) { return TestDictionaryPropertiesIntegrityLevel( NumberDictionary::cast(object->elements()), object->GetReadOnlyRoots(), level); } ElementsAccessor* accessor = ElementsAccessor::ForKind(kind); // Only DICTIONARY_ELEMENTS and SLOW_SLOPPY_ARGUMENTS_ELEMENTS have // PropertyAttributes so just test if empty return accessor->NumberOfElements(object) == 0; } bool FastTestIntegrityLevel(JSObject* object, PropertyAttributes level) { DCHECK(!object->map()->IsCustomElementsReceiverMap()); return !object->map()->is_extensible() && TestElementsIntegrityLevel(object, level) && TestPropertiesIntegrityLevel(object, level); } Maybe GenericTestIntegrityLevel(Handle receiver, PropertyAttributes level) { DCHECK(level == SEALED || level == FROZEN); Maybe extensible = JSReceiver::IsExtensible(receiver); MAYBE_RETURN(extensible, Nothing()); if (extensible.FromJust()) return Just(false); Isolate* isolate = receiver->GetIsolate(); Handle keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing()); for (int i = 0; i < keys->length(); ++i) { Handle key(keys->get(i), isolate); PropertyDescriptor current_desc; Maybe owned = JSReceiver::GetOwnPropertyDescriptor( isolate, receiver, key, ¤t_desc); MAYBE_RETURN(owned, Nothing()); if (owned.FromJust()) { if (current_desc.configurable()) return Just(false); if (level == FROZEN && PropertyDescriptor::IsDataDescriptor(¤t_desc) && current_desc.writable()) { return Just(false); } } } return Just(true); } } // namespace Maybe JSReceiver::TestIntegrityLevel(Handle receiver, IntegrityLevel level) { if (!receiver->map()->IsCustomElementsReceiverMap()) { return JSObject::TestIntegrityLevel(Handle::cast(receiver), level); } return GenericTestIntegrityLevel(receiver, level); } Maybe JSObject::TestIntegrityLevel(Handle object, IntegrityLevel level) { if (!object->map()->IsCustomElementsReceiverMap() && !object->HasSloppyArgumentsElements()) { return Just(FastTestIntegrityLevel(*object, level)); } return GenericTestIntegrityLevel(Handle::cast(object), level); } Maybe JSReceiver::PreventExtensions(Handle object, ShouldThrow should_throw) { if (object->IsJSProxy()) { return JSProxy::PreventExtensions(Handle::cast(object), should_throw); } DCHECK(object->IsJSObject()); return JSObject::PreventExtensions(Handle::cast(object), should_throw); } Maybe JSProxy::PreventExtensions(Handle proxy, ShouldThrow should_throw) { Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(isolate, Nothing()); Factory* factory = isolate->factory(); Handle trap_name = factory->preventExtensions_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } Handle target(JSReceiver::cast(proxy->target()), isolate); Handle handler(JSReceiver::cast(proxy->handler()), isolate); Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing()); if (trap->IsUndefined(isolate)) { return JSReceiver::PreventExtensions(target, should_throw); } Handle trap_result; Handle args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); if (!trap_result->BooleanValue(isolate)) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name)); } // Enforce the invariant. Maybe target_result = JSReceiver::IsExtensible(target); MAYBE_RETURN(target_result, Nothing()); if (target_result.FromJust()) { isolate->Throw(*factory->NewTypeError( MessageTemplate::kProxyPreventExtensionsExtensible)); return Nothing(); } return Just(true); } Maybe JSObject::PreventExtensions(Handle object, ShouldThrow should_throw) { Isolate* isolate = object->GetIsolate(); if (!object->HasSloppyArgumentsElements()) { return PreventExtensionsWithTransition(object, should_throw); } if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context(), isolate), object)) { isolate->ReportFailedAccessCheck(object); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoAccess)); } if (!object->map()->is_extensible()) return Just(true); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return Just(true); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensions(PrototypeIterator::GetCurrent(iter), should_throw); } if (object->map()->has_named_interceptor() || object->map()->has_indexed_interceptor()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kCannotPreventExt)); } if (!object->HasFixedTypedArrayElements()) { // If there are fast elements we normalize. Handle dictionary = NormalizeElements(object); DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements()); // Make sure that we never go back to fast case. object->RequireSlowElements(*dictionary); } // Do a map transition, other objects with this map may still // be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle new_map = Map::Copy(isolate, handle(object->map(), isolate), "PreventExtensions"); new_map->set_is_extensible(false); JSObject::MigrateToMap(object, new_map); DCHECK(!object->map()->is_extensible()); return Just(true); } Maybe JSReceiver::IsExtensible(Handle object) { if (object->IsJSProxy()) { return JSProxy::IsExtensible(Handle::cast(object)); } return Just(JSObject::IsExtensible(Handle::cast(object))); } Maybe JSProxy::IsExtensible(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(isolate, Nothing()); Factory* factory = isolate->factory(); Handle trap_name = factory->isExtensible_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing(); } Handle target(JSReceiver::cast(proxy->target()), isolate); Handle handler(JSReceiver::cast(proxy->handler()), isolate); Handle trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing()); if (trap->IsUndefined(isolate)) { return JSReceiver::IsExtensible(target); } Handle trap_result; Handle args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing()); // Enforce the invariant. Maybe target_result = JSReceiver::IsExtensible(target); MAYBE_RETURN(target_result, Nothing()); if (target_result.FromJust() != trap_result->BooleanValue(isolate)) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent, factory->ToBoolean(target_result.FromJust()))); return Nothing(); } return target_result; } bool JSObject::IsExtensible(Handle object) { Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context(), isolate), object)) { return true; } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, *object); if (iter.IsAtEnd()) return false; DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return iter.GetCurrent()->map()->is_extensible(); } return object->map()->is_extensible(); } namespace { template void ApplyAttributesToDictionary(Isolate* isolate, ReadOnlyRoots roots, Handle dictionary, const PropertyAttributes attributes) { int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k; if (!dictionary->ToKey(roots, i, &k)) continue; if (k->FilterKey(ALL_PROPERTIES)) continue; PropertyDetails details = dictionary->DetailsAt(i); int attrs = attributes; // READ_ONLY is an invalid attribute for JS setters/getters. if ((attributes & READ_ONLY) && details.kind() == kAccessor) { Object* v = dictionary->ValueAt(i); if (v->IsAccessorPair()) attrs &= ~READ_ONLY; } details = details.CopyAddAttributes(static_cast(attrs)); dictionary->DetailsAtPut(isolate, i, details); } } } // namespace template Maybe JSObject::PreventExtensionsWithTransition( Handle object, ShouldThrow should_throw) { STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN); // Sealing/freezing sloppy arguments or namespace objects should be handled // elsewhere. DCHECK(!object->HasSloppyArgumentsElements()); DCHECK_IMPLIES(object->IsJSModuleNamespace(), attrs == NONE); Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context(), isolate), object)) { isolate->ReportFailedAccessCheck(object); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoAccess)); } if (attrs == NONE && !object->map()->is_extensible()) return Just(true); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return Just(true); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensionsWithTransition( PrototypeIterator::GetCurrent(iter), should_throw); } if (object->map()->has_named_interceptor() || object->map()->has_indexed_interceptor()) { MessageTemplate::Template message = MessageTemplate::kNone; switch (attrs) { case NONE: message = MessageTemplate::kCannotPreventExt; break; case SEALED: message = MessageTemplate::kCannotSeal; break; case FROZEN: message = MessageTemplate::kCannotFreeze; break; } RETURN_FAILURE(isolate, should_throw, NewTypeError(message)); } Handle new_element_dictionary; if (!object->HasFixedTypedArrayElements() && !object->HasDictionaryElements() && !object->HasSlowStringWrapperElements()) { int length = object->IsJSArray() ? Smi::ToInt(Handle::cast(object)->length()) : object->elements()->length(); new_element_dictionary = length == 0 ? isolate->factory()->empty_slow_element_dictionary() : object->GetElementsAccessor()->Normalize(object); } Handle transition_marker; if (attrs == NONE) { transition_marker = isolate->factory()->nonextensible_symbol(); } else if (attrs == SEALED) { transition_marker = isolate->factory()->sealed_symbol(); } else { DCHECK(attrs == FROZEN); transition_marker = isolate->factory()->frozen_symbol(); } Handle old_map(object->map(), isolate); TransitionsAccessor transitions(isolate, old_map); Map* transition = transitions.SearchSpecial(*transition_marker); if (transition != nullptr) { Handle transition_map(transition, isolate); DCHECK(transition_map->has_dictionary_elements() || transition_map->has_fixed_typed_array_elements() || transition_map->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS); DCHECK(!transition_map->is_extensible()); JSObject::MigrateToMap(object, transition_map); } else if (transitions.CanHaveMoreTransitions()) { // Create a new descriptor array with the appropriate property attributes Handle new_map = Map::CopyForPreventExtensions( isolate, old_map, attrs, transition_marker, "CopyForPreventExtensions"); JSObject::MigrateToMap(object, new_map); } else { DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map()); // Slow path: need to normalize properties for safety NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "SlowPreventExtensions"); // Create a new map, since other objects with this map may be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle new_map = Map::Copy(isolate, handle(object->map(), isolate), "SlowCopyForPreventExtensions"); new_map->set_is_extensible(false); if (!new_element_dictionary.is_null()) { ElementsKind new_kind = IsStringWrapperElementsKind(old_map->elements_kind()) ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; new_map->set_elements_kind(new_kind); } JSObject::MigrateToMap(object, new_map); if (attrs != NONE) { ReadOnlyRoots roots(isolate); if (object->IsJSGlobalObject()) { Handle dictionary( JSGlobalObject::cast(*object)->global_dictionary(), isolate); ApplyAttributesToDictionary(isolate, roots, dictionary, attrs); } else { Handle dictionary(object->property_dictionary(), isolate); ApplyAttributesToDictionary(isolate, roots, dictionary, attrs); } } } // Both seal and preventExtensions always go through without modifications to // typed array elements. Freeze works only if there are no actual elements. if (object->HasFixedTypedArrayElements()) { if (attrs == FROZEN && JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kCannotFreezeArrayBufferView)); return Nothing(); } return Just(true); } DCHECK(object->map()->has_dictionary_elements() || object->map()->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS); if (!new_element_dictionary.is_null()) { object->set_elements(*new_element_dictionary); } if (object->elements() != ReadOnlyRoots(isolate).empty_slow_element_dictionary()) { Handle dictionary(object->element_dictionary(), isolate); // Make sure we never go back to the fast case object->RequireSlowElements(*dictionary); if (attrs != NONE) { ApplyAttributesToDictionary(isolate, ReadOnlyRoots(isolate), dictionary, attrs); } } return Just(true); } Handle JSObject::FastPropertyAt(Handle object, Representation representation, FieldIndex index) { Isolate* isolate = object->GetIsolate(); if (object->IsUnboxedDoubleField(index)) { double value = object->RawFastDoublePropertyAt(index); return isolate->factory()->NewHeapNumber(value); } Handle raw_value(object->RawFastPropertyAt(index), isolate); return Object::WrapForRead(isolate, raw_value, representation); } // static MaybeHandle JSReceiver::ToPrimitive(Handle receiver, ToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle exotic_to_prim; ASSIGN_RETURN_ON_EXCEPTION( isolate, exotic_to_prim, GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object); if (!exotic_to_prim->IsUndefined(isolate)) { Handle hint_string = isolate->factory()->ToPrimitiveHintString(hint); Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string), Object); if (result->IsPrimitive()) return result; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString) ? OrdinaryToPrimitiveHint::kString : OrdinaryToPrimitiveHint::kNumber); } // static MaybeHandle JSReceiver::OrdinaryToPrimitive( Handle receiver, OrdinaryToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle method_names[2]; switch (hint) { case OrdinaryToPrimitiveHint::kNumber: method_names[0] = isolate->factory()->valueOf_string(); method_names[1] = isolate->factory()->toString_string(); break; case OrdinaryToPrimitiveHint::kString: method_names[0] = isolate->factory()->toString_string(); method_names[1] = isolate->factory()->valueOf_string(); break; } for (Handle name : method_names) { Handle method; ASSIGN_RETURN_ON_EXCEPTION(isolate, method, JSReceiver::GetProperty(isolate, receiver, name), Object); if (method->IsCallable()) { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, method, receiver, 0, nullptr), Object); if (result->IsPrimitive()) return result; } } THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } // TODO(cbruni/jkummerow): Consider moving this into elements.cc. bool JSObject::HasEnumerableElements() { // TODO(cbruni): cleanup JSObject* object = this; switch (object->GetElementsKind()) { case PACKED_SMI_ELEMENTS: case PACKED_ELEMENTS: case PACKED_DOUBLE_ELEMENTS: { int length = object->IsJSArray() ? Smi::ToInt(JSArray::cast(object)->length()) : object->elements()->length(); return length > 0; } case HOLEY_SMI_ELEMENTS: case HOLEY_ELEMENTS: { FixedArray* elements = FixedArray::cast(object->elements()); int length = object->IsJSArray() ? Smi::ToInt(JSArray::cast(object)->length()) : elements->length(); Isolate* isolate = GetIsolate(); for (int i = 0; i < length; i++) { if (!elements->is_the_hole(isolate, i)) return true; } return false; } case HOLEY_DOUBLE_ELEMENTS: { int length = object->IsJSArray() ? Smi::ToInt(JSArray::cast(object)->length()) : object->elements()->length(); // Zero-length arrays would use the empty FixedArray... if (length == 0) return false; // ...so only cast to FixedDoubleArray otherwise. FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements()); for (int i = 0; i < length; i++) { if (!elements->is_the_hole(i)) return true; } return false; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { int length = object->elements()->length(); return length > 0; } case DICTIONARY_ELEMENTS: { NumberDictionary* elements = NumberDictionary::cast(object->elements()); return elements->NumberOfEnumerableProperties() > 0; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: // We're approximating non-empty arguments objects here. return true; case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: if (String::cast(JSValue::cast(object)->value())->length() > 0) { return true; } return object->elements()->length() > 0; case NO_ELEMENTS: return false; } UNREACHABLE(); } int Map::NumberOfEnumerableProperties() const { int result = 0; DescriptorArray* descs = instance_descriptors(); int limit = NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if ((descs->GetDetails(i).attributes() & ONLY_ENUMERABLE) == 0 && !descs->GetKey(i)->FilterKey(ENUMERABLE_STRINGS)) { result++; } } return result; } int Map::NextFreePropertyIndex() const { int free_index = 0; int number_of_own_descriptors = NumberOfOwnDescriptors(); DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { PropertyDetails details = descs->GetDetails(i); if (details.location() == kField) { int candidate = details.field_index() + details.field_width_in_words(); if (candidate > free_index) free_index = candidate; } } return free_index; } bool Map::OnlyHasSimpleProperties() const { // Wrapped string elements aren't explicitly stored in the elements backing // store, but are loaded indirectly from the underlying string. return !IsStringWrapperElementsKind(elements_kind()) && !IsSpecialReceiverMap() && !has_hidden_prototype() && !is_dictionary_map(); } V8_WARN_UNUSED_RESULT Maybe FastGetOwnValuesOrEntries( Isolate* isolate, Handle receiver, bool get_entries, Handle* result) { Handle map(JSReceiver::cast(*receiver)->map(), isolate); if (!map->IsJSObjectMap()) return Just(false); if (!map->OnlyHasSimpleProperties()) return Just(false); Handle object(JSObject::cast(*receiver), isolate); Handle descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); int number_of_own_elements = object->GetElementsAccessor()->GetCapacity(*object, object->elements()); Handle values_or_entries = isolate->factory()->NewFixedArray( number_of_own_descriptors + number_of_own_elements); int count = 0; if (object->elements() != ReadOnlyRoots(isolate).empty_fixed_array()) { MAYBE_RETURN(object->GetElementsAccessor()->CollectValuesOrEntries( isolate, object, values_or_entries, get_entries, &count, ENUMERABLE_STRINGS), Nothing()); } bool stable = object->map() == *map; for (int index = 0; index < number_of_own_descriptors; index++) { Handle next_key(descriptors->GetKey(index), isolate); if (!next_key->IsString()) continue; Handle prop_value; // Directly decode from the descriptor array if |from| did not change shape. if (stable) { PropertyDetails details = descriptors->GetDetails(index); if (!details.IsEnumerable()) continue; if (details.kind() == kData) { if (details.location() == kDescriptor) { prop_value = handle(descriptors->GetStrongValue(index), isolate); } else { Representation representation = details.representation(); FieldIndex field_index = FieldIndex::ForDescriptor(*map, index); prop_value = JSObject::FastPropertyAt(object, representation, field_index); } } else { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, JSReceiver::GetProperty(isolate, object, next_key), Nothing()); stable = object->map() == *map; } } else { // If the map did change, do a slower lookup. We are still guaranteed that // the object has a simple shape, and that the key is a name. LookupIterator it(isolate, object, next_key, LookupIterator::OWN_SKIP_INTERCEPTOR); if (!it.IsFound()) continue; DCHECK(it.state() == LookupIterator::DATA || it.state() == LookupIterator::ACCESSOR); if (!it.IsEnumerable()) continue; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, Object::GetProperty(&it), Nothing()); } if (get_entries) { prop_value = MakeEntryPair(isolate, next_key, prop_value); } values_or_entries->set(count, *prop_value); count++; } DCHECK_LE(count, values_or_entries->length()); *result = FixedArray::ShrinkOrEmpty(isolate, values_or_entries, count); return Just(true); } MaybeHandle GetOwnValuesOrEntries(Isolate* isolate, Handle object, PropertyFilter filter, bool try_fast_path, bool get_entries) { Handle values_or_entries; if (try_fast_path && filter == ENUMERABLE_STRINGS) { Maybe fast_values_or_entries = FastGetOwnValuesOrEntries( isolate, object, get_entries, &values_or_entries); if (fast_values_or_entries.IsNothing()) return MaybeHandle(); if (fast_values_or_entries.FromJust()) return values_or_entries; } PropertyFilter key_filter = static_cast(filter & ~ONLY_ENUMERABLE); Handle keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, key_filter, GetKeysConversion::kConvertToString), MaybeHandle()); values_or_entries = isolate->factory()->NewFixedArray(keys->length()); int length = 0; for (int i = 0; i < keys->length(); ++i) { Handle key = Handle::cast(handle(keys->get(i), isolate)); if (filter & ONLY_ENUMERABLE) { PropertyDescriptor descriptor; Maybe did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor( isolate, object, key, &descriptor); MAYBE_RETURN(did_get_descriptor, MaybeHandle()); if (!did_get_descriptor.FromJust() || !descriptor.enumerable()) continue; } Handle value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, value, JSReceiver::GetPropertyOrElement(isolate, object, key), MaybeHandle()); if (get_entries) { Handle entry_storage = isolate->factory()->NewUninitializedFixedArray(2); entry_storage->set(0, *key); entry_storage->set(1, *value); value = isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } values_or_entries->set(length, *value); length++; } DCHECK_LE(length, values_or_entries->length()); return FixedArray::ShrinkOrEmpty(isolate, values_or_entries, length); } MaybeHandle JSReceiver::GetOwnValues(Handle object, PropertyFilter filter, bool try_fast_path) { return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, try_fast_path, false); } MaybeHandle JSReceiver::GetOwnEntries(Handle object, PropertyFilter filter, bool try_fast_path) { return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, try_fast_path, true); } Handle JSReceiver::GetOwnElementIndices(Isolate* isolate, Handle receiver, Handle object) { KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES); accumulator.CollectOwnElementIndices(receiver, object); Handle keys = accumulator.GetKeys(GetKeysConversion::kKeepNumbers); DCHECK(keys->ContainsSortedNumbers()); return keys; } bool Map::DictionaryElementsInPrototypeChainOnly(Isolate* isolate) { if (IsDictionaryElementsKind(elements_kind())) { return false; } for (PrototypeIterator iter(isolate, this); !iter.IsAtEnd(); iter.Advance()) { // Be conservative, don't walk into proxies. if (iter.GetCurrent()->IsJSProxy()) return true; // String wrappers have non-configurable, non-writable elements. if (iter.GetCurrent()->IsStringWrapper()) return true; JSObject* current = iter.GetCurrent(); if (current->HasDictionaryElements() && current->element_dictionary()->requires_slow_elements()) { return true; } if (current->HasSlowArgumentsElements()) { FixedArray* parameter_map = FixedArray::cast(current->elements()); Object* arguments = parameter_map->get(1); if (NumberDictionary::cast(arguments)->requires_slow_elements()) { return true; } } } return false; } MaybeHandle JSObject::DefineAccessor(Handle object, Handle name, Handle getter, Handle setter, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); return DefineAccessor(&it, getter, setter, attributes); } MaybeHandle JSObject::DefineAccessor(LookupIterator* it, Handle getter, Handle setter, PropertyAttributes attributes) { Isolate* isolate = it->isolate(); it->UpdateProtector(); if (it->state() == LookupIterator::ACCESS_CHECK) { if (!it->HasAccess()) { isolate->ReportFailedAccessCheck(it->GetHolder()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } it->Next(); } Handle object = Handle::cast(it->GetReceiver()); // Ignore accessors on typed arrays. if (it->IsElement() && object->HasFixedTypedArrayElements()) { return it->factory()->undefined_value(); } DCHECK(getter->IsCallable() || getter->IsUndefined(isolate) || getter->IsNull(isolate) || getter->IsFunctionTemplateInfo()); DCHECK(setter->IsCallable() || setter->IsUndefined(isolate) || setter->IsNull(isolate) || setter->IsFunctionTemplateInfo()); it->TransitionToAccessorProperty(getter, setter, attributes); return isolate->factory()->undefined_value(); } MaybeHandle JSObject::SetAccessor(Handle object, Handle name, Handle info, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that // the FailedAccessCheckCallbackFunction doesn't throw an exception. // // TODO(verwaest): Force throw an exception if the callback doesn't, so we can // remove reliance on default return values. if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(object); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return it.factory()->undefined_value(); } it.Next(); } // Ignore accessors on typed arrays. if (it.IsElement() && object->HasFixedTypedArrayElements()) { return it.factory()->undefined_value(); } CHECK(GetPropertyAttributes(&it).IsJust()); // ES5 forbids turning a property into an accessor if it's not // configurable. See 8.6.1 (Table 5). if (it.IsFound() && !it.IsConfigurable()) { return it.factory()->undefined_value(); } it.TransitionToAccessorPair(info, attributes); return object; } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { int number_of_own_descriptors = map()->NumberOfOwnDescriptors(); DescriptorArray* descs = map()->instance_descriptors(); bool value_is_number = value->IsNumber(); for (int i = 0; i < number_of_own_descriptors; i++) { PropertyDetails details = descs->GetDetails(i); if (details.location() == kField) { DCHECK_EQ(kData, details.kind()); FieldIndex field_index = FieldIndex::ForDescriptor(map(), i); if (IsUnboxedDoubleField(field_index)) { if (value_is_number) { double property = RawFastDoublePropertyAt(field_index); if (property == value->Number()) { return descs->GetKey(i); } } } else { Object* property = RawFastPropertyAt(field_index); if (field_index.is_double()) { DCHECK(property->IsMutableHeapNumber()); if (value_is_number && property->Number() == value->Number()) { return descs->GetKey(i); } } else if (property == value) { return descs->GetKey(i); } } } else { DCHECK_EQ(kDescriptor, details.location()); if (details.kind() == kData) { if (descs->GetStrongValue(i) == value) { return descs->GetKey(i); } } } } return GetReadOnlyRoots().undefined_value(); } else if (IsJSGlobalObject()) { return JSGlobalObject::cast(this)->global_dictionary()->SlowReverseLookup( value); } else { return property_dictionary()->SlowReverseLookup(value); } } Handle Map::RawCopy(Isolate* isolate, Handle map, int instance_size, int inobject_properties) { Handle result = isolate->factory()->NewMap( map->instance_type(), instance_size, TERMINAL_FAST_ELEMENTS_KIND, inobject_properties); Handle prototype(map->prototype(), isolate); Map::SetPrototype(isolate, result, prototype); result->set_constructor_or_backpointer(map->GetConstructor()); result->set_bit_field(map->bit_field()); result->set_bit_field2(map->bit_field2()); int new_bit_field3 = map->bit_field3(); new_bit_field3 = OwnsDescriptorsBit::update(new_bit_field3, true); new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0); new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCacheSentinel); new_bit_field3 = IsDeprecatedBit::update(new_bit_field3, false); if (!map->is_dictionary_map()) { new_bit_field3 = IsUnstableBit::update(new_bit_field3, false); } result->set_bit_field3(new_bit_field3); return result; } Handle Map::Normalize(Isolate* isolate, Handle fast_map, PropertyNormalizationMode mode, const char* reason) { DCHECK(!fast_map->is_dictionary_map()); Handle maybe_cache(isolate->native_context()->normalized_map_cache(), isolate); bool use_cache = !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(isolate); Handle cache; if (use_cache) cache = Handle::cast(maybe_cache); Handle new_map; if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) new_map->DictionaryMapVerify(isolate); #endif #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit, // except for the code cache, which can contain some ICs which can be // applied to the shared map, dependent code and weak cell cache. Handle fresh = Map::CopyNormalized(isolate, fast_map, mode); if (new_map->is_prototype_map()) { // For prototype maps, the PrototypeInfo is not copied. DCHECK_EQ(0, memcmp(reinterpret_cast(fresh->address()), reinterpret_cast(new_map->address()), kTransitionsOrPrototypeInfoOffset)); DCHECK_EQ(fresh->raw_transitions(), MaybeObject::FromObject(Smi::kZero)); STATIC_ASSERT(kDescriptorsOffset == kTransitionsOrPrototypeInfoOffset + kPointerSize); DCHECK_EQ(0, memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset), HeapObject::RawField(*new_map, kDescriptorsOffset), kDependentCodeOffset - kDescriptorsOffset)); } else { DCHECK_EQ(0, memcmp(reinterpret_cast(fresh->address()), reinterpret_cast(new_map->address()), Map::kDependentCodeOffset)); } STATIC_ASSERT(Map::kPrototypeValidityCellOffset == Map::kDependentCodeOffset + kPointerSize); int offset = Map::kPrototypeValidityCellOffset + kPointerSize; DCHECK_EQ(0, memcmp(reinterpret_cast(fresh->address() + offset), reinterpret_cast(new_map->address() + offset), Map::kSize - offset)); } #endif } else { new_map = Map::CopyNormalized(isolate, fast_map, mode); if (use_cache) { cache->Set(fast_map, new_map); isolate->counters()->maps_normalized()->Increment(); } if (FLAG_trace_maps) { LOG(isolate, MapEvent("Normalize", *fast_map, *new_map, reason)); } } fast_map->NotifyLeafMapLayoutChange(isolate); return new_map; } Handle Map::CopyNormalized(Isolate* isolate, Handle map, PropertyNormalizationMode mode) { int new_instance_size = map->instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= map->GetInObjectProperties() * kPointerSize; } Handle result = RawCopy( isolate, map, new_instance_size, mode == CLEAR_INOBJECT_PROPERTIES ? 0 : map->GetInObjectProperties()); // Clear the unused_property_fields explicitly as this field should not // be accessed for normalized maps. result->SetInObjectUnusedPropertyFields(0); result->set_is_dictionary_map(true); result->set_is_migration_target(false); result->set_may_have_interesting_symbols(true); result->set_construction_counter(kNoSlackTracking); #ifdef VERIFY_HEAP if (FLAG_verify_heap) result->DictionaryMapVerify(isolate); #endif return result; } // Return an immutable prototype exotic object version of the input map. // Never even try to cache it in the transition tree, as it is intended // for the global object and its prototype chain, and excluding it saves // memory on the map transition tree. // static Handle Map::TransitionToImmutableProto(Isolate* isolate, Handle map) { Handle new_map = Map::Copy(isolate, map, "ImmutablePrototype"); new_map->set_is_immutable_proto(true); return new_map; } namespace { void EnsureInitialMap(Isolate* isolate, Handle map) { #ifdef DEBUG // Strict function maps have Function as a constructor but the // Function's initial map is a sloppy function map. Same holds for // GeneratorFunction / AsyncFunction and its initial map. Object* constructor = map->GetConstructor(); DCHECK(constructor->IsJSFunction()); DCHECK(*map == JSFunction::cast(constructor)->initial_map() || *map == *isolate->strict_function_map() || *map == *isolate->strict_function_with_name_map() || *map == *isolate->generator_function_map() || *map == *isolate->generator_function_with_name_map() || *map == *isolate->generator_function_with_home_object_map() || *map == *isolate->generator_function_with_name_and_home_object_map() || *map == *isolate->async_function_map() || *map == *isolate->async_function_with_name_map() || *map == *isolate->async_function_with_home_object_map() || *map == *isolate->async_function_with_name_and_home_object_map()); #endif // Initial maps must always own their descriptors and it's descriptor array // does not contain descriptors that do not belong to the map. DCHECK(map->owns_descriptors()); DCHECK_EQ(map->NumberOfOwnDescriptors(), map->instance_descriptors()->number_of_descriptors()); } } // namespace // static Handle Map::CopyInitialMapNormalized(Isolate* isolate, Handle map, PropertyNormalizationMode mode) { EnsureInitialMap(isolate, map); return CopyNormalized(isolate, map, mode); } // static Handle Map::CopyInitialMap(Isolate* isolate, Handle map, int instance_size, int inobject_properties, int unused_property_fields) { EnsureInitialMap(isolate, map); Handle result = RawCopy(isolate, map, instance_size, inobject_properties); // Please note instance_type and instance_size are set when allocated. result->SetInObjectUnusedPropertyFields(unused_property_fields); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors > 0) { // The copy will use the same descriptors array. result->UpdateDescriptors(map->instance_descriptors(), map->GetLayoutDescriptor()); result->SetNumberOfOwnDescriptors(number_of_own_descriptors); DCHECK_EQ(result->NumberOfFields(), result->GetInObjectProperties() - result->UnusedPropertyFields()); } return result; } Handle Map::CopyDropDescriptors(Isolate* isolate, Handle map) { Handle result = RawCopy(isolate, map, map->instance_size(), map->IsJSObjectMap() ? map->GetInObjectProperties() : 0); // Please note instance_type and instance_size are set when allocated. if (map->IsJSObjectMap()) { result->CopyUnusedPropertyFields(*map); } map->NotifyLeafMapLayoutChange(isolate); return result; } Handle Map::ShareDescriptor(Isolate* isolate, Handle map, Handle descriptors, Descriptor* descriptor) { // Sanity check. This path is only to be taken if the map owns its descriptor // array, implying that its NumberOfOwnDescriptors equals the number of // descriptors in the descriptor array. DCHECK_EQ(map->NumberOfOwnDescriptors(), map->instance_descriptors()->number_of_descriptors()); Handle result = CopyDropDescriptors(isolate, map); Handle name = descriptor->GetKey(); // Properly mark the {result} if the {name} is an "interesting symbol". if (name->IsInterestingSymbol()) { result->set_may_have_interesting_symbols(true); } // Ensure there's space for the new descriptor in the shared descriptor array. if (descriptors->NumberOfSlackDescriptors() == 0) { int old_size = descriptors->number_of_descriptors(); if (old_size == 0) { descriptors = DescriptorArray::Allocate(isolate, 0, 1); } else { int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors); EnsureDescriptorSlack(isolate, map, slack); descriptors = handle(map->instance_descriptors(), isolate); } } Handle layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::ShareAppend(isolate, map, descriptor->GetDetails()) : handle(LayoutDescriptor::FastPointerLayout(), isolate); { DisallowHeapAllocation no_gc; descriptors->Append(descriptor); result->InitializeDescriptors(*descriptors, *layout_descriptor); } DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1); ConnectTransition(isolate, map, result, name, SIMPLE_PROPERTY_TRANSITION); return result; } void Map::ConnectTransition(Isolate* isolate, Handle parent, Handle child, Handle name, SimpleTransitionFlag flag) { DCHECK_IMPLIES(name->IsInterestingSymbol(), child->may_have_interesting_symbols()); DCHECK_IMPLIES(parent->may_have_interesting_symbols(), child->may_have_interesting_symbols()); // Do not track transitions during bootstrap except for element transitions. if (isolate->bootstrapper()->IsActive() && !name.is_identical_to(isolate->factory()->elements_transition_symbol())) { if (FLAG_trace_maps) { LOG(isolate, MapEvent("Transition", *parent, *child, child->is_prototype_map() ? "prototype" : "", *name)); } return; } if (!parent->GetBackPointer()->IsUndefined(isolate)) { parent->set_owns_descriptors(false); } else { // |parent| is initial map and it must keep the ownership, there must be no // descriptors in the descriptors array that do not belong to the map. DCHECK(parent->owns_descriptors()); DCHECK_EQ(parent->NumberOfOwnDescriptors(), parent->instance_descriptors()->number_of_descriptors()); } if (parent->is_prototype_map()) { DCHECK(child->is_prototype_map()); if (FLAG_trace_maps) { LOG(isolate, MapEvent("Transition", *parent, *child, "prototype", *name)); } } else { TransitionsAccessor(isolate, parent).Insert(name, child, flag); if (FLAG_trace_maps) { LOG(isolate, MapEvent("Transition", *parent, *child, "", *name)); } } } Handle Map::CopyReplaceDescriptors( Isolate* isolate, Handle map, Handle descriptors, Handle layout_descriptor, TransitionFlag flag, MaybeHandle maybe_name, const char* reason, SimpleTransitionFlag simple_flag) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle result = CopyDropDescriptors(isolate, map); // Properly mark the {result} if the {name} is an "interesting symbol". Handle name; if (maybe_name.ToHandle(&name) && name->IsInterestingSymbol()) { result->set_may_have_interesting_symbols(true); } if (!map->is_prototype_map()) { if (flag == INSERT_TRANSITION && TransitionsAccessor(isolate, map).CanHaveMoreTransitions()) { result->InitializeDescriptors(*descriptors, *layout_descriptor); DCHECK(!maybe_name.is_null()); ConnectTransition(isolate, map, result, name, simple_flag); } else { descriptors->GeneralizeAllFields(); result->InitializeDescriptors(*descriptors, LayoutDescriptor::FastPointerLayout()); } } else { result->InitializeDescriptors(*descriptors, *layout_descriptor); } if (FLAG_trace_maps && // Mirror conditions above that did not call ConnectTransition(). (map->is_prototype_map() || !(flag == INSERT_TRANSITION && TransitionsAccessor(isolate, map).CanHaveMoreTransitions()))) { LOG(isolate, MapEvent("ReplaceDescriptors", *map, *result, reason, maybe_name.is_null() ? nullptr : *name)); } return result; } // Creates transition tree starting from |split_map| and adding all descriptors // starting from descriptor with index |split_map|.NumberOfOwnDescriptors(). // The way how it is done is tricky because of GC and special descriptors // marking logic. Handle Map::AddMissingTransitions( Isolate* isolate, Handle split_map, Handle descriptors, Handle full_layout_descriptor) { DCHECK(descriptors->IsSortedNoDuplicates()); int split_nof = split_map->NumberOfOwnDescriptors(); int nof_descriptors = descriptors->number_of_descriptors(); DCHECK_LT(split_nof, nof_descriptors); // Start with creating last map which will own full descriptors array. // This is necessary to guarantee that GC will mark the whole descriptor // array if any of the allocations happening below fail. // Number of unused properties is temporarily incorrect and the layout // descriptor could unnecessarily be in slow mode but we will fix after // all the other intermediate maps are created. // Also the last map might have interesting symbols, we temporarily set // the flag and clear it right before the descriptors are installed. This // makes heap verification happy and ensures the flag ends up accurate. Handle last_map = CopyDropDescriptors(isolate, split_map); last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor); last_map->SetInObjectUnusedPropertyFields(0); last_map->set_may_have_interesting_symbols(true); // During creation of intermediate maps we violate descriptors sharing // invariant since the last map is not yet connected to the transition tree // we create here. But it is safe because GC never trims map's descriptors // if there are no dead transitions from that map and this is exactly the // case for all the intermediate maps we create here. Handle map = split_map; for (int i = split_nof; i < nof_descriptors - 1; ++i) { Handle new_map = CopyDropDescriptors(isolate, map); InstallDescriptors(isolate, map, new_map, i, descriptors, full_layout_descriptor); map = new_map; } map->NotifyLeafMapLayoutChange(isolate); last_map->set_may_have_interesting_symbols(false); InstallDescriptors(isolate, map, last_map, nof_descriptors - 1, descriptors, full_layout_descriptor); return last_map; } // Since this method is used to rewrite an existing transition tree, it can // always insert transitions without checking. void Map::InstallDescriptors(Isolate* isolate, Handle parent, Handle child, int new_descriptor, Handle descriptors, Handle full_layout_descriptor) { DCHECK(descriptors->IsSortedNoDuplicates()); child->set_instance_descriptors(*descriptors); child->SetNumberOfOwnDescriptors(new_descriptor + 1); child->CopyUnusedPropertyFields(*parent); PropertyDetails details = descriptors->GetDetails(new_descriptor); if (details.location() == kField) { child->AccountAddedPropertyField(); } if (FLAG_unbox_double_fields) { Handle layout_descriptor = LayoutDescriptor::AppendIfFastOrUseFull(isolate, parent, details, full_layout_descriptor); child->set_layout_descriptor(*layout_descriptor); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(child->layout_descriptor()->IsConsistentWithMap(*child)); } #else SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child)); #endif child->set_visitor_id(Map::GetVisitorId(*child)); } Handle name = handle(descriptors->GetKey(new_descriptor), isolate); if (parent->may_have_interesting_symbols() || name->IsInterestingSymbol()) { child->set_may_have_interesting_symbols(true); } ConnectTransition(isolate, parent, child, name, SIMPLE_PROPERTY_TRANSITION); } Handle Map::CopyAsElementsKind(Isolate* isolate, Handle map, ElementsKind kind, TransitionFlag flag) { // Only certain objects are allowed to have non-terminal fast transitional // elements kinds. DCHECK(map->IsJSObjectMap()); DCHECK_IMPLIES( !map->CanHaveFastTransitionableElementsKind(), IsDictionaryElementsKind(kind) || IsTerminalElementsKind(kind)); Map* maybe_elements_transition_map = nullptr; if (flag == INSERT_TRANSITION) { // Ensure we are requested to add elements kind transition "near the root". DCHECK_EQ(map->FindRootMap(isolate)->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors()); maybe_elements_transition_map = map->ElementsTransitionMap(); DCHECK(maybe_elements_transition_map == nullptr || (maybe_elements_transition_map->elements_kind() == DICTIONARY_ELEMENTS && kind == DICTIONARY_ELEMENTS)); DCHECK(!IsFastElementsKind(kind) || IsMoreGeneralElementsKindTransition(map->elements_kind(), kind)); DCHECK(kind != map->elements_kind()); } bool insert_transition = flag == INSERT_TRANSITION && TransitionsAccessor(isolate, map).CanHaveMoreTransitions() && maybe_elements_transition_map == nullptr; if (insert_transition) { Handle new_map = CopyForTransition(isolate, map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); Handle name = isolate->factory()->elements_transition_symbol(); ConnectTransition(isolate, map, new_map, name, SPECIAL_TRANSITION); return new_map; } // Create a new free-floating map only if we are not allowed to store it. Handle new_map = Copy(isolate, map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); return new_map; } Handle Map::AsLanguageMode(Isolate* isolate, Handle initial_map, Handle shared_info) { DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); // Initial map for sloppy mode function is stored in the function // constructor. Initial maps for strict mode are cached as special transitions // using |strict_function_transition_symbol| as a key. if (is_sloppy(shared_info->language_mode())) return initial_map; Handle function_map(Map::cast(isolate->native_context()->get( shared_info->function_map_index())), isolate); STATIC_ASSERT(LanguageModeSize == 2); DCHECK_EQ(LanguageMode::kStrict, shared_info->language_mode()); Handle transition_symbol = isolate->factory()->strict_function_transition_symbol(); Map* maybe_transition = TransitionsAccessor(isolate, initial_map) .SearchSpecial(*transition_symbol); if (maybe_transition != nullptr) { return handle(maybe_transition, isolate); } initial_map->NotifyLeafMapLayoutChange(isolate); // Create new map taking descriptors from the |function_map| and all // the other details from the |initial_map|. Handle map = Map::CopyInitialMap(isolate, function_map, initial_map->instance_size(), initial_map->GetInObjectProperties(), initial_map->UnusedPropertyFields()); map->SetConstructor(initial_map->GetConstructor()); map->set_prototype(initial_map->prototype()); map->set_construction_counter(initial_map->construction_counter()); if (TransitionsAccessor(isolate, initial_map).CanHaveMoreTransitions()) { Map::ConnectTransition(isolate, initial_map, map, transition_symbol, SPECIAL_TRANSITION); } return map; } Handle Map::CopyForTransition(Isolate* isolate, Handle map, const char* reason) { DCHECK(!map->is_prototype_map()); Handle new_map = CopyDropDescriptors(isolate, map); if (map->owns_descriptors()) { // In case the map owned its own descriptors, share the descriptors and // transfer ownership to the new map. // The properties did not change, so reuse descriptors. new_map->InitializeDescriptors(map->instance_descriptors(), map->GetLayoutDescriptor()); } else { // In case the map did not own its own descriptors, a split is forced by // copying the map; creating a new descriptor array cell. Handle descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo( isolate, descriptors, number_of_own_descriptors); Handle new_layout_descriptor(map->GetLayoutDescriptor(), isolate); new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor); } if (FLAG_trace_maps) { LOG(isolate, MapEvent("CopyForTransition", *map, *new_map, reason)); } return new_map; } Handle Map::Copy(Isolate* isolate, Handle map, const char* reason) { Handle descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo( isolate, descriptors, number_of_own_descriptors); Handle new_layout_descriptor(map->GetLayoutDescriptor(), isolate); return CopyReplaceDescriptors( isolate, map, new_descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle(), reason, SPECIAL_TRANSITION); } Handle Map::Create(Isolate* isolate, int inobject_properties) { Handle copy = Copy(isolate, handle(isolate->object_function()->initial_map(), isolate), "MapCreate"); // Check that we do not overflow the instance size when adding the extra // inobject properties. If the instance size overflows, we allocate as many // properties as we can as inobject properties. if (inobject_properties > JSObject::kMaxInObjectProperties) { inobject_properties = JSObject::kMaxInObjectProperties; } int new_instance_size = JSObject::kHeaderSize + kPointerSize * inobject_properties; // Adjust the map with the extra inobject properties. copy->set_instance_size(new_instance_size); copy->SetInObjectPropertiesStartInWords(JSObject::kHeaderSize / kPointerSize); DCHECK_EQ(copy->GetInObjectProperties(), inobject_properties); copy->SetInObjectUnusedPropertyFields(inobject_properties); copy->set_visitor_id(Map::GetVisitorId(*copy)); return copy; } Handle Map::CopyForPreventExtensions(Isolate* isolate, Handle map, PropertyAttributes attrs_to_add, Handle transition_marker, const char* reason) { int num_descriptors = map->NumberOfOwnDescriptors(); Handle new_desc = DescriptorArray::CopyUpToAddAttributes( isolate, handle(map->instance_descriptors(), isolate), num_descriptors, attrs_to_add); Handle new_layout_descriptor(map->GetLayoutDescriptor(), isolate); Handle new_map = CopyReplaceDescriptors( isolate, map, new_desc, new_layout_descriptor, INSERT_TRANSITION, transition_marker, reason, SPECIAL_TRANSITION); new_map->set_is_extensible(false); if (!IsFixedTypedArrayElementsKind(map->elements_kind())) { ElementsKind new_kind = IsStringWrapperElementsKind(map->elements_kind()) ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; new_map->set_elements_kind(new_kind); } return new_map; } namespace { bool CanHoldValue(DescriptorArray* descriptors, int descriptor, PropertyConstness constness, Object* value) { PropertyDetails details = descriptors->GetDetails(descriptor); if (details.location() == kField) { if (details.kind() == kData) { return IsGeneralizableTo(constness, details.constness()) && value->FitsRepresentation(details.representation()) && descriptors->GetFieldType(descriptor)->NowContains(value); } else { DCHECK_EQ(kAccessor, details.kind()); return false; } } else { DCHECK_EQ(kDescriptor, details.location()); DCHECK_EQ(PropertyConstness::kConst, details.constness()); if (details.kind() == kData) { DCHECK(!FLAG_track_constant_fields); DCHECK(descriptors->GetStrongValue(descriptor) != value || value->FitsRepresentation(details.representation())); return descriptors->GetStrongValue(descriptor) == value; } else { DCHECK_EQ(kAccessor, details.kind()); return false; } } UNREACHABLE(); } Handle UpdateDescriptorForValue(Isolate* isolate, Handle map, int descriptor, PropertyConstness constness, Handle value) { if (CanHoldValue(map->instance_descriptors(), descriptor, constness, *value)) { return map; } PropertyAttributes attributes = map->instance_descriptors()->GetDetails(descriptor).attributes(); Representation representation = value->OptimalRepresentation(); Handle type = value->OptimalType(isolate, representation); MapUpdater mu(isolate, map); return mu.ReconfigureToDataField(descriptor, attributes, constness, representation, type); } } // namespace // static Handle Map::PrepareForDataProperty(Isolate* isolate, Handle map, int descriptor, PropertyConstness constness, Handle value) { // Dictionaries can store any property value. DCHECK(!map->is_dictionary_map()); // Update to the newest map before storing the property. return UpdateDescriptorForValue(isolate, Update(isolate, map), descriptor, constness, value); } Handle Map::TransitionToDataProperty(Isolate* isolate, Handle map, Handle name, Handle value, PropertyAttributes attributes, PropertyConstness constness, StoreFromKeyed store_mode) { RuntimeCallTimerScope stats_scope( isolate, *map, map->is_prototype_map() ? RuntimeCallCounterId::kPrototypeMap_TransitionToDataProperty : RuntimeCallCounterId::kMap_TransitionToDataProperty); DCHECK(name->IsUniqueName()); DCHECK(!map->is_dictionary_map()); // Migrate to the newest map before storing the property. map = Update(isolate, map); Map* maybe_transition = TransitionsAccessor(isolate, map) .SearchTransition(*name, kData, attributes); if (maybe_transition != nullptr) { Handle transition(maybe_transition, isolate); int descriptor = transition->LastAdded(); DCHECK_EQ(attributes, transition->instance_descriptors() ->GetDetails(descriptor) .attributes()); return UpdateDescriptorForValue(isolate, transition, descriptor, constness, value); } TransitionFlag flag = INSERT_TRANSITION; MaybeHandle maybe_map; if (!map->TooManyFastProperties(store_mode)) { if (!FLAG_track_constant_fields && value->IsJSFunction()) { maybe_map = Map::CopyWithConstant(isolate, map, name, value, attributes, flag); } else { Representation representation = value->OptimalRepresentation(); Handle type = value->OptimalType(isolate, representation); maybe_map = Map::CopyWithField(isolate, map, name, type, attributes, constness, representation, flag); } } Handle result; if (!maybe_map.ToHandle(&result)) { const char* reason = "TooManyFastProperties"; #if V8_TRACE_MAPS std::unique_ptr> buffer; if (FLAG_trace_maps) { ScopedVector name_buffer(100); name->NameShortPrint(name_buffer); buffer.reset(new ScopedVector(128)); SNPrintF(*buffer, "TooManyFastProperties %s", name_buffer.start()); reason = buffer->start(); } #endif Handle maybe_constructor(map->GetConstructor(), isolate); if (FLAG_feedback_normalization && map->new_target_is_base() && maybe_constructor->IsJSFunction() && !JSFunction::cast(*maybe_constructor)->shared()->native()) { Handle constructor = Handle::cast(maybe_constructor); DCHECK_NE(*constructor, constructor->context()->native_context()->object_function()); Handle initial_map(constructor->initial_map(), isolate); result = Map::Normalize(isolate, initial_map, CLEAR_INOBJECT_PROPERTIES, reason); initial_map->DeprecateTransitionTree(isolate); Handle prototype(result->prototype(), isolate); JSFunction::SetInitialMap(constructor, result, prototype); // Deoptimize all code that embeds the previous initial map. initial_map->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kInitialMapChangedGroup); if (!result->EquivalentToForNormalization(*map, CLEAR_INOBJECT_PROPERTIES)) { result = Map::Normalize(isolate, map, CLEAR_INOBJECT_PROPERTIES, reason); } } else { result = Map::Normalize(isolate, map, CLEAR_INOBJECT_PROPERTIES, reason); } } return result; } Handle Map::ReconfigureExistingProperty(Isolate* isolate, Handle map, int descriptor, PropertyKind kind, PropertyAttributes attributes) { // Dictionaries have to be reconfigured in-place. DCHECK(!map->is_dictionary_map()); if (!map->GetBackPointer()->IsMap()) { // There is no benefit from reconstructing transition tree for maps without // back pointers. return CopyGeneralizeAllFields(isolate, map, map->elements_kind(), descriptor, kind, attributes, "GenAll_AttributesMismatchProtoMap"); } if (FLAG_trace_generalization) { map->PrintReconfiguration(isolate, stdout, descriptor, kind, attributes); } MapUpdater mu(isolate, map); DCHECK_EQ(kData, kind); // Only kData case is supported so far. Handle new_map = mu.ReconfigureToDataField( descriptor, attributes, kDefaultFieldConstness, Representation::None(), FieldType::None(isolate)); return new_map; } Handle Map::TransitionToAccessorProperty(Isolate* isolate, Handle map, Handle name, int descriptor, Handle getter, Handle setter, PropertyAttributes attributes) { RuntimeCallTimerScope stats_scope( isolate, map->is_prototype_map() ? RuntimeCallCounterId::kPrototypeMap_TransitionToAccessorProperty : RuntimeCallCounterId::kMap_TransitionToAccessorProperty); // At least one of the accessors needs to be a new value. DCHECK(!getter->IsNull(isolate) || !setter->IsNull(isolate)); DCHECK(name->IsUniqueName()); // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) return map; // Migrate to the newest map before transitioning to the new property. map = Update(isolate, map); PropertyNormalizationMode mode = map->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; Map* maybe_transition = TransitionsAccessor(isolate, map) .SearchTransition(*name, kAccessor, attributes); if (maybe_transition != nullptr) { Handle transition(maybe_transition, isolate); DescriptorArray* descriptors = transition->instance_descriptors(); int descriptor = transition->LastAdded(); DCHECK(descriptors->GetKey(descriptor)->Equals(*name)); DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind()); DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes()); Handle maybe_pair(descriptors->GetStrongValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(isolate, map, mode, "TransitionToAccessorFromNonPair"); } Handle pair = Handle::cast(maybe_pair); if (!pair->Equals(*getter, *setter)) { return Map::Normalize(isolate, map, mode, "TransitionToDifferentAccessor"); } return transition; } Handle pair; DescriptorArray* old_descriptors = map->instance_descriptors(); if (descriptor != DescriptorArray::kNotFound) { if (descriptor != map->LastAdded()) { return Map::Normalize(isolate, map, mode, "AccessorsOverwritingNonLast"); } PropertyDetails old_details = old_descriptors->GetDetails(descriptor); if (old_details.kind() != kAccessor) { return Map::Normalize(isolate, map, mode, "AccessorsOverwritingNonAccessors"); } if (old_details.attributes() != attributes) { return Map::Normalize(isolate, map, mode, "AccessorsWithAttributes"); } Handle maybe_pair(old_descriptors->GetStrongValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(isolate, map, mode, "AccessorsOverwritingNonPair"); } Handle current_pair = Handle::cast(maybe_pair); if (current_pair->Equals(*getter, *setter)) return map; bool overwriting_accessor = false; if (!getter->IsNull(isolate) && !current_pair->get(ACCESSOR_GETTER)->IsNull(isolate) && current_pair->get(ACCESSOR_GETTER) != *getter) { overwriting_accessor = true; } if (!setter->IsNull(isolate) && !current_pair->get(ACCESSOR_SETTER)->IsNull(isolate) && current_pair->get(ACCESSOR_SETTER) != *setter) { overwriting_accessor = true; } if (overwriting_accessor) { return Map::Normalize(isolate, map, mode, "AccessorsOverwritingAccessors"); } pair = AccessorPair::Copy(isolate, Handle::cast(maybe_pair)); } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors || map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) { return Map::Normalize(isolate, map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors"); } else { pair = isolate->factory()->NewAccessorPair(); } pair->SetComponents(*getter, *setter); TransitionFlag flag = INSERT_TRANSITION; Descriptor d = Descriptor::AccessorConstant(name, pair, attributes); return Map::CopyInsertDescriptor(isolate, map, &d, flag); } Handle Map::CopyAddDescriptor(Isolate* isolate, Handle map, Descriptor* descriptor, TransitionFlag flag) { Handle descriptors(map->instance_descriptors(), isolate); // Share descriptors only if map owns descriptors and it not an initial map. if (flag == INSERT_TRANSITION && map->owns_descriptors() && !map->GetBackPointer()->IsUndefined(isolate) && TransitionsAccessor(isolate, map).CanHaveMoreTransitions()) { return ShareDescriptor(isolate, map, descriptors, descriptor); } int nof = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo(isolate, descriptors, nof, 1); new_descriptors->Append(descriptor); Handle new_layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::New(isolate, map, new_descriptors, nof + 1) : handle(LayoutDescriptor::FastPointerLayout(), isolate); return CopyReplaceDescriptors( isolate, map, new_descriptors, new_layout_descriptor, flag, descriptor->GetKey(), "CopyAddDescriptor", SIMPLE_PROPERTY_TRANSITION); } Handle Map::CopyInsertDescriptor(Isolate* isolate, Handle map, Descriptor* descriptor, TransitionFlag flag) { Handle old_descriptors(map->instance_descriptors(), isolate); // We replace the key if it is already present. int index = old_descriptors->SearchWithCache(isolate, *descriptor->GetKey(), *map); if (index != DescriptorArray::kNotFound) { return CopyReplaceDescriptor(isolate, map, old_descriptors, descriptor, index, flag); } return CopyAddDescriptor(isolate, map, descriptor, flag); } Handle DescriptorArray::CopyUpTo(Isolate* isolate, Handle desc, int enumeration_index, int slack) { return DescriptorArray::CopyUpToAddAttributes(isolate, desc, enumeration_index, NONE, slack); } Handle DescriptorArray::CopyUpToAddAttributes( Isolate* isolate, Handle desc, int enumeration_index, PropertyAttributes attributes, int slack) { if (enumeration_index + slack == 0) { return isolate->factory()->empty_descriptor_array(); } int size = enumeration_index; Handle descriptors = DescriptorArray::Allocate(isolate, size, slack); if (attributes != NONE) { for (int i = 0; i < size; ++i) { MaybeObject* value_or_field_type = desc->GetValue(i); Name* key = desc->GetKey(i); PropertyDetails details = desc->GetDetails(i); // Bulk attribute changes never affect private properties. if (!key->IsPrivate()) { int mask = DONT_DELETE | DONT_ENUM; // READ_ONLY is an invalid attribute for JS setters/getters. HeapObject* heap_object; if (details.kind() != kAccessor || !(value_or_field_type->ToStrongHeapObject(&heap_object) && heap_object->IsAccessorPair())) { mask |= READ_ONLY; } details = details.CopyAddAttributes( static_cast(attributes & mask)); } descriptors->Set(i, key, value_or_field_type, details); } } else { for (int i = 0; i < size; ++i) { descriptors->CopyFrom(i, *desc); } } if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort(); return descriptors; } // Create a new descriptor array with only enumerable, configurable, writeable // data properties, but identical field locations. Handle DescriptorArray::CopyForFastObjectClone( Isolate* isolate, Handle src, int enumeration_index, int slack) { if (enumeration_index + slack == 0) { return isolate->factory()->empty_descriptor_array(); } int size = enumeration_index; Handle descriptors = DescriptorArray::Allocate(isolate, size, slack); for (int i = 0; i < size; ++i) { Name* key = src->GetKey(i); PropertyDetails details = src->GetDetails(i); DCHECK(!key->IsPrivateField()); DCHECK(details.IsEnumerable()); DCHECK_EQ(details.kind(), kData); // Ensure the ObjectClone property details are NONE, and that all source // details did not contain DONT_ENUM. PropertyDetails new_details(kData, NONE, details.location(), details.constness(), details.representation(), details.field_index()); // Do not propagate the field type of normal object fields from the // original descriptors since FieldType changes don't create new maps. MaybeObject* type = src->GetValue(i); if (details.location() == PropertyLocation::kField) { type = MaybeObject::FromObject(FieldType::Any()); } descriptors->Set(i, key, type, new_details); } descriptors->Sort(); return descriptors; } bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) { for (int i = 0; i < nof_descriptors; i++) { if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) { return false; } PropertyDetails details = GetDetails(i); PropertyDetails other_details = desc->GetDetails(i); if (details.kind() != other_details.kind() || details.location() != other_details.location() || !details.representation().Equals(other_details.representation())) { return false; } } return true; } Handle Map::CopyReplaceDescriptor(Isolate* isolate, Handle map, Handle descriptors, Descriptor* descriptor, int insertion_index, TransitionFlag flag) { Handle key = descriptor->GetKey(); DCHECK_EQ(*key, descriptors->GetKey(insertion_index)); // This function does not support replacing property fields as // that would break property field counters. DCHECK_NE(kField, descriptor->GetDetails().location()); DCHECK_NE(kField, descriptors->GetDetails(insertion_index).location()); Handle new_descriptors = DescriptorArray::CopyUpTo( isolate, descriptors, map->NumberOfOwnDescriptors()); new_descriptors->Replace(insertion_index, descriptor); Handle new_layout_descriptor = LayoutDescriptor::New( isolate, map, new_descriptors, new_descriptors->number_of_descriptors()); SimpleTransitionFlag simple_flag = (insertion_index == descriptors->number_of_descriptors() - 1) ? SIMPLE_PROPERTY_TRANSITION : PROPERTY_TRANSITION; return CopyReplaceDescriptors(isolate, map, new_descriptors, new_layout_descriptor, flag, key, "CopyReplaceDescriptor", simple_flag); } Handle FixedArray::SetAndGrow(Isolate* isolate, Handle array, int index, Handle value, PretenureFlag pretenure) { if (index < array->length()) { array->set(index, *value); return array; } int capacity = array->length(); do { capacity = JSObject::NewElementsCapacity(capacity); } while (capacity <= index); Handle new_array = isolate->factory()->NewUninitializedFixedArray(capacity, pretenure); array->CopyTo(0, *new_array, 0, array->length()); new_array->FillWithHoles(array->length(), new_array->length()); new_array->set(index, *value); return new_array; } bool FixedArray::ContainsSortedNumbers() { for (int i = 1; i < length(); ++i) { Object* a_obj = get(i - 1); Object* b_obj = get(i); if (!a_obj->IsNumber() || !b_obj->IsNumber()) return false; uint32_t a = NumberToUint32(a_obj); uint32_t b = NumberToUint32(b_obj); if (a > b) return false; } return true; } Handle FixedArray::ShrinkOrEmpty(Isolate* isolate, Handle array, int new_length) { if (new_length == 0) { return array->GetReadOnlyRoots().empty_fixed_array_handle(); } else { array->Shrink(isolate, new_length); return array; } } void FixedArray::Shrink(Isolate* isolate, int new_length) { DCHECK(0 < new_length && new_length <= length()); if (new_length < length()) { isolate->heap()->RightTrimFixedArray(this, length() - new_length); } } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) const { DisallowHeapAllocation no_gc; // Return early if len == 0 so that we don't try to read the write barrier off // a canonical read-only empty fixed array. if (len == 0) return; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif void JSObject::PrototypeRegistryCompactionCallback(HeapObject* value, int old_index, int new_index) { DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map()); Map* map = Map::cast(value); DCHECK(map->prototype_info()->IsPrototypeInfo()); PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info()); DCHECK_EQ(old_index, proto_info->registry_slot()); proto_info->set_registry_slot(new_index); } // static Handle ArrayList::Add(Isolate* isolate, Handle array, Handle obj) { int length = array->Length(); array = EnsureSpace(isolate, array, length + 1); // Check that GC didn't remove elements from the array. DCHECK_EQ(array->Length(), length); array->Set(length, *obj); array->SetLength(length + 1); return array; } // static Handle ArrayList::Add(Isolate* isolate, Handle array, Handle obj1, Handle obj2) { int length = array->Length(); array = EnsureSpace(isolate, array, length + 2); // Check that GC didn't remove elements from the array. DCHECK_EQ(array->Length(), length); array->Set(length, *obj1); array->Set(length + 1, *obj2); array->SetLength(length + 2); return array; } // static Handle ArrayList::New(Isolate* isolate, int size) { Handle fixed_array = isolate->factory()->NewFixedArray(size + kFirstIndex); fixed_array->set_map_no_write_barrier( ReadOnlyRoots(isolate).array_list_map()); Handle result = Handle::cast(fixed_array); result->SetLength(0); return result; } Handle ArrayList::Elements(Isolate* isolate, Handle array) { int length = array->Length(); Handle result = isolate->factory()->NewFixedArray(length); // Do not copy the first entry, i.e., the length. array->CopyTo(kFirstIndex, *result, 0, length); return result; } bool ArrayList::IsFull() { int capacity = length(); return kFirstIndex + Length() == capacity; } namespace { Handle EnsureSpaceInFixedArray(Isolate* isolate, Handle array, int length) { int capacity = array->length(); if (capacity < length) { int new_capacity = length; new_capacity = new_capacity + Max(new_capacity / 2, 2); int grow_by = new_capacity - capacity; array = isolate->factory()->CopyFixedArrayAndGrow(array, grow_by); } return array; } } // namespace // static Handle ArrayList::EnsureSpace(Isolate* isolate, Handle array, int length) { const bool empty = (array->length() == 0); auto ret = EnsureSpaceInFixedArray(isolate, array, kFirstIndex + length); if (empty) { ret->set_map_no_write_barrier(array->GetReadOnlyRoots().array_list_map()); Handle::cast(ret)->SetLength(0); } return Handle::cast(ret); } // static Handle WeakArrayList::AddToEnd(Isolate* isolate, Handle array, MaybeObjectHandle value) { int length = array->length(); array = EnsureSpace(isolate, array, length + 1); // Reload length; GC might have removed elements from the array. length = array->length(); array->Set(length, *value); array->set_length(length + 1); return array; } bool WeakArrayList::IsFull() { return length() == capacity(); } // static Handle WeakArrayList::EnsureSpace(Isolate* isolate, Handle array, int length, PretenureFlag pretenure) { int capacity = array->capacity(); if (capacity < length) { int new_capacity = length; new_capacity = new_capacity + Max(new_capacity / 2, 2); int grow_by = new_capacity - capacity; array = isolate->factory()->CopyWeakArrayListAndGrow(array, grow_by, pretenure); } return array; } int WeakArrayList::CountLiveWeakReferences() const { int live_weak_references = 0; for (int i = 0; i < length(); i++) { if (Get(i)->IsWeakHeapObject()) { ++live_weak_references; } } return live_weak_references; } bool WeakArrayList::RemoveOne(MaybeObjectHandle value) { if (length() == 0) return false; // Optimize for the most recently added element to be removed again. int last_index = length() - 1; for (int i = last_index; i >= 0; --i) { if (Get(i) == *value) { // Move the last element into the this slot (or no-op, if this is the // last slot). Set(i, Get(last_index)); Set(last_index, HeapObjectReference::ClearedValue()); set_length(last_index); return true; } } return false; } // static Handle PrototypeUsers::Add(Isolate* isolate, Handle array, Handle value, int* assigned_index) { int length = array->length(); if (length == 0) { // Uninitialized WeakArrayList; need to initialize empty_slot_index. array = WeakArrayList::EnsureSpace(isolate, array, kFirstIndex + 1); set_empty_slot_index(*array, kNoEmptySlotsMarker); array->Set(kFirstIndex, HeapObjectReference::Weak(*value)); array->set_length(kFirstIndex + 1); if (assigned_index != nullptr) *assigned_index = kFirstIndex; return array; } // If the array has unfilled space at the end, use it. if (!array->IsFull()) { array->Set(length, HeapObjectReference::Weak(*value)); array->set_length(length + 1); if (assigned_index != nullptr) *assigned_index = length; return array; } // If there are empty slots, use one of them. int empty_slot = Smi::ToInt(empty_slot_index(*array)); if (empty_slot != kNoEmptySlotsMarker) { DCHECK_GE(empty_slot, kFirstIndex); CHECK_LT(empty_slot, array->length()); int next_empty_slot = Smi::ToInt(array->Get(empty_slot)->ToSmi()); array->Set(empty_slot, HeapObjectReference::Weak(*value)); if (assigned_index != nullptr) *assigned_index = empty_slot; set_empty_slot_index(*array, next_empty_slot); return array; } else { DCHECK_EQ(empty_slot, kNoEmptySlotsMarker); } // Array full and no empty slots. Grow the array. array = WeakArrayList::EnsureSpace(isolate, array, length + 1); array->Set(length, HeapObjectReference::Weak(*value)); array->set_length(length + 1); if (assigned_index != nullptr) *assigned_index = length; return array; } WeakArrayList* PrototypeUsers::Compact(Handle array, Heap* heap, CompactionCallback callback, PretenureFlag pretenure) { if (array->length() == 0) { return *array; } int new_length = kFirstIndex + array->CountLiveWeakReferences(); if (new_length == array->length()) { return *array; } Handle new_array = WeakArrayList::EnsureSpace( heap->isolate(), handle(ReadOnlyRoots(heap).empty_weak_array_list(), heap->isolate()), new_length, pretenure); // Allocation might have caused GC and turned some of the elements into // cleared weak heap objects. Count the number of live objects again. int copy_to = kFirstIndex; for (int i = kFirstIndex; i < array->length(); i++) { MaybeObject* element = array->Get(i); if (element->IsSmi()) continue; if (element->IsClearedWeakHeapObject()) continue; HeapObject* value = element->ToWeakHeapObject(); callback(value, i, copy_to); new_array->Set(copy_to++, element); } new_array->set_length(copy_to); set_empty_slot_index(*new_array, kNoEmptySlotsMarker); return *new_array; } Handle RegExpMatchInfo::ReserveCaptures( Isolate* isolate, Handle match_info, int capture_count) { DCHECK_GE(match_info->length(), kLastMatchOverhead); const int required_length = kFirstCaptureIndex + capture_count; Handle result = EnsureSpaceInFixedArray(isolate, match_info, required_length); return Handle::cast(result); } // static Handle FrameArray::AppendJSFrame(Handle in, Handle receiver, Handle function, Handle code, int offset, int flags) { const int frame_count = in->FrameCount(); const int new_length = LengthFor(frame_count + 1); Handle array = EnsureSpace(function->GetIsolate(), in, new_length); array->SetReceiver(frame_count, *receiver); array->SetFunction(frame_count, *function); array->SetCode(frame_count, *code); array->SetOffset(frame_count, Smi::FromInt(offset)); array->SetFlags(frame_count, Smi::FromInt(flags)); array->set(kFrameCountIndex, Smi::FromInt(frame_count + 1)); return array; } // static Handle FrameArray::AppendWasmFrame( Handle in, Handle wasm_instance, int wasm_function_index, wasm::WasmCode* code, int offset, int flags) { Isolate* isolate = wasm_instance->GetIsolate(); const int frame_count = in->FrameCount(); const int new_length = LengthFor(frame_count + 1); Handle array = EnsureSpace(isolate, in, new_length); // The {code} will be {nullptr} for interpreted wasm frames. Handle code_foreign = isolate->factory()->NewForeign(reinterpret_cast
(code)); array->SetWasmInstance(frame_count, *wasm_instance); array->SetWasmFunctionIndex(frame_count, Smi::FromInt(wasm_function_index)); array->SetWasmCodeObject(frame_count, *code_foreign); array->SetOffset(frame_count, Smi::FromInt(offset)); array->SetFlags(frame_count, Smi::FromInt(flags)); array->set(kFrameCountIndex, Smi::FromInt(frame_count + 1)); return array; } void FrameArray::ShrinkToFit(Isolate* isolate) { Shrink(isolate, LengthFor(FrameCount())); } // static Handle FrameArray::EnsureSpace(Isolate* isolate, Handle array, int length) { return Handle::cast( EnsureSpaceInFixedArray(isolate, array, length)); } Handle DescriptorArray::Allocate(Isolate* isolate, int number_of_descriptors, int slack, PretenureFlag pretenure) { DCHECK_LE(0, number_of_descriptors); Factory* factory = isolate->factory(); // Do not use DescriptorArray::cast on incomplete object. int size = number_of_descriptors + slack; if (size == 0) return factory->empty_descriptor_array(); // Allocate the array of keys. Handle result = factory->NewWeakFixedArrayWithMap( Heap::kDescriptorArrayMapRootIndex, LengthFor(size), pretenure); result->Set(kDescriptorLengthIndex, MaybeObject::FromObject(Smi::FromInt(number_of_descriptors))); result->Set(kEnumCacheIndex, MaybeObject::FromObject( ReadOnlyRoots(isolate).empty_enum_cache())); return Handle::cast(result); } void DescriptorArray::ClearEnumCache() { set(kEnumCacheIndex, MaybeObject::FromObject(GetReadOnlyRoots().empty_enum_cache())); } void DescriptorArray::Replace(int index, Descriptor* descriptor) { descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index)); Set(index, descriptor); } // static void DescriptorArray::SetEnumCache(Handle descriptors, Isolate* isolate, Handle keys, Handle indices) { EnumCache* enum_cache = descriptors->GetEnumCache(); if (enum_cache == ReadOnlyRoots(isolate).empty_enum_cache()) { enum_cache = *isolate->factory()->NewEnumCache(keys, indices); descriptors->set(kEnumCacheIndex, MaybeObject::FromObject(enum_cache)); } else { enum_cache->set_keys(*keys); enum_cache->set_indices(*indices); } } void DescriptorArray::CopyFrom(int index, DescriptorArray* src) { PropertyDetails details = src->GetDetails(index); Set(index, src->GetKey(index), src->GetValue(index), details); } void DescriptorArray::Sort() { // In-place heap sort. int len = number_of_descriptors(); // Reset sorting since the descriptor array might contain invalid pointers. for (int i = 0; i < len; ++i) SetSortedKey(i, i); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetSortedKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. SwapSortedKeys(0, i); // Shift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetSortedKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); parent_index = child_index; } } DCHECK(IsSortedNoDuplicates()); } Handle AccessorPair::Copy(Isolate* isolate, Handle pair) { Handle copy = isolate->factory()->NewAccessorPair(); copy->set_getter(pair->getter()); copy->set_setter(pair->setter()); return copy; } Handle AccessorPair::GetComponent(Isolate* isolate, Handle accessor_pair, AccessorComponent component) { Object* accessor = accessor_pair->get(component); if (accessor->IsFunctionTemplateInfo()) { return ApiNatives::InstantiateFunction( handle(FunctionTemplateInfo::cast(accessor), isolate)) .ToHandleChecked(); } if (accessor->IsNull(isolate)) { return isolate->factory()->undefined_value(); } return handle(accessor, isolate); } Handle DeoptimizationData::New(Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) { return Handle::cast(isolate->factory()->NewFixedArray( LengthFor(deopt_entry_count), pretenure)); } Handle DeoptimizationData::Empty(Isolate* isolate) { return Handle::cast( isolate->factory()->empty_fixed_array()); } SharedFunctionInfo* DeoptimizationData::GetInlinedFunction(int index) { if (index == -1) { return SharedFunctionInfo::cast(SharedFunctionInfo()); } else { return SharedFunctionInfo::cast(LiteralArray()->get(index)); } } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif // static Handle String::Trim(Isolate* isolate, Handle string, TrimMode mode) { string = String::Flatten(isolate, string); int const length = string->length(); // Perform left trimming if requested. int left = 0; UnicodeCache* unicode_cache = isolate->unicode_cache(); if (mode == kTrim || mode == kTrimStart) { while (left < length && unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) { left++; } } // Perform right trimming if requested. int right = length; if (mode == kTrim || mode == kTrimEnd) { while ( right > left && unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) { right--; } } return isolate->factory()->NewSubString(string, left, right); } bool String::LooksValid() { // TODO(leszeks): Maybe remove this check entirely, Heap::Contains uses // basically the same logic as the way we access the heap in the first place. MemoryChunk* chunk = MemoryChunk::FromHeapObject(this); // RO_SPACE objects should always be valid. if (chunk->owner()->identity() == RO_SPACE) return true; if (chunk->heap() == nullptr) return false; return chunk->heap()->Contains(this); } // static MaybeHandle Name::ToFunctionName(Isolate* isolate, Handle name) { if (name->IsString()) return Handle::cast(name); // ES6 section 9.2.11 SetFunctionName, step 4. Handle description(Handle::cast(name)->name(), isolate); if (description->IsUndefined(isolate)) { return isolate->factory()->empty_string(); } IncrementalStringBuilder builder(isolate); builder.AppendCharacter('['); builder.AppendString(Handle::cast(description)); builder.AppendCharacter(']'); return builder.Finish(); } // static MaybeHandle Name::ToFunctionName(Isolate* isolate, Handle name, Handle prefix) { Handle name_string; ASSIGN_RETURN_ON_EXCEPTION(isolate, name_string, ToFunctionName(isolate, name), String); IncrementalStringBuilder builder(isolate); builder.AppendString(prefix); builder.AppendCharacter(' '); builder.AppendString(name_string); return builder.Finish(); } namespace { bool AreDigits(const uint8_t* s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } int ParseDecimalInteger(const uint8_t* s, int from, int to) { DCHECK_LT(to - from, 10); // Overflow is not possible. DCHECK(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } } // namespace // static Handle String::ToNumber(Isolate* isolate, Handle subject) { // Flatten {subject} string first. subject = String::Flatten(isolate, subject); // Fast array index case. uint32_t index; if (subject->AsArrayIndex(&index)) { return isolate->factory()->NewNumberFromUint(index); } // Fast case: short integer or some sorts of junk values. if (subject->IsSeqOneByteString()) { int len = subject->length(); if (len == 0) return handle(Smi::kZero, isolate); DisallowHeapAllocation no_gc; uint8_t const* data = Handle::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->factory()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit // or the 'I' character ('Infinity'). All of that have codes not greater // than '9' except 'I' and  . if (data[start_pos] != 'I' && data[start_pos] != 0xA0) { return isolate->factory()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits // we know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->factory()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. DCHECK_EQ(static_cast(subject->hash_field()), static_cast(hash)); #endif subject->set_hash_field(hash); } return handle(Smi::FromInt(d), isolate); } } // Slower case. int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY; return isolate->factory()->NewNumber( StringToDouble(isolate, isolate->unicode_cache(), subject, flags)); } String::FlatContent String::GetFlatContent() { DCHECK(!AllowHeapAllocation::IsAllowed()); int length = this->length(); StringShape shape(this); String* string = this; int offset = 0; if (shape.representation_tag() == kConsStringTag) { ConsString* cons = ConsString::cast(string); if (cons->second()->length() != 0) { return FlatContent(); } string = cons->first(); shape = StringShape(string); } else if (shape.representation_tag() == kSlicedStringTag) { SlicedString* slice = SlicedString::cast(string); offset = slice->offset(); string = slice->parent(); shape = StringShape(string); DCHECK(shape.representation_tag() != kConsStringTag && shape.representation_tag() != kSlicedStringTag); } if (shape.representation_tag() == kThinStringTag) { ThinString* thin = ThinString::cast(string); string = thin->actual(); shape = StringShape(string); DCHECK(!shape.IsCons()); DCHECK(!shape.IsSliced()); } if (shape.encoding_tag() == kOneByteStringTag) { const uint8_t* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqOneByteString::cast(string)->GetChars(); } else { start = ExternalOneByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } else { DCHECK_EQ(shape.encoding_tag(), kTwoByteStringTag); const uc16* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqTwoByteString::cast(string)->GetChars(); } else { start = ExternalTwoByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } } std::unique_ptr String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return std::unique_ptr(); } // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. StringCharacterStream stream(this, offset); int character_position = offset; int utf8_bytes = 0; int last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); utf8_bytes += unibrow::Utf8::Length(character, last); last = character; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. stream.Reset(this, offset); character_position = offset; int utf8_byte_position = 0; last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character, last); last = character; } result[utf8_byte_position] = 0; return std::unique_ptr(result); } std::unique_ptr String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData(unsigned start) { DCHECK(!IsOneByteRepresentationUnderneath()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kSlicedStringTag: { SlicedString* slice = SlicedString::cast(this); return slice->parent()->GetTwoByteData(start + slice->offset()); } case kConsStringTag: case kThinStringTag: UNREACHABLE(); } UNREACHABLE(); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize) + start; } void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) { Relocatable* current = isolate->relocatable_top(); while (current != nullptr) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Relocatable*); // NOLINT } // Archive statics that are thread-local. char* Relocatable::ArchiveState(Isolate* isolate, char* to) { *reinterpret_cast(to) = isolate->relocatable_top(); isolate->set_relocatable_top(nullptr); return to + ArchiveSpacePerThread(); } // Restore statics that are thread-local. char* Relocatable::RestoreState(Isolate* isolate, char* from) { isolate->set_relocatable_top(*reinterpret_cast(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(RootVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(Isolate* isolate, RootVisitor* v) { Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(RootVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != nullptr) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector input) : Relocatable(isolate), str_(0), is_one_byte_(true), length_(input.length()), start_(input.start()) {} void FlatStringReader::PostGarbageCollection() { if (str_ == nullptr) return; Handle str(str_); DCHECK(str->IsFlat()); DisallowHeapAllocation no_gc; // This does not actually prevent the vector from being relocated later. String::FlatContent content = str->GetFlatContent(); DCHECK(content.IsFlat()); is_one_byte_ = content.IsOneByte(); if (is_one_byte_) { start_ = content.ToOneByteVector().start(); } else { start_ = content.ToUC16Vector().start(); } } void ConsStringIterator::Initialize(ConsString* cons_string, int offset) { DCHECK_NOT_NULL(cons_string); root_ = cons_string; consumed_ = offset; // Force stack blown condition to trigger restart. depth_ = 1; maximum_depth_ = kStackSize + depth_; DCHECK(StackBlown()); } String* ConsStringIterator::Continue(int* offset_out) { DCHECK_NE(depth_, 0); DCHECK_EQ(0, *offset_out); bool blew_stack = StackBlown(); String* string = nullptr; // Get the next leaf if there is one. if (!blew_stack) string = NextLeaf(&blew_stack); // Restart search from root. if (blew_stack) { DCHECK_NULL(string); string = Search(offset_out); } // Ensure future calls return null immediately. if (string == nullptr) Reset(nullptr); return string; } String* ConsStringIterator::Search(int* offset_out) { ConsString* cons_string = root_; // Reset the stack, pushing the root string. depth_ = 1; maximum_depth_ = 1; frames_[0] = cons_string; const int consumed = consumed_; int offset = 0; while (true) { // Loop until the string is found which contains the target offset. String* string = cons_string->first(); int length = string->length(); int32_t type; if (consumed < offset + length) { // Target offset is in the left branch. // Keep going if we're still in a ConString. type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushLeft(cons_string); continue; } // Tell the stack we're done descending. AdjustMaximumDepth(); } else { // Descend right. // Update progress through the string. offset += length; // Keep going if we're still in a ConString. string = cons_string->second(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushRight(cons_string); continue; } // Need this to be updated for the current string. length = string->length(); // Account for the possibility of an empty right leaf. // This happens only if we have asked for an offset outside the string. if (length == 0) { // Reset so future operations will return null immediately. Reset(nullptr); return nullptr; } // Tell the stack we're done descending. AdjustMaximumDepth(); // Pop stack so next iteration is in correct place. Pop(); } DCHECK_NE(length, 0); // Adjust return values and exit. consumed_ = offset + length; *offset_out = consumed - offset; return string; } UNREACHABLE(); } String* ConsStringIterator::NextLeaf(bool* blew_stack) { while (true) { // Tree traversal complete. if (depth_ == 0) { *blew_stack = false; return nullptr; } // We've lost track of higher nodes. if (StackBlown()) { *blew_stack = true; return nullptr; } // Go right. ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)]; String* string = cons_string->second(); int32_t type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { // Pop stack so next iteration is in correct place. Pop(); int length = string->length(); // Could be a flattened ConsString. if (length == 0) continue; consumed_ += length; return string; } cons_string = ConsString::cast(string); PushRight(cons_string); // Need to traverse all the way left. while (true) { // Continue left. string = cons_string->first(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { AdjustMaximumDepth(); int length = string->length(); if (length == 0) break; // Skip empty left-hand sides of ConsStrings. consumed_ += length; return string; } cons_string = ConsString::cast(string); PushLeft(cons_string); } } UNREACHABLE(); } uint16_t ConsString::ConsStringGet(int index) { DCHECK(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); } uint16_t ThinString::ThinStringGet(int index) { return actual()->Get(index); } uint16_t SlicedString::SlicedStringGet(int index) { return parent()->Get(offset() + index); } template void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { DCHECK(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kOneByteStringTag | kExternalStringTag: { CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->GetChars(); CopyChars(sink, data + from, to - from); return; } case kOneByteStringTag | kSeqStringTag: { CopyChars(sink, SeqOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kOneByteStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); if (from == 0 && cons_string->second() == first) { CopyChars(sink + boundary, sink, boundary); return; } sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); // When repeatedly appending to a string, we get a cons string that // is unbalanced to the left, a list, essentially. We inline the // common case of sequential one-byte right child. if (to - boundary == 1) { sink[boundary - from] = static_cast(second->Get(0)); } else if (second->IsSeqOneByteString()) { CopyChars(sink + boundary - from, SeqOneByteString::cast(second)->GetChars(), to - boundary); } else { WriteToFlat(second, sink + boundary - from, 0, to - boundary); } to = boundary; } source = first; } break; } case kOneByteStringTag | kSlicedStringTag: case kTwoByteStringTag | kSlicedStringTag: { SlicedString* slice = SlicedString::cast(source); unsigned offset = slice->offset(); WriteToFlat(slice->parent(), sink, from + offset, to + offset); return; } case kOneByteStringTag | kThinStringTag: case kTwoByteStringTag | kThinStringTag: source = ThinString::cast(source)->actual(); break; } } } template static void CalculateLineEndsImpl(Isolate* isolate, std::vector* line_ends, Vector src, bool include_ending_line) { const int src_len = src.length(); UnicodeCache* cache = isolate->unicode_cache(); for (int i = 0; i < src_len - 1; i++) { SourceChar current = src[i]; SourceChar next = src[i + 1]; if (cache->IsLineTerminatorSequence(current, next)) line_ends->push_back(i); } if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) { line_ends->push_back(src_len - 1); } if (include_ending_line) { // Include one character beyond the end of script. The rewriter uses that // position for the implicit return statement. line_ends->push_back(src_len); } } Handle String::CalculateLineEnds(Isolate* isolate, Handle src, bool include_ending_line) { src = Flatten(isolate, src); // Rough estimate of line count based on a roughly estimated average // length of (unpacked) code. int line_count_estimate = src->length() >> 4; std::vector line_ends; line_ends.reserve(line_count_estimate); { DisallowHeapAllocation no_allocation; // ensure vectors stay valid. // Dispatch on type of strings. String::FlatContent content = src->GetFlatContent(); DCHECK(content.IsFlat()); if (content.IsOneByte()) { CalculateLineEndsImpl(isolate, &line_ends, content.ToOneByteVector(), include_ending_line); } else { CalculateLineEndsImpl(isolate, &line_ends, content.ToUC16Vector(), include_ending_line); } } int line_count = static_cast(line_ends.size()); Handle array = isolate->factory()->NewFixedArray(line_count); for (int i = 0; i < line_count; i++) { array->set(i, Smi::FromInt(line_ends[i])); } return array; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template static inline bool CompareRawStringContents(const Char* const a, const Char* const b, int length) { return CompareChars(a, b, length) == 0; } template class RawStringComparator : public AllStatic { public: static inline bool compare(const Chars1* a, const Chars2* b, int len) { DCHECK(sizeof(Chars1) != sizeof(Chars2)); for (int i = 0; i < len; i++) { if (a[i] != b[i]) { return false; } } return true; } }; template<> class RawStringComparator { public: static inline bool compare(const uint16_t* a, const uint16_t* b, int len) { return CompareRawStringContents(a, b, len); } }; template<> class RawStringComparator { public: static inline bool compare(const uint8_t* a, const uint8_t* b, int len) { return CompareRawStringContents(a, b, len); } }; class StringComparator { class State { public: State() : is_one_byte_(true), length_(0), buffer8_(nullptr) {} void Init(String* string) { ConsString* cons_string = String::VisitFlat(this, string); iter_.Reset(cons_string); if (cons_string != nullptr) { int offset; string = iter_.Next(&offset); String::VisitFlat(this, string, offset); } } inline void VisitOneByteString(const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; length_ = length; } inline void VisitTwoByteString(const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; length_ = length; } void Advance(int consumed) { DCHECK(consumed <= length_); // Still in buffer. if (length_ != consumed) { if (is_one_byte_) { buffer8_ += consumed; } else { buffer16_ += consumed; } length_ -= consumed; return; } // Advance state. int offset; String* next = iter_.Next(&offset); DCHECK_EQ(0, offset); DCHECK_NOT_NULL(next); String::VisitFlat(this, next); } ConsStringIterator iter_; bool is_one_byte_; int length_; union { const uint8_t* buffer8_; const uint16_t* buffer16_; }; private: DISALLOW_COPY_AND_ASSIGN(State); }; public: inline StringComparator() {} template static inline bool Equals(State* state_1, State* state_2, int to_check) { const Chars1* a = reinterpret_cast(state_1->buffer8_); const Chars2* b = reinterpret_cast(state_2->buffer8_); return RawStringComparator::compare(a, b, to_check); } bool Equals(String* string_1, String* string_2) { int length = string_1->length(); state_1_.Init(string_1); state_2_.Init(string_2); while (true) { int to_check = Min(state_1_.length_, state_2_.length_); DCHECK(to_check > 0 && to_check <= length); bool is_equal; if (state_1_.is_one_byte_) { if (state_2_.is_one_byte_) { is_equal = Equals(&state_1_, &state_2_, to_check); } else { is_equal = Equals(&state_1_, &state_2_, to_check); } } else { if (state_2_.is_one_byte_) { is_equal = Equals(&state_1_, &state_2_, to_check); } else { is_equal = Equals(&state_1_, &state_2_, to_check); } } // Looping done. if (!is_equal) return false; length -= to_check; // Exit condition. Strings are equal. if (length == 0) return true; state_1_.Advance(to_check); state_2_.Advance(to_check); } } private: State state_1_; State state_2_; DISALLOW_COPY_AND_ASSIGN(StringComparator); }; bool String::SlowEquals(String* other) { DisallowHeapAllocation no_gc; // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if at least one ThinString is involved, dereference it/them // and restart. if (this->IsThinString() || other->IsThinString()) { if (other->IsThinString()) other = ThinString::cast(other)->actual(); if (this->IsThinString()) { return ThinString::cast(this)->actual()->Equals(other); } else { return this->Equals(other); } } // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (Hash() != other->Hash()) { bool found_difference = false; for (int i = 0; i < len; i++) { if (Get(i) != other->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; if (IsSeqOneByteString() && other->IsSeqOneByteString()) { const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars(); const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars(); return CompareRawStringContents(str1, str2, len); } StringComparator comparator; return comparator.Equals(this, other); } bool String::SlowEquals(Isolate* isolate, Handle one, Handle two) { // Fast check: negative check with lengths. int one_length = one->length(); if (one_length != two->length()) return false; if (one_length == 0) return true; // Fast check: if at least one ThinString is involved, dereference it/them // and restart. if (one->IsThinString() || two->IsThinString()) { if (one->IsThinString()) one = handle(ThinString::cast(*one)->actual(), isolate); if (two->IsThinString()) two = handle(ThinString::cast(*two)->actual(), isolate); return String::Equals(isolate, one, two); } // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (one->HasHashCode() && two->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (one->Hash() != two->Hash()) { bool found_difference = false; for (int i = 0; i < one_length; i++) { if (one->Get(i) != two->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (one->Hash() != two->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (one->Get(0) != two->Get(0)) return false; one = String::Flatten(isolate, one); two = String::Flatten(isolate, two); DisallowHeapAllocation no_gc; String::FlatContent flat1 = one->GetFlatContent(); String::FlatContent flat2 = two->GetFlatContent(); if (flat1.IsOneByte() && flat2.IsOneByte()) { return CompareRawStringContents(flat1.ToOneByteVector().start(), flat2.ToOneByteVector().start(), one_length); } else { for (int i = 0; i < one_length; i++) { if (flat1.Get(i) != flat2.Get(i)) return false; } return true; } } // static ComparisonResult String::Compare(Isolate* isolate, Handle x, Handle y) { // A few fast case tests before we flatten. if (x.is_identical_to(y)) { return ComparisonResult::kEqual; } else if (y->length() == 0) { return x->length() == 0 ? ComparisonResult::kEqual : ComparisonResult::kGreaterThan; } else if (x->length() == 0) { return ComparisonResult::kLessThan; } int const d = x->Get(0) - y->Get(0); if (d < 0) { return ComparisonResult::kLessThan; } else if (d > 0) { return ComparisonResult::kGreaterThan; } // Slow case. x = String::Flatten(isolate, x); y = String::Flatten(isolate, y); DisallowHeapAllocation no_gc; ComparisonResult result = ComparisonResult::kEqual; int prefix_length = x->length(); if (y->length() < prefix_length) { prefix_length = y->length(); result = ComparisonResult::kGreaterThan; } else if (y->length() > prefix_length) { result = ComparisonResult::kLessThan; } int r; String::FlatContent x_content = x->GetFlatContent(); String::FlatContent y_content = y->GetFlatContent(); if (x_content.IsOneByte()) { Vector x_chars = x_content.ToOneByteVector(); if (y_content.IsOneByte()) { Vector y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } else { Vector x_chars = x_content.ToUC16Vector(); if (y_content.IsOneByte()) { Vector y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } if (r < 0) { result = ComparisonResult::kLessThan; } else if (r > 0) { result = ComparisonResult::kGreaterThan; } return result; } Object* String::IndexOf(Isolate* isolate, Handle receiver, Handle search, Handle position) { if (receiver->IsNullOrUndefined(isolate)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, isolate->factory()->NewStringFromAsciiChecked( "String.prototype.indexOf"))); } Handle receiver_string; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string, Object::ToString(isolate, receiver)); Handle search_string; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string, Object::ToString(isolate, search)); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position, Object::ToInteger(isolate, position)); uint32_t index = receiver_string->ToValidIndex(*position); return Smi::FromInt( String::IndexOf(isolate, receiver_string, search_string, index)); } namespace { template int SearchString(Isolate* isolate, String::FlatContent receiver_content, Vector pat_vector, int start_index) { if (receiver_content.IsOneByte()) { return SearchString(isolate, receiver_content.ToOneByteVector(), pat_vector, start_index); } return SearchString(isolate, receiver_content.ToUC16Vector(), pat_vector, start_index); } } // namespace int String::IndexOf(Isolate* isolate, Handle receiver, Handle search, int start_index) { DCHECK_LE(0, start_index); DCHECK(start_index <= receiver->length()); uint32_t search_length = search->length(); if (search_length == 0) return start_index; uint32_t receiver_length = receiver->length(); if (start_index + search_length > receiver_length) return -1; receiver = String::Flatten(isolate, receiver); search = String::Flatten(isolate, search); DisallowHeapAllocation no_gc; // ensure vectors stay valid // Extract flattened substrings of cons strings before getting encoding. String::FlatContent receiver_content = receiver->GetFlatContent(); String::FlatContent search_content = search->GetFlatContent(); // dispatch on type of strings if (search_content.IsOneByte()) { Vector pat_vector = search_content.ToOneByteVector(); return SearchString(isolate, receiver_content, pat_vector, start_index); } Vector pat_vector = search_content.ToUC16Vector(); return SearchString(isolate, receiver_content, pat_vector, start_index); } MaybeHandle String::GetSubstitution(Isolate* isolate, Match* match, Handle replacement, int start_index) { DCHECK_GE(start_index, 0); Factory* factory = isolate->factory(); const int replacement_length = replacement->length(); const int captures_length = match->CaptureCount(); replacement = String::Flatten(isolate, replacement); Handle dollar_string = factory->LookupSingleCharacterStringFromCode('$'); int next_dollar_ix = String::IndexOf(isolate, replacement, dollar_string, start_index); if (next_dollar_ix < 0) { return replacement; } IncrementalStringBuilder builder(isolate); if (next_dollar_ix > 0) { builder.AppendString(factory->NewSubString(replacement, 0, next_dollar_ix)); } while (true) { const int peek_ix = next_dollar_ix + 1; if (peek_ix >= replacement_length) { builder.AppendCharacter('$'); return builder.Finish(); } int continue_from_ix = -1; const uint16_t peek = replacement->Get(peek_ix); switch (peek) { case '$': // $$ builder.AppendCharacter('$'); continue_from_ix = peek_ix + 1; break; case '&': // $& - match builder.AppendString(match->GetMatch()); continue_from_ix = peek_ix + 1; break; case '`': // $` - prefix builder.AppendString(match->GetPrefix()); continue_from_ix = peek_ix + 1; break; case '\'': // $' - suffix builder.AppendString(match->GetSuffix()); continue_from_ix = peek_ix + 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { // Valid indices are $1 .. $9, $01 .. $09 and $10 .. $99 int scaled_index = (peek - '0'); int advance = 1; if (peek_ix + 1 < replacement_length) { const uint16_t next_peek = replacement->Get(peek_ix + 1); if (next_peek >= '0' && next_peek <= '9') { const int new_scaled_index = scaled_index * 10 + (next_peek - '0'); if (new_scaled_index < captures_length) { scaled_index = new_scaled_index; advance = 2; } } } if (scaled_index == 0 || scaled_index >= captures_length) { builder.AppendCharacter('$'); continue_from_ix = peek_ix; break; } bool capture_exists; Handle capture; ASSIGN_RETURN_ON_EXCEPTION( isolate, capture, match->GetCapture(scaled_index, &capture_exists), String); if (capture_exists) builder.AppendString(capture); continue_from_ix = peek_ix + advance; break; } case '<': { // $ - named capture typedef String::Match::CaptureState CaptureState; if (!match->HasNamedCaptures()) { builder.AppendCharacter('$'); continue_from_ix = peek_ix; break; } Handle bracket_string = factory->LookupSingleCharacterStringFromCode('>'); const int closing_bracket_ix = String::IndexOf(isolate, replacement, bracket_string, peek_ix + 1); if (closing_bracket_ix == -1) { // No closing bracket was found, treat '$<' as a string literal. builder.AppendCharacter('$'); continue_from_ix = peek_ix; break; } Handle capture_name = factory->NewSubString(replacement, peek_ix + 1, closing_bracket_ix); Handle capture; CaptureState capture_state; ASSIGN_RETURN_ON_EXCEPTION( isolate, capture, match->GetNamedCapture(capture_name, &capture_state), String); switch (capture_state) { case CaptureState::INVALID: case CaptureState::UNMATCHED: break; case CaptureState::MATCHED: builder.AppendString(capture); break; } continue_from_ix = closing_bracket_ix + 1; break; } default: builder.AppendCharacter('$'); continue_from_ix = peek_ix; break; } // Go the the next $ in the replacement. // TODO(jgruber): Single-char lookups could be much more efficient. DCHECK_NE(continue_from_ix, -1); next_dollar_ix = String::IndexOf(isolate, replacement, dollar_string, continue_from_ix); // Return if there are no more $ characters in the replacement. If we // haven't reached the end, we need to append the suffix. if (next_dollar_ix < 0) { if (continue_from_ix < replacement_length) { builder.AppendString(factory->NewSubString( replacement, continue_from_ix, replacement_length)); } return builder.Finish(); } // Append substring between the previous and the next $ character. if (next_dollar_ix > continue_from_ix) { builder.AppendString( factory->NewSubString(replacement, continue_from_ix, next_dollar_ix)); } } UNREACHABLE(); } namespace { // for String.Prototype.lastIndexOf template int StringMatchBackwards(Vector subject, Vector pattern, int idx) { int pattern_length = pattern.length(); DCHECK_GE(pattern_length, 1); DCHECK(idx + pattern_length <= subject.length()); if (sizeof(schar) == 1 && sizeof(pchar) > 1) { for (int i = 0; i < pattern_length; i++) { uc16 c = pattern[i]; if (c > String::kMaxOneByteCharCode) { return -1; } } } pchar pattern_first_char = pattern[0]; for (int i = idx; i >= 0; i--) { if (subject[i] != pattern_first_char) continue; int j = 1; while (j < pattern_length) { if (pattern[j] != subject[i + j]) { break; } j++; } if (j == pattern_length) { return i; } } return -1; } } // namespace Object* String::LastIndexOf(Isolate* isolate, Handle receiver, Handle search, Handle position) { if (receiver->IsNullOrUndefined(isolate)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, isolate->factory()->NewStringFromAsciiChecked( "String.prototype.lastIndexOf"))); } Handle receiver_string; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string, Object::ToString(isolate, receiver)); Handle search_string; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string, Object::ToString(isolate, search)); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position, Object::ToNumber(isolate, position)); uint32_t start_index; if (position->IsNaN()) { start_index = receiver_string->length(); } else { ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position, Object::ToInteger(isolate, position)); start_index = receiver_string->ToValidIndex(*position); } uint32_t pattern_length = search_string->length(); uint32_t receiver_length = receiver_string->length(); if (start_index + pattern_length > receiver_length) { start_index = receiver_length - pattern_length; } if (pattern_length == 0) { return Smi::FromInt(start_index); } receiver_string = String::Flatten(isolate, receiver_string); search_string = String::Flatten(isolate, search_string); int last_index = -1; DisallowHeapAllocation no_gc; // ensure vectors stay valid String::FlatContent receiver_content = receiver_string->GetFlatContent(); String::FlatContent search_content = search_string->GetFlatContent(); if (search_content.IsOneByte()) { Vector pat_vector = search_content.ToOneByteVector(); if (receiver_content.IsOneByte()) { last_index = StringMatchBackwards(receiver_content.ToOneByteVector(), pat_vector, start_index); } else { last_index = StringMatchBackwards(receiver_content.ToUC16Vector(), pat_vector, start_index); } } else { Vector pat_vector = search_content.ToUC16Vector(); if (receiver_content.IsOneByte()) { last_index = StringMatchBackwards(receiver_content.ToOneByteVector(), pat_vector, start_index); } else { last_index = StringMatchBackwards(receiver_content.ToUC16Vector(), pat_vector, start_index); } } return Smi::FromInt(last_index); } bool String::IsUtf8EqualTo(Vector str, bool allow_prefix_match) { int slen = length(); // Can't check exact length equality, but we can check bounds. int str_len = str.length(); if (!allow_prefix_match && (str_len < slen || str_len > slen*static_cast(unibrow::Utf8::kMaxEncodedSize))) { return false; } int i = 0; unibrow::Utf8Iterator it = unibrow::Utf8Iterator(str); while (i < slen && !it.Done()) { if (Get(i++) != *it) return false; ++it; } return (allow_prefix_match || i == slen) && it.Done(); } template <> bool String::IsEqualTo(Vector str) { return IsOneByteEqualTo(str); } template <> bool String::IsEqualTo(Vector str) { return IsTwoByteEqualTo(str); } bool String::IsOneByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsOneByte()) { return CompareChars(content.ToOneByteVector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != static_cast(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsTwoByte()) { return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash(Isolate* isolate) { // Should only be called if hash code has not yet been computed. DCHECK(!HasHashCode()); // Store the hash code in the object. uint32_t field = IteratingStringHasher::Hash(this, isolate->heap()->HashSeed()); set_hash_field(field); // Check the hash code is there. DCHECK(HasHashCode()); uint32_t result = field >> kHashShift; DCHECK_NE(result, 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(uint32_t* index) { int length = this->length(); if (length == 0 || length > kMaxArrayIndexSize) return false; StringCharacterStream stream(this); return StringToArrayIndex(&stream, index); } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = ArrayIndexValueBits::decode(field); return true; } else { return ComputeArrayIndex(index); } } Handle SeqString::Truncate(Handle string, int new_length) { if (new_length == 0) return string->GetReadOnlyRoots().empty_string_handle(); int new_size, old_size; int old_length = string->length(); if (old_length <= new_length) return string; if (string->IsSeqOneByteString()) { old_size = SeqOneByteString::SizeFor(old_length); new_size = SeqOneByteString::SizeFor(new_length); } else { DCHECK(string->IsSeqTwoByteString()); old_size = SeqTwoByteString::SizeFor(old_length); new_size = SeqTwoByteString::SizeFor(new_length); } int delta = old_size - new_size; Address start_of_string = string->address(); DCHECK_OBJECT_ALIGNED(start_of_string); DCHECK_OBJECT_ALIGNED(start_of_string + new_size); Heap* heap = Heap::FromWritableHeapObject(*string); // Sizes are pointer size aligned, so that we can use filler objects // that are a multiple of pointer size. heap->CreateFillerObjectAt(start_of_string + new_size, delta, ClearRecordedSlots::kNo); // We are storing the new length using release store after creating a filler // for the left-over space to avoid races with the sweeper thread. string->synchronized_set_length(new_length); return string; } void SeqOneByteString::clear_padding() { int data_size = SeqString::kHeaderSize + length() * kOneByteSize; memset(reinterpret_cast(address() + data_size), 0, SizeFor(length()) - data_size); } void SeqTwoByteString::clear_padding() { int data_size = SeqString::kHeaderSize + length() * kUC16Size; memset(reinterpret_cast(address() + data_size), 0, SizeFor(length()) - data_size); } int ExternalString::ExternalPayloadSize() const { int length_multiplier = IsTwoByteRepresentation() ? i::kShortSize : kCharSize; return length() * length_multiplier; } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. DCHECK_GT(length, 0); DCHECK_LE(length, String::kMaxArrayIndexSize); DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::ArrayIndexValueBits::kShift; value |= length << String::ArrayIndexLengthBits::kShift; DCHECK_EQ(value & String::kIsNotArrayIndexMask, 0); DCHECK_EQ(length <= String::kMaxCachedArrayIndexLength, Name::ContainsCachedArrayIndex(value)); return value; } uint32_t StringHasher::GetHashField() { if (length_ <= String::kMaxHashCalcLength) { if (is_array_index_) { return MakeArrayIndexHash(array_index_, length_); } return (GetHashCore(raw_running_hash_) << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t StringHasher::ComputeUtf8Hash(Vector chars, uint64_t seed, int* utf16_length_out) { int vector_length = chars.length(); // Handle some edge cases if (vector_length <= 1) { DCHECK(vector_length == 0 || static_cast(chars.start()[0]) <= unibrow::Utf8::kMaxOneByteChar); *utf16_length_out = vector_length; return HashSequentialString(chars.start(), vector_length, seed); } // Start with a fake length which won't affect computation. // It will be updated later. StringHasher hasher(String::kMaxArrayIndexSize, seed); DCHECK(hasher.is_array_index_); unibrow::Utf8Iterator it = unibrow::Utf8Iterator(chars); int utf16_length = 0; bool is_index = true; while (utf16_length < String::kMaxHashCalcLength && !it.Done()) { utf16_length++; uint16_t c = *it; ++it; hasher.AddCharacter(c); if (is_index) is_index = hasher.UpdateIndex(c); } // Now that hashing is done, we just need to calculate utf16_length while (!it.Done()) { ++it; utf16_length++; } *utf16_length_out = utf16_length; // Must set length here so that hash computation is correct. hasher.length_ = utf16_length; return hasher.GetHashField(); } void IteratingStringHasher::VisitConsString(ConsString* cons_string) { // Run small ConsStrings through ConsStringIterator. if (cons_string->length() < 64) { ConsStringIterator iter(cons_string); int offset; String* string; while (nullptr != (string = iter.Next(&offset))) { DCHECK_EQ(0, offset); String::VisitFlat(this, string, 0); } return; } // Slow case. const int max_length = String::kMaxHashCalcLength; int length = std::min(cons_string->length(), max_length); if (cons_string->HasOnlyOneByteChars()) { uint8_t* buffer = new uint8_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } else { uint16_t* buffer = new uint16_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { PrintF(file, "%c", Get(i)); } } int Map::Hash() { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. For predictability reasons we // use objects' offsets in respective pages for hashing instead of raw // addresses. // Shift away the tag. int hash = ObjectAddressForHashing(GetConstructor()) >> 2; // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype bits relatively to the constructor. hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits); return hash ^ (hash >> 16) ^ bit_field2(); } namespace { bool CheckEquivalent(const Map* first, const Map* second) { return first->GetConstructor() == second->GetConstructor() && first->prototype() == second->prototype() && first->instance_type() == second->instance_type() && first->bit_field() == second->bit_field() && first->is_extensible() == second->is_extensible() && first->new_target_is_base() == second->new_target_is_base() && first->has_hidden_prototype() == second->has_hidden_prototype(); } } // namespace bool Map::EquivalentToForTransition(const Map* other) const { if (!CheckEquivalent(this, other)) return false; if (instance_type() == JS_FUNCTION_TYPE) { // JSFunctions require more checks to ensure that sloppy function is // not equivalent to strict function. int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors()); return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(), nof); } return true; } bool Map::EquivalentToForElementsKindTransition(const Map* other) const { if (!EquivalentToForTransition(other)) return false; #ifdef DEBUG // Ensure that we don't try to generate elements kind transitions from maps // with fields that may be generalized in-place. This must already be handled // during addition of a new field. DescriptorArray* descriptors = instance_descriptors(); int nof = NumberOfOwnDescriptors(); for (int i = 0; i < nof; i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.location() == kField) { DCHECK(!IsInplaceGeneralizableField(details.constness(), details.representation(), descriptors->GetFieldType(i))); } } #endif return true; } bool Map::EquivalentToForNormalization(const Map* other, PropertyNormalizationMode mode) const { int properties = mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties(); return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() && GetInObjectProperties() == properties && JSObject::GetEmbedderFieldCount(this) == JSObject::GetEmbedderFieldCount(other); } void JSFunction::MarkForOptimization(ConcurrencyMode mode) { Isolate* isolate = GetIsolate(); if (!isolate->concurrent_recompilation_enabled() || isolate->bootstrapper()->IsActive()) { mode = ConcurrencyMode::kNotConcurrent; } DCHECK(!is_compiled() || IsInterpreted()); DCHECK(shared()->IsInterpreted()); DCHECK(!IsOptimized()); DCHECK(!HasOptimizedCode()); DCHECK(shared()->allows_lazy_compilation() || !shared()->optimization_disabled()); if (mode == ConcurrencyMode::kConcurrent) { if (IsInOptimizationQueue()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Not marking "); ShortPrint(); PrintF(" -- already in optimization queue.\n"); } return; } if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Marking "); ShortPrint(); PrintF(" for concurrent recompilation.\n"); } } SetOptimizationMarker(mode == ConcurrencyMode::kConcurrent ? OptimizationMarker::kCompileOptimizedConcurrent : OptimizationMarker::kCompileOptimized); } // static void JSFunction::EnsureFeedbackVector(Handle function) { Isolate* const isolate = function->GetIsolate(); if (function->feedback_cell()->value()->IsUndefined(isolate)) { Handle shared(function->shared(), isolate); if (!shared->HasAsmWasmData()) { Handle feedback_vector = FeedbackVector::New(isolate, shared); if (function->feedback_cell() == isolate->heap()->many_closures_cell()) { Handle feedback_cell = isolate->factory()->NewOneClosureCell(feedback_vector); function->set_feedback_cell(*feedback_cell); } else { function->feedback_cell()->set_value(*feedback_vector); } } } } static void GetMinInobjectSlack(Map* map, void* data) { int slack = map->UnusedPropertyFields(); if (*reinterpret_cast(data) > slack) { *reinterpret_cast(data) = slack; } } int Map::InstanceSizeFromSlack(int slack) const { return instance_size() - slack * kPointerSize; } static void ShrinkInstanceSize(Map* map, void* data) { int slack = *reinterpret_cast(data); DCHECK_GE(slack, 0); #ifdef DEBUG int old_visitor_id = Map::GetVisitorId(map); int new_unused = map->UnusedPropertyFields() - slack; #endif map->set_instance_size(map->InstanceSizeFromSlack(slack)); map->set_construction_counter(Map::kNoSlackTracking); DCHECK_EQ(old_visitor_id, Map::GetVisitorId(map)); DCHECK_EQ(new_unused, map->UnusedPropertyFields()); } static void StopSlackTracking(Map* map, void* data) { map->set_construction_counter(Map::kNoSlackTracking); } int Map::ComputeMinObjectSlack(Isolate* isolate) { DisallowHeapAllocation no_gc; // Has to be an initial map. DCHECK(GetBackPointer()->IsUndefined(isolate)); int slack = UnusedPropertyFields(); TransitionsAccessor transitions(isolate, this, &no_gc); transitions.TraverseTransitionTree(&GetMinInobjectSlack, &slack); return slack; } void Map::CompleteInobjectSlackTracking(Isolate* isolate) { DisallowHeapAllocation no_gc; // Has to be an initial map. DCHECK(GetBackPointer()->IsUndefined(isolate)); int slack = ComputeMinObjectSlack(isolate); TransitionsAccessor transitions(isolate, this, &no_gc); if (slack != 0) { // Resize the initial map and all maps in its transition tree. transitions.TraverseTransitionTree(&ShrinkInstanceSize, &slack); } else { transitions.TraverseTransitionTree(&StopSlackTracking, nullptr); } } static bool PrototypeBenefitsFromNormalization(Handle object) { DisallowHeapAllocation no_gc; if (!object->HasFastProperties()) return false; if (object->IsJSGlobalProxy()) return false; if (object->GetIsolate()->bootstrapper()->IsActive()) return false; return !object->map()->is_prototype_map() || !object->map()->should_be_fast_prototype_map(); } // static void JSObject::MakePrototypesFast(Handle receiver, WhereToStart where_to_start, Isolate* isolate) { if (!receiver->IsJSReceiver()) return; for (PrototypeIterator iter(isolate, Handle::cast(receiver), where_to_start); !iter.IsAtEnd(); iter.Advance()) { Handle current = PrototypeIterator::GetCurrent(iter); if (!current->IsJSObject()) return; Handle current_obj = Handle::cast(current); Map* current_map = current_obj->map(); if (current_map->is_prototype_map()) { // If the map is already marked as should be fast, we're done. Its // prototypes will have been marked already as well. if (current_map->should_be_fast_prototype_map()) return; Handle map(current_map, isolate); Map::SetShouldBeFastPrototypeMap(map, true, isolate); JSObject::OptimizeAsPrototype(current_obj); } } } // static void JSObject::OptimizeAsPrototype(Handle object, bool enable_setup_mode) { if (object->IsJSGlobalObject()) return; if (enable_setup_mode && PrototypeBenefitsFromNormalization(object)) { // First normalize to ensure all JSFunctions are DATA_CONSTANT. JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0, "NormalizeAsPrototype"); } if (object->map()->is_prototype_map()) { if (object->map()->should_be_fast_prototype_map() && !object->HasFastProperties()) { JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype"); } } else { Handle new_map = Map::Copy(object->GetIsolate(), handle(object->map(), object->GetIsolate()), "CopyAsPrototype"); JSObject::MigrateToMap(object, new_map); object->map()->set_is_prototype_map(true); // Replace the pointer to the exact constructor with the Object function // from the same context if undetectable from JS. This is to avoid keeping // memory alive unnecessarily. Object* maybe_constructor = object->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); if (!constructor->shared()->IsApiFunction()) { Context* context = constructor->context()->native_context(); JSFunction* object_function = context->object_function(); object->map()->SetConstructor(object_function); } } } } // static void JSObject::ReoptimizeIfPrototype(Handle object) { if (!object->map()->is_prototype_map()) return; if (!object->map()->should_be_fast_prototype_map()) return; OptimizeAsPrototype(object); } // static void JSObject::LazyRegisterPrototypeUser(Handle user, Isolate* isolate) { // Contract: In line with InvalidatePrototypeChains()'s requirements, // leaf maps don't need to register as users, only prototypes do. DCHECK(user->is_prototype_map()); Handle current_user = user; Handle current_user_info = Map::GetOrCreatePrototypeInfo(user, isolate); for (PrototypeIterator iter(isolate, user); !iter.IsAtEnd(); iter.Advance()) { // Walk up the prototype chain as far as links haven't been registered yet. if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) { break; } Handle maybe_proto = PrototypeIterator::GetCurrent(iter); // Proxies on the prototype chain are not supported. They make it // impossible to make any assumptions about the prototype chain anyway. if (maybe_proto->IsJSProxy()) return; Handle proto = Handle::cast(maybe_proto); Handle proto_info = Map::GetOrCreatePrototypeInfo(proto, isolate); Handle maybe_registry(proto_info->prototype_users(), isolate); Handle registry = maybe_registry->IsSmi() ? handle(ReadOnlyRoots(isolate->heap()).empty_weak_array_list(), isolate) : Handle::cast(maybe_registry); int slot = 0; Handle new_array = PrototypeUsers::Add(isolate, registry, current_user, &slot); current_user_info->set_registry_slot(slot); if (!maybe_registry.is_identical_to(new_array)) { proto_info->set_prototype_users(*new_array); } if (FLAG_trace_prototype_users) { PrintF("Registering %p as a user of prototype %p (map=%p).\n", reinterpret_cast(*current_user), reinterpret_cast(*proto), reinterpret_cast(proto->map())); } current_user = handle(proto->map(), isolate); current_user_info = proto_info; } } // Can be called regardless of whether |user| was actually registered with // |prototype|. Returns true when there was a registration. // static bool JSObject::UnregisterPrototypeUser(Handle user, Isolate* isolate) { DCHECK(user->is_prototype_map()); // If it doesn't have a PrototypeInfo, it was never registered. if (!user->prototype_info()->IsPrototypeInfo()) return false; // If it had no prototype before, see if it had users that might expect // registration. if (!user->prototype()->IsJSObject()) { Object* users = PrototypeInfo::cast(user->prototype_info())->prototype_users(); return users->IsWeakArrayList(); } Handle prototype(JSObject::cast(user->prototype()), isolate); Handle user_info = Map::GetOrCreatePrototypeInfo(user, isolate); int slot = user_info->registry_slot(); if (slot == PrototypeInfo::UNREGISTERED) return false; DCHECK(prototype->map()->is_prototype_map()); Object* maybe_proto_info = prototype->map()->prototype_info(); // User knows its registry slot, prototype info and user registry must exist. DCHECK(maybe_proto_info->IsPrototypeInfo()); Handle proto_info(PrototypeInfo::cast(maybe_proto_info), isolate); Handle prototype_users( WeakArrayList::cast(proto_info->prototype_users()), isolate); DCHECK_EQ(prototype_users->Get(slot), HeapObjectReference::Weak(*user)); PrototypeUsers::MarkSlotEmpty(*prototype_users, slot); if (FLAG_trace_prototype_users) { PrintF("Unregistering %p as a user of prototype %p.\n", reinterpret_cast(*user), reinterpret_cast(*prototype)); } return true; } namespace { // This function must be kept in sync with // AccessorAssembler::InvalidateValidityCellIfPrototype() which does pre-checks // before jumping here. void InvalidateOnePrototypeValidityCellInternal(Map* map) { DCHECK(map->is_prototype_map()); if (FLAG_trace_prototype_users) { PrintF("Invalidating prototype map %p 's cell\n", reinterpret_cast(map)); } Object* maybe_cell = map->prototype_validity_cell(); if (maybe_cell->IsCell()) { // Just set the value; the cell will be replaced lazily. Cell* cell = Cell::cast(maybe_cell); cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid)); } } void InvalidatePrototypeChainsInternal(Map* map) { InvalidateOnePrototypeValidityCellInternal(map); Object* maybe_proto_info = map->prototype_info(); if (!maybe_proto_info->IsPrototypeInfo()) return; PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info); WeakArrayList* prototype_users = WeakArrayList::cast(proto_info->prototype_users()); // For now, only maps register themselves as users. for (int i = PrototypeUsers::kFirstIndex; i < prototype_users->length(); ++i) { HeapObject* heap_object; if (prototype_users->Get(i)->ToWeakHeapObject(&heap_object) && heap_object->IsMap()) { // Walk the prototype chain (backwards, towards leaf objects) if // necessary. InvalidatePrototypeChainsInternal(Map::cast(heap_object)); } } } } // namespace // static Map* JSObject::InvalidatePrototypeChains(Map* map) { DisallowHeapAllocation no_gc; InvalidatePrototypeChainsInternal(map); return map; } // We also invalidate global objects validity cell when a new lexical // environment variable is added. This is necessary to ensure that // Load/StoreGlobalIC handlers that load/store from global object's prototype // get properly invalidated. // Note, that the normal Load/StoreICs that load/store through the global object // in the prototype chain are not affected by appearance of a new lexical // variable and therefore we don't propagate invalidation down. // static void JSObject::InvalidatePrototypeValidityCell(JSGlobalObject* global) { DisallowHeapAllocation no_gc; InvalidateOnePrototypeValidityCellInternal(global->map()); } // static Handle Map::GetOrCreatePrototypeInfo(Handle prototype, Isolate* isolate) { Object* maybe_proto_info = prototype->map()->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle proto_info = isolate->factory()->NewPrototypeInfo(); prototype->map()->set_prototype_info(*proto_info); return proto_info; } // static Handle Map::GetOrCreatePrototypeInfo(Handle prototype_map, Isolate* isolate) { Object* maybe_proto_info = prototype_map->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle proto_info = isolate->factory()->NewPrototypeInfo(); prototype_map->set_prototype_info(*proto_info); return proto_info; } // static void Map::SetShouldBeFastPrototypeMap(Handle map, bool value, Isolate* isolate) { if (value == false && !map->prototype_info()->IsPrototypeInfo()) { // "False" is the implicit default value, so there's nothing to do. return; } GetOrCreatePrototypeInfo(map, isolate)->set_should_be_fast_map(value); } // static Handle Map::GetOrCreatePrototypeChainValidityCell(Handle map, Isolate* isolate) { Handle maybe_prototype; if (map->IsJSGlobalObjectMap()) { DCHECK(map->is_prototype_map()); // Global object is prototype of a global proxy and therefore we can // use its validity cell for guarding global object's prototype change. maybe_prototype = isolate->global_object(); } else { maybe_prototype = handle(map->GetPrototypeChainRootMap(isolate)->prototype(), isolate); } if (!maybe_prototype->IsJSObject()) { return handle(Smi::FromInt(Map::kPrototypeChainValid), isolate); } Handle prototype = Handle::cast(maybe_prototype); // Ensure the prototype is registered with its own prototypes so its cell // will be invalidated when necessary. JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate), isolate); Object* maybe_cell = prototype->map()->prototype_validity_cell(); // Return existing cell if it's still valid. if (maybe_cell->IsCell()) { Handle cell(Cell::cast(maybe_cell), isolate); if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) { return cell; } } // Otherwise create a new cell. Handle cell = isolate->factory()->NewCell( handle(Smi::FromInt(Map::kPrototypeChainValid), isolate)); prototype->map()->set_prototype_validity_cell(*cell); return cell; } // static bool Map::IsPrototypeChainInvalidated(Map* map) { DCHECK(map->is_prototype_map()); Object* maybe_cell = map->prototype_validity_cell(); if (maybe_cell->IsCell()) { Cell* cell = Cell::cast(maybe_cell); return cell->value() != Smi::FromInt(Map::kPrototypeChainValid); } return true; } // static void Map::SetPrototype(Isolate* isolate, Handle map, Handle prototype, bool enable_prototype_setup_mode) { RuntimeCallTimerScope stats_scope(isolate, *map, RuntimeCallCounterId::kMap_SetPrototype); bool is_hidden = false; if (prototype->IsJSObject()) { Handle prototype_jsobj = Handle::cast(prototype); JSObject::OptimizeAsPrototype(prototype_jsobj, enable_prototype_setup_mode); Object* maybe_constructor = prototype_jsobj->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); Object* data = constructor->shared()->function_data(); is_hidden = (data->IsFunctionTemplateInfo() && FunctionTemplateInfo::cast(data)->hidden_prototype()) || prototype->IsJSGlobalObject(); } else if (maybe_constructor->IsFunctionTemplateInfo()) { is_hidden = FunctionTemplateInfo::cast(maybe_constructor)->hidden_prototype() || prototype->IsJSGlobalObject(); } } map->set_has_hidden_prototype(is_hidden); WriteBarrierMode wb_mode = prototype->IsNull(isolate) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; map->set_prototype(*prototype, wb_mode); } Handle CacheInitialJSArrayMaps(Handle native_context, Handle initial_map) { // Replace all of the cached initial array maps in the native context with // the appropriate transitioned elements kind maps. Handle current_map = initial_map; ElementsKind kind = current_map->elements_kind(); DCHECK_EQ(GetInitialFastElementsKind(), kind); native_context->set(Context::ArrayMapIndex(kind), *current_map); for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1; i < kFastElementsKindCount; ++i) { Handle new_map; ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i); if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) { new_map = handle(maybe_elements_transition, native_context->GetIsolate()); } else { new_map = Map::CopyAsElementsKind(native_context->GetIsolate(), current_map, next_kind, INSERT_TRANSITION); } DCHECK_EQ(next_kind, new_map->elements_kind()); native_context->set(Context::ArrayMapIndex(next_kind), *new_map); current_map = new_map; } return initial_map; } namespace { void SetInstancePrototype(Isolate* isolate, Handle function, Handle value) { // Now some logic for the maps of the objects that are created by using this // function as a constructor. if (function->has_initial_map()) { // If the function has allocated the initial map replace it with a // copy containing the new prototype. Also complete any in-object // slack tracking that is in progress at this point because it is // still tracking the old copy. function->CompleteInobjectSlackTrackingIfActive(); Handle initial_map(function->initial_map(), isolate); if (!isolate->bootstrapper()->IsActive() && initial_map->instance_type() == JS_OBJECT_TYPE) { // Put the value in the initial map field until an initial map is needed. // At that point, a new initial map is created and the prototype is put // into the initial map where it belongs. function->set_prototype_or_initial_map(*value); } else { Handle new_map = Map::Copy(isolate, initial_map, "SetInstancePrototype"); JSFunction::SetInitialMap(function, new_map, value); // If the function is used as the global Array function, cache the // updated initial maps (and transitioned versions) in the native context. Handle native_context(function->context()->native_context(), isolate); Handle array_function( native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate); if (array_function->IsJSFunction() && *function == JSFunction::cast(*array_function)) { CacheInitialJSArrayMaps(native_context, new_map); } } // Deoptimize all code that embeds the previous initial map. initial_map->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kInitialMapChangedGroup); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. function->set_prototype_or_initial_map(*value); if (value->IsJSObject()) { // Optimize as prototype to detach it from its transition tree. JSObject::OptimizeAsPrototype(Handle::cast(value)); } } } } // anonymous namespace void JSFunction::SetPrototype(Handle function, Handle value) { DCHECK(function->IsConstructor() || IsGeneratorFunction(function->shared()->kind())); Isolate* isolate = function->GetIsolate(); Handle construct_prototype; // If the value is not a JSReceiver, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSReceiver()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Handle new_map = Map::Copy(isolate, handle(function->map(), isolate), "SetPrototype"); JSObject::MigrateToMap(function, new_map); new_map->SetConstructor(*value); new_map->set_has_non_instance_prototype(true); FunctionKind kind = function->shared()->kind(); Handle native_context(function->context()->native_context(), isolate); construct_prototype = Handle( IsGeneratorFunction(kind) ? IsAsyncFunction(kind) ? native_context->initial_async_generator_prototype() : native_context->initial_generator_prototype() : native_context->initial_object_prototype(), isolate); } else { construct_prototype = Handle::cast(value); function->map()->set_has_non_instance_prototype(false); } SetInstancePrototype(isolate, function, construct_prototype); } void JSFunction::SetInitialMap(Handle function, Handle map, Handle prototype) { if (map->prototype() != *prototype) Map::SetPrototype(function->GetIsolate(), map, prototype); function->set_prototype_or_initial_map(*map); map->SetConstructor(*function); if (FLAG_trace_maps) { LOG(function->GetIsolate(), MapEvent("InitialMap", nullptr, *map, "", function->shared()->DebugName())); } } #ifdef DEBUG namespace { bool CanSubclassHaveInobjectProperties(InstanceType instance_type) { switch (instance_type) { case JS_API_OBJECT_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_ARRAY_TYPE: case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_DATA_VIEW_TYPE: case JS_DATE_TYPE: case JS_FUNCTION_TYPE: case JS_GENERATOR_OBJECT_TYPE: #ifdef V8_INTL_SUPPORT case JS_INTL_COLLATOR_TYPE: case JS_INTL_LIST_FORMAT_TYPE: case JS_INTL_PLURAL_RULES_TYPE: case JS_INTL_RELATIVE_TIME_FORMAT_TYPE: #endif case JS_ASYNC_GENERATOR_OBJECT_TYPE: case JS_MAP_TYPE: case JS_MESSAGE_OBJECT_TYPE: case JS_OBJECT_TYPE: case JS_ERROR_TYPE: case JS_ARGUMENTS_TYPE: case JS_PROMISE_TYPE: case JS_REGEXP_TYPE: case JS_SET_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_VALUE_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: case WASM_GLOBAL_TYPE: case WASM_INSTANCE_TYPE: case WASM_MEMORY_TYPE: case WASM_MODULE_TYPE: case WASM_TABLE_TYPE: return true; case BIGINT_TYPE: case OBJECT_BOILERPLATE_DESCRIPTION_TYPE: case BYTECODE_ARRAY_TYPE: case BYTE_ARRAY_TYPE: case CELL_TYPE: case CODE_TYPE: case FILLER_TYPE: case FIXED_ARRAY_TYPE: case SCRIPT_CONTEXT_TABLE_TYPE: case FIXED_DOUBLE_ARRAY_TYPE: case FEEDBACK_METADATA_TYPE: case FOREIGN_TYPE: case FREE_SPACE_TYPE: case HASH_TABLE_TYPE: case ORDERED_HASH_MAP_TYPE: case ORDERED_HASH_SET_TYPE: case NAME_DICTIONARY_TYPE: case GLOBAL_DICTIONARY_TYPE: case NUMBER_DICTIONARY_TYPE: case SIMPLE_NUMBER_DICTIONARY_TYPE: case STRING_TABLE_TYPE: case HEAP_NUMBER_TYPE: case JS_BOUND_FUNCTION_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_PROXY_TYPE: case MAP_TYPE: case MUTABLE_HEAP_NUMBER_TYPE: case ODDBALL_TYPE: case PROPERTY_CELL_TYPE: case SHARED_FUNCTION_INFO_TYPE: case SYMBOL_TYPE: case ALLOCATION_SITE_TYPE: #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: #undef TYPED_ARRAY_CASE #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE // We must not end up here for these instance types at all. UNREACHABLE(); // Fall through. default: return false; } } } // namespace #endif void JSFunction::EnsureHasInitialMap(Handle function) { DCHECK(function->has_prototype_slot()); DCHECK(function->IsConstructor() || IsResumableFunction(function->shared()->kind())); if (function->has_initial_map()) return; Isolate* isolate = function->GetIsolate(); // First create a new map with the size and number of in-object properties // suggested by the function. InstanceType instance_type; if (IsResumableFunction(function->shared()->kind())) { instance_type = IsAsyncGeneratorFunction(function->shared()->kind()) ? JS_ASYNC_GENERATOR_OBJECT_TYPE : JS_GENERATOR_OBJECT_TYPE; } else { instance_type = JS_OBJECT_TYPE; } // The constructor should be compiled for the optimization hints to be // available. int expected_nof_properties = 0; if (function->shared()->is_compiled() || Compiler::Compile(function, Compiler::CLEAR_EXCEPTION)) { DCHECK(function->shared()->is_compiled()); expected_nof_properties = function->shared()->expected_nof_properties(); } int instance_size; int inobject_properties; CalculateInstanceSizeHelper(instance_type, false, 0, expected_nof_properties, &instance_size, &inobject_properties); Handle map = isolate->factory()->NewMap(instance_type, instance_size, TERMINAL_FAST_ELEMENTS_KIND, inobject_properties); // Fetch or allocate prototype. Handle prototype; if (function->has_instance_prototype()) { prototype = handle(function->instance_prototype(), isolate); } else { prototype = isolate->factory()->NewFunctionPrototype(function); } DCHECK(map->has_fast_object_elements()); // Finally link initial map and constructor function. DCHECK(prototype->IsJSReceiver()); JSFunction::SetInitialMap(function, map, prototype); map->StartInobjectSlackTracking(); } namespace { bool FastInitializeDerivedMap(Isolate* isolate, Handle new_target, Handle constructor, Handle constructor_initial_map) { // Check that |function|'s initial map still in sync with the |constructor|, // otherwise we must create a new initial map for |function|. if (new_target->has_initial_map() && new_target->initial_map()->GetConstructor() == *constructor) { DCHECK(new_target->instance_prototype()->IsJSReceiver()); return true; } InstanceType instance_type = constructor_initial_map->instance_type(); DCHECK(CanSubclassHaveInobjectProperties(instance_type)); // Create a new map with the size and number of in-object properties // suggested by |function|. // Link initial map and constructor function if the new.target is actually a // subclass constructor. if (!IsDerivedConstructor(new_target->shared()->kind())) return false; int instance_size; int in_object_properties; int embedder_fields = JSObject::GetEmbedderFieldCount(*constructor_initial_map); bool success = JSFunction::CalculateInstanceSizeForDerivedClass( new_target, instance_type, embedder_fields, &instance_size, &in_object_properties); Handle map; if (success) { int pre_allocated = constructor_initial_map->GetInObjectProperties() - constructor_initial_map->UnusedPropertyFields(); CHECK_LE(constructor_initial_map->UsedInstanceSize(), instance_size); int unused_property_fields = in_object_properties - pre_allocated; map = Map::CopyInitialMap(isolate, constructor_initial_map, instance_size, in_object_properties, unused_property_fields); } else { map = Map::CopyInitialMap(isolate, constructor_initial_map); } map->set_new_target_is_base(false); Handle prototype(new_target->instance_prototype(), isolate); JSFunction::SetInitialMap(new_target, map, prototype); DCHECK(new_target->instance_prototype()->IsJSReceiver()); map->SetConstructor(*constructor); map->set_construction_counter(Map::kNoSlackTracking); map->StartInobjectSlackTracking(); return true; } } // namespace // static MaybeHandle JSFunction::GetDerivedMap(Isolate* isolate, Handle constructor, Handle new_target) { EnsureHasInitialMap(constructor); Handle constructor_initial_map(constructor->initial_map(), isolate); if (*new_target == *constructor) return constructor_initial_map; Handle result_map; // Fast case, new.target is a subclass of constructor. The map is cacheable // (and may already have been cached). new.target.prototype is guaranteed to // be a JSReceiver. if (new_target->IsJSFunction()) { Handle function = Handle::cast(new_target); if (FastInitializeDerivedMap(isolate, function, constructor, constructor_initial_map)) { return handle(function->initial_map(), isolate); } } // Slow path, new.target is either a proxy or can't cache the map. // new.target.prototype is not guaranteed to be a JSReceiver, and may need to // fall back to the intrinsicDefaultProto. Handle prototype; if (new_target->IsJSFunction()) { Handle function = Handle::cast(new_target); // Make sure the new.target.prototype is cached. EnsureHasInitialMap(function); prototype = handle(function->prototype(), isolate); } else { Handle prototype_string = isolate->factory()->prototype_string(); ASSIGN_RETURN_ON_EXCEPTION( isolate, prototype, JSReceiver::GetProperty(isolate, new_target, prototype_string), Map); // The above prototype lookup might change the constructor and its // prototype, hence we have to reload the initial map. EnsureHasInitialMap(constructor); constructor_initial_map = handle(constructor->initial_map(), isolate); } // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the // correct realm. Rather than directly fetching the .prototype, we fetch the // constructor that points to the .prototype. This relies on // constructor.prototype being FROZEN for those constructors. if (!prototype->IsJSReceiver()) { Handle context; ASSIGN_RETURN_ON_EXCEPTION(isolate, context, JSReceiver::GetFunctionRealm(new_target), Map); DCHECK(context->IsNativeContext()); Handle maybe_index = JSReceiver::GetDataProperty( constructor, isolate->factory()->native_context_index_symbol()); int index = maybe_index->IsSmi() ? Smi::ToInt(*maybe_index) : Context::OBJECT_FUNCTION_INDEX; Handle realm_constructor(JSFunction::cast(context->get(index)), isolate); prototype = handle(realm_constructor->prototype(), isolate); } Handle map = Map::CopyInitialMap(isolate, constructor_initial_map); map->set_new_target_is_base(false); CHECK(prototype->IsJSReceiver()); if (map->prototype() != *prototype) Map::SetPrototype(isolate, map, prototype); map->SetConstructor(*constructor); return map; } int JSFunction::ComputeInstanceSizeWithMinSlack(Isolate* isolate) { if (has_prototype_slot() && has_initial_map() && initial_map()->IsInobjectSlackTrackingInProgress()) { int slack = initial_map()->ComputeMinObjectSlack(isolate); return initial_map()->InstanceSizeFromSlack(slack); } return initial_map()->instance_size(); } void JSFunction::PrintName(FILE* out) { std::unique_ptr name = shared()->DebugName()->ToCString(); PrintF(out, "%s", name.get()); } Handle JSFunction::GetName(Handle function) { Isolate* isolate = function->GetIsolate(); Handle name = JSReceiver::GetDataProperty(function, isolate->factory()->name_string()); if (name->IsString()) return Handle::cast(name); return handle(function->shared()->DebugName(), isolate); } Handle JSFunction::GetDebugName(Handle function) { Isolate* isolate = function->GetIsolate(); Handle name = JSReceiver::GetDataProperty( function, isolate->factory()->display_name_string()); if (name->IsString()) return Handle::cast(name); return JSFunction::GetName(function); } bool JSFunction::SetName(Handle function, Handle name, Handle prefix) { Isolate* isolate = function->GetIsolate(); Handle function_name; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, function_name, Name::ToFunctionName(isolate, name), false); if (prefix->length() > 0) { IncrementalStringBuilder builder(isolate); builder.AppendString(prefix); builder.AppendCharacter(' '); builder.AppendString(function_name); ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, function_name, builder.Finish(), false); } RETURN_ON_EXCEPTION_VALUE( isolate, JSObject::DefinePropertyOrElementIgnoreAttributes( function, isolate->factory()->name_string(), function_name, static_cast(DONT_ENUM | READ_ONLY)), false); return true; } namespace { Handle NativeCodeFunctionSourceString( Handle shared_info) { Isolate* const isolate = shared_info->GetIsolate(); IncrementalStringBuilder builder(isolate); builder.AppendCString("function "); builder.AppendString(handle(shared_info->Name(), isolate)); builder.AppendCString("() { [native code] }"); return builder.Finish().ToHandleChecked(); } } // namespace // static Handle JSBoundFunction::ToString(Handle function) { Isolate* const isolate = function->GetIsolate(); return isolate->factory()->function_native_code_string(); } // static Handle JSFunction::ToString(Handle function) { Isolate* const isolate = function->GetIsolate(); Handle shared_info(function->shared(), isolate); // Check if {function} should hide its source code. if (!shared_info->IsUserJavaScript()) { return NativeCodeFunctionSourceString(shared_info); } // Check if we should print {function} as a class. Handle maybe_class_positions = JSReceiver::GetDataProperty( function, isolate->factory()->class_positions_symbol()); if (maybe_class_positions->IsTuple2()) { Tuple2* class_positions = Tuple2::cast(*maybe_class_positions); int start_position = Smi::ToInt(class_positions->value1()); int end_position = Smi::ToInt(class_positions->value2()); Handle script_source( String::cast(Script::cast(shared_info->script())->source()), isolate); return isolate->factory()->NewSubString(script_source, start_position, end_position); } // Check if we have source code for the {function}. if (!shared_info->HasSourceCode()) { return NativeCodeFunctionSourceString(shared_info); } if (FLAG_harmony_function_tostring) { if (shared_info->function_token_position() == kNoSourcePosition) { // If the function token position isn't valid, return [native code] to // ensure calling eval on the returned source code throws rather than // giving inconsistent call behaviour. isolate->CountUsage(v8::Isolate::UseCounterFeature:: kFunctionTokenOffsetTooLongForToString); return NativeCodeFunctionSourceString(shared_info); } return Handle::cast( SharedFunctionInfo::GetSourceCodeHarmony(shared_info)); } IncrementalStringBuilder builder(isolate); FunctionKind kind = shared_info->kind(); if (!IsArrowFunction(kind)) { if (IsConciseMethod(kind)) { if (IsAsyncGeneratorFunction(kind)) { builder.AppendCString("async *"); } else if (IsGeneratorFunction(kind)) { builder.AppendCharacter('*'); } else if (IsAsyncFunction(kind)) { builder.AppendCString("async "); } } else { if (IsAsyncGeneratorFunction(kind)) { builder.AppendCString("async function* "); } else if (IsGeneratorFunction(kind)) { builder.AppendCString("function* "); } else if (IsAsyncFunction(kind)) { builder.AppendCString("async function "); } else { builder.AppendCString("function "); } } if (shared_info->name_should_print_as_anonymous()) { builder.AppendCString("anonymous"); } else if (!shared_info->is_anonymous_expression()) { builder.AppendString(handle(shared_info->Name(), isolate)); } } if (shared_info->is_wrapped()) { builder.AppendCharacter('('); Handle args( Script::cast(shared_info->script())->wrapped_arguments(), isolate); int argc = args->length(); for (int i = 0; i < argc; i++) { if (i > 0) builder.AppendCString(", "); builder.AppendString(Handle(String::cast(args->get(i)), isolate)); } builder.AppendCString(") {\n"); } builder.AppendString( Handle::cast(SharedFunctionInfo::GetSourceCode(shared_info))); if (shared_info->is_wrapped()) { builder.AppendCString("\n}"); } return builder.Finish().ToHandleChecked(); } void Oddball::Initialize(Isolate* isolate, Handle oddball, const char* to_string, Handle to_number, const char* type_of, byte kind) { Handle internalized_to_string = isolate->factory()->InternalizeUtf8String(to_string); Handle internalized_type_of = isolate->factory()->InternalizeUtf8String(type_of); if (to_number->IsHeapNumber()) { oddball->set_to_number_raw_as_bits( Handle::cast(to_number)->value_as_bits()); } else { oddball->set_to_number_raw(to_number->Number()); } oddball->set_to_number(*to_number); oddball->set_to_string(*internalized_to_string); oddball->set_type_of(*internalized_type_of); oddball->set_kind(kind); } int Script::GetEvalPosition() { DisallowHeapAllocation no_gc; DCHECK(compilation_type() == Script::COMPILATION_TYPE_EVAL); int position = eval_from_position(); if (position < 0) { // Due to laziness, the position may not have been translated from code // offset yet, which would be encoded as negative integer. In that case, // translate and set the position. if (!has_eval_from_shared()) { position = 0; } else { SharedFunctionInfo* shared = eval_from_shared(); position = shared->abstract_code()->SourcePosition(-position); } DCHECK_GE(position, 0); set_eval_from_position(position); } return position; } void Script::InitLineEnds(Handle