// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/wasm-serialization.h" #include "src/assembler-inl.h" #include "src/external-reference-table.h" #include "src/objects-inl.h" #include "src/objects.h" #include "src/snapshot/code-serializer.h" #include "src/snapshot/serializer-common.h" #include "src/utils.h" #include "src/version.h" #include "src/wasm/function-compiler.h" #include "src/wasm/module-compiler.h" #include "src/wasm/module-decoder.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-objects.h" #include "src/wasm/wasm-result.h" namespace v8 { namespace internal { namespace wasm { namespace { // TODO(bbudge) Try to unify the various implementations of readers and writers // in WASM, e.g. StreamProcessor and ZoneBuffer, with these. class Writer { public: explicit Writer(Vector buffer) : start_(buffer.start()), end_(buffer.end()), pos_(buffer.start()) {} size_t bytes_written() const { return pos_ - start_; } byte* current_location() const { return pos_; } size_t current_size() const { return end_ - pos_; } Vector current_buffer() const { return {current_location(), current_size()}; } template void Write(const T& value) { DCHECK_GE(current_size(), sizeof(T)); WriteUnalignedValue(reinterpret_cast
(current_location()), value); pos_ += sizeof(T); if (FLAG_wasm_trace_serialization) { StdoutStream{} << "wrote: " << (size_t)value << " sized: " << sizeof(T) << std::endl; } } void WriteVector(const Vector v) { DCHECK_GE(current_size(), v.size()); if (v.size() > 0) { memcpy(current_location(), v.start(), v.size()); pos_ += v.size(); } if (FLAG_wasm_trace_serialization) { StdoutStream{} << "wrote vector of " << v.size() << " elements" << std::endl; } } void Skip(size_t size) { pos_ += size; } private: byte* const start_; byte* const end_; byte* pos_; }; class Reader { public: explicit Reader(Vector buffer) : start_(buffer.start()), end_(buffer.end()), pos_(buffer.start()) {} size_t bytes_read() const { return pos_ - start_; } const byte* current_location() const { return pos_; } size_t current_size() const { return end_ - pos_; } Vector current_buffer() const { return {current_location(), current_size()}; } template T Read() { DCHECK_GE(current_size(), sizeof(T)); T value = ReadUnalignedValue(reinterpret_cast
(current_location())); pos_ += sizeof(T); if (FLAG_wasm_trace_serialization) { StdoutStream{} << "read: " << (size_t)value << " sized: " << sizeof(T) << std::endl; } return value; } void ReadVector(Vector v) { if (v.size() > 0) { DCHECK_GE(current_size(), v.size()); memcpy(v.start(), current_location(), v.size()); pos_ += v.size(); } if (FLAG_wasm_trace_serialization) { StdoutStream{} << "read vector of " << v.size() << " elements" << std::endl; } } void Skip(size_t size) { pos_ += size; } private: const byte* const start_; const byte* const end_; const byte* pos_; }; constexpr size_t kVersionSize = 4 * sizeof(uint32_t); void WriteVersion(Isolate* isolate, Writer* writer) { writer->Write(SerializedData::ComputeMagicNumber( isolate->heap()->external_reference_table())); writer->Write(Version::Hash()); writer->Write(static_cast(CpuFeatures::SupportedFeatures())); writer->Write(FlagList::Hash()); } bool IsSupportedVersion(Isolate* isolate, const Vector version) { if (version.size() < kVersionSize) return false; byte current_version[kVersionSize]; Writer writer({current_version, kVersionSize}); WriteVersion(isolate, &writer); return memcmp(version.start(), current_version, kVersionSize) == 0; } // On Intel, call sites are encoded as a displacement. For linking and for // serialization/deserialization, we want to store/retrieve a tag (the function // index). On Intel, that means accessing the raw displacement. // On ARM64, call sites are encoded as either a literal load or a direct branch. // Other platforms simply require accessing the target address. void SetWasmCalleeTag(RelocInfo* rinfo, uint32_t tag) { #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 *(reinterpret_cast(rinfo->target_address_address())) = tag; #elif V8_TARGET_ARCH_ARM64 Instruction* instr = reinterpret_cast(rinfo->pc()); if (instr->IsLdrLiteralX()) { Memory
(rinfo->constant_pool_entry_address()) = static_cast
(tag); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); instr->SetBranchImmTarget( reinterpret_cast(rinfo->pc() + tag * kInstrSize)); } #else Address addr = static_cast
(tag); if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) { rinfo->set_target_external_reference(addr, SKIP_ICACHE_FLUSH); } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) { rinfo->set_wasm_stub_call_address(addr, SKIP_ICACHE_FLUSH); } else { rinfo->set_target_address(addr, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } #endif } uint32_t GetWasmCalleeTag(RelocInfo* rinfo) { #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 return *(reinterpret_cast(rinfo->target_address_address())); #elif V8_TARGET_ARCH_ARM64 Instruction* instr = reinterpret_cast(rinfo->pc()); if (instr->IsLdrLiteralX()) { return static_cast( Memory
(rinfo->constant_pool_entry_address())); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return static_cast(instr->ImmPCOffset() / kInstrSize); } #else Address addr; if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) { addr = rinfo->target_external_reference(); } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) { addr = rinfo->wasm_stub_call_address(); } else { addr = rinfo->target_address(); } return static_cast(addr); #endif } constexpr size_t kHeaderSize = sizeof(uint32_t) + // total wasm function count sizeof(uint32_t); // imported functions (index of first wasm function) constexpr size_t kCodeHeaderSize = sizeof(size_t) + // size of code section sizeof(size_t) + // offset of constant pool sizeof(size_t) + // offset of safepoint table sizeof(size_t) + // offset of handler table sizeof(uint32_t) + // stack slots sizeof(size_t) + // code size sizeof(size_t) + // reloc size sizeof(size_t) + // source positions size sizeof(size_t) + // protected instructions size sizeof(WasmCode::Tier); // tier } // namespace class V8_EXPORT_PRIVATE NativeModuleSerializer { public: NativeModuleSerializer() = delete; NativeModuleSerializer(Isolate*, const NativeModule*, Vector); size_t Measure() const; bool Write(Writer* writer); private: size_t MeasureCode(const WasmCode*) const; void WriteHeader(Writer* writer); void WriteCode(const WasmCode*, Writer* writer); Isolate* const isolate_; const NativeModule* const native_module_; Vector code_table_; bool write_called_; // Reverse lookup tables for embedded addresses. std::map wasm_stub_targets_lookup_; std::map reference_table_lookup_; DISALLOW_COPY_AND_ASSIGN(NativeModuleSerializer); }; NativeModuleSerializer::NativeModuleSerializer( Isolate* isolate, const NativeModule* module, Vector code_table) : isolate_(isolate), native_module_(module), code_table_(code_table), write_called_(false) { DCHECK_NOT_NULL(isolate_); DCHECK_NOT_NULL(native_module_); // TODO(mtrofin): persist the export wrappers. Ideally, we'd only persist // the unique ones, i.e. the cache. for (uint32_t i = 0; i < WasmCode::kRuntimeStubCount; ++i) { Address addr = native_module_->runtime_stub(static_cast(i)) ->instruction_start(); wasm_stub_targets_lookup_.insert(std::make_pair(addr, i)); } ExternalReferenceTable* table = isolate_->heap()->external_reference_table(); for (uint32_t i = 0; i < table->size(); ++i) { Address addr = table->address(i); reference_table_lookup_.insert(std::make_pair(addr, i)); } } size_t NativeModuleSerializer::MeasureCode(const WasmCode* code) const { if (code == nullptr) return sizeof(size_t); DCHECK_EQ(WasmCode::kFunction, code->kind()); return kCodeHeaderSize + code->instructions().size() + code->reloc_info().size() + code->source_positions().size() + code->protected_instructions().size() * sizeof(trap_handler::ProtectedInstructionData); } size_t NativeModuleSerializer::Measure() const { size_t size = kHeaderSize; for (WasmCode* code : code_table_) { size += MeasureCode(code); } return size; } void NativeModuleSerializer::WriteHeader(Writer* writer) { writer->Write(native_module_->num_functions()); writer->Write(native_module_->num_imported_functions()); } void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) { if (code == nullptr) { writer->Write(size_t{0}); return; } DCHECK_EQ(WasmCode::kFunction, code->kind()); // Write the size of the entire code section, followed by the code header. writer->Write(MeasureCode(code)); writer->Write(code->constant_pool_offset()); writer->Write(code->safepoint_table_offset()); writer->Write(code->handler_table_offset()); writer->Write(code->stack_slots()); writer->Write(code->instructions().size()); writer->Write(code->reloc_info().size()); writer->Write(code->source_positions().size()); writer->Write(code->protected_instructions().size()); writer->Write(code->tier()); // Get a pointer to the destination buffer, to hold relocated code. byte* serialized_code_start = writer->current_buffer().start(); byte* code_start = serialized_code_start; size_t code_size = code->instructions().size(); writer->Skip(code_size); // Write the reloc info, source positions, and protected code. writer->WriteVector(code->reloc_info()); writer->WriteVector(code->source_positions()); writer->WriteVector(Vector::cast(code->protected_instructions())); #if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM // On platforms that don't support misaligned word stores, copy to an aligned // buffer if necessary so we can relocate the serialized code. std::unique_ptr aligned_buffer; if (!IsAligned(reinterpret_cast
(serialized_code_start), kInt32Size)) { aligned_buffer.reset(new byte[code_size]); code_start = aligned_buffer.get(); } #endif memcpy(code_start, code->instructions().start(), code_size); // Relocate the code. int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) | RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) | RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); RelocIterator orig_iter(code->instructions(), code->reloc_info(), code->constant_pool(), mask); for (RelocIterator iter( {code_start, code->instructions().size()}, code->reloc_info(), reinterpret_cast
(code_start) + code->constant_pool_offset(), mask); !iter.done(); iter.next(), orig_iter.next()) { RelocInfo::Mode mode = orig_iter.rinfo()->rmode(); switch (mode) { case RelocInfo::WASM_CALL: { Address orig_target = orig_iter.rinfo()->wasm_call_address(); uint32_t tag = native_module_->GetFunctionIndexFromJumpTableSlot(orig_target); SetWasmCalleeTag(iter.rinfo(), tag); } break; case RelocInfo::WASM_STUB_CALL: { Address orig_target = orig_iter.rinfo()->wasm_stub_call_address(); auto stub_iter = wasm_stub_targets_lookup_.find(orig_target); DCHECK(stub_iter != wasm_stub_targets_lookup_.end()); uint32_t tag = stub_iter->second; SetWasmCalleeTag(iter.rinfo(), tag); } break; case RelocInfo::EXTERNAL_REFERENCE: { Address orig_target = orig_iter.rinfo()->target_external_reference(); auto ref_iter = reference_table_lookup_.find(orig_target); DCHECK(ref_iter != reference_table_lookup_.end()); uint32_t tag = ref_iter->second; SetWasmCalleeTag(iter.rinfo(), tag); } break; case RelocInfo::INTERNAL_REFERENCE: case RelocInfo::INTERNAL_REFERENCE_ENCODED: { Address orig_target = orig_iter.rinfo()->target_internal_reference(); Address offset = orig_target - code->instruction_start(); Assembler::deserialization_set_target_internal_reference_at( iter.rinfo()->pc(), offset, mode); } break; default: UNREACHABLE(); } } // If we copied to an aligned buffer, copy code into serialized buffer. if (code_start != serialized_code_start) { memcpy(serialized_code_start, code_start, code_size); } } bool NativeModuleSerializer::Write(Writer* writer) { DCHECK(!write_called_); write_called_ = true; WriteHeader(writer); for (WasmCode* code : code_table_) { WriteCode(code, writer); } return true; } WasmSerializer::WasmSerializer(Isolate* isolate, NativeModule* native_module) : isolate_(isolate), native_module_(native_module), code_table_(native_module->SnapshotCodeTable()) {} size_t WasmSerializer::GetSerializedNativeModuleSize() const { Vector code_table(code_table_.data(), code_table_.size()); NativeModuleSerializer serializer(isolate_, native_module_, code_table); return kVersionSize + serializer.Measure(); } bool WasmSerializer::SerializeNativeModule(Vector buffer) const { Vector code_table(code_table_.data(), code_table_.size()); NativeModuleSerializer serializer(isolate_, native_module_, code_table); size_t measured_size = kVersionSize + serializer.Measure(); if (buffer.size() < measured_size) return false; Writer writer(buffer); WriteVersion(isolate_, &writer); if (!serializer.Write(&writer)) return false; DCHECK_EQ(measured_size, writer.bytes_written()); return true; } class V8_EXPORT_PRIVATE NativeModuleDeserializer { public: NativeModuleDeserializer() = delete; NativeModuleDeserializer(Isolate*, NativeModule*); bool Read(Reader* reader); private: bool ReadHeader(Reader* reader); bool ReadCode(uint32_t fn_index, Reader* reader); Isolate* const isolate_; NativeModule* const native_module_; bool read_called_; DISALLOW_COPY_AND_ASSIGN(NativeModuleDeserializer); }; NativeModuleDeserializer::NativeModuleDeserializer(Isolate* isolate, NativeModule* native_module) : isolate_(isolate), native_module_(native_module), read_called_(false) {} bool NativeModuleDeserializer::Read(Reader* reader) { DCHECK(!read_called_); read_called_ = true; if (!ReadHeader(reader)) return false; uint32_t total_fns = native_module_->num_functions(); uint32_t first_wasm_fn = native_module_->num_imported_functions(); for (uint32_t i = first_wasm_fn; i < total_fns; ++i) { if (!ReadCode(i, reader)) return false; } return reader->current_size() == 0; } bool NativeModuleDeserializer::ReadHeader(Reader* reader) { size_t functions = reader->Read(); size_t imports = reader->Read(); return functions == native_module_->num_functions() && imports == native_module_->num_imported_functions(); } bool NativeModuleDeserializer::ReadCode(uint32_t fn_index, Reader* reader) { size_t code_section_size = reader->Read(); if (code_section_size == 0) return true; size_t constant_pool_offset = reader->Read(); size_t safepoint_table_offset = reader->Read(); size_t handler_table_offset = reader->Read(); uint32_t stack_slot_count = reader->Read(); size_t code_size = reader->Read(); size_t reloc_size = reader->Read(); size_t source_position_size = reader->Read(); size_t protected_instructions_size = reader->Read(); WasmCode::Tier tier = reader->Read(); Vector code_buffer = {reader->current_location(), code_size}; reader->Skip(code_size); OwnedVector reloc_info = OwnedVector::New(reloc_size); reader->ReadVector(reloc_info.as_vector()); OwnedVector source_pos = OwnedVector::New(source_position_size); reader->ReadVector(source_pos.as_vector()); auto protected_instructions = OwnedVector::New( protected_instructions_size); reader->ReadVector(Vector::cast(protected_instructions.as_vector())); WasmCode* code = native_module_->AddDeserializedCode( fn_index, code_buffer, stack_slot_count, safepoint_table_offset, handler_table_offset, constant_pool_offset, std::move(protected_instructions), std::move(reloc_info), std::move(source_pos), tier); // Relocate the code. int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) | RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) | RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); for (RelocIterator iter(code->instructions(), code->reloc_info(), code->constant_pool(), mask); !iter.done(); iter.next()) { RelocInfo::Mode mode = iter.rinfo()->rmode(); switch (mode) { case RelocInfo::WASM_CALL: { uint32_t tag = GetWasmCalleeTag(iter.rinfo()); Address target = native_module_->GetCallTargetForFunction(tag); iter.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH); break; } case RelocInfo::WASM_STUB_CALL: { uint32_t tag = GetWasmCalleeTag(iter.rinfo()); DCHECK_LT(tag, WasmCode::kRuntimeStubCount); Address target = native_module_ ->runtime_stub(static_cast(tag)) ->instruction_start(); iter.rinfo()->set_wasm_stub_call_address(target, SKIP_ICACHE_FLUSH); break; } case RelocInfo::EXTERNAL_REFERENCE: { uint32_t tag = GetWasmCalleeTag(iter.rinfo()); Address address = isolate_->heap()->external_reference_table()->address(tag); iter.rinfo()->set_target_external_reference(address, SKIP_ICACHE_FLUSH); break; } case RelocInfo::INTERNAL_REFERENCE: case RelocInfo::INTERNAL_REFERENCE_ENCODED: { Address offset = iter.rinfo()->target_internal_reference(); Address target = code->instruction_start() + offset; Assembler::deserialization_set_target_internal_reference_at( iter.rinfo()->pc(), target, mode); break; } default: UNREACHABLE(); } } if (FLAG_print_code || FLAG_print_wasm_code) code->Print(); code->Validate(); // Finally, flush the icache for that code. Assembler::FlushICache(code->instructions().start(), code->instructions().size()); return true; } MaybeHandle DeserializeNativeModule( Isolate* isolate, Vector data, Vector wire_bytes) { if (!IsWasmCodegenAllowed(isolate, isolate->native_context())) { return {}; } if (!IsSupportedVersion(isolate, data)) { return {}; } // TODO(titzer): module features should be part of the serialization format. WasmFeatures enabled_features = WasmFeaturesFromIsolate(isolate); ModuleResult decode_result = DecodeWasmModule( enabled_features, wire_bytes.start(), wire_bytes.end(), false, i::wasm::kWasmOrigin, isolate->counters(), isolate->allocator()); if (!decode_result.ok()) return {}; CHECK_NOT_NULL(decode_result.val); WasmModule* module = decode_result.val.get(); Handle