/* * Copyright (c) 2015-2019 The Khronos Group Inc. * Copyright (c) 2015-2019 Valve Corporation * Copyright (c) 2015-2019 LunarG, Inc. * Copyright (c) 2015-2019 Google, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Courtney Goeltzenleuchter * Author: Tony Barbour * Author: Dave Houlton */ #include "vkrenderframework.h" #include "vk_format_utils.h" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr(dev, "vk" #entrypoint); \ assert(fp##entrypoint != NULL); \ } VkRenderFramework::VkRenderFramework() : inst(VK_NULL_HANDLE), m_device(NULL), m_commandPool(VK_NULL_HANDLE), m_commandBuffer(NULL), m_renderPass(VK_NULL_HANDLE), m_framebuffer(VK_NULL_HANDLE), m_addRenderPassSelfDependency(false), m_width(256.0), // default window width m_height(256.0), // default window height m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM), m_depth_stencil_fmt(VK_FORMAT_UNDEFINED), m_clear_via_load_op(true), m_depth_clear_color(1.0), m_stencil_clear_color(0), m_depthStencil(NULL), m_CreateDebugReportCallback(VK_NULL_HANDLE), m_DestroyDebugReportCallback(VK_NULL_HANDLE), m_globalMsgCallback(VK_NULL_HANDLE), m_devMsgCallback(VK_NULL_HANDLE) { memset(&m_renderPassBeginInfo, 0, sizeof(m_renderPassBeginInfo)); m_renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; // clear the back buffer to dark grey m_clear_color.float32[0] = 0.25f; m_clear_color.float32[1] = 0.25f; m_clear_color.float32[2] = 0.25f; m_clear_color.float32[3] = 0.0f; } VkRenderFramework::~VkRenderFramework() {} VkPhysicalDevice VkRenderFramework::gpu() { EXPECT_NE((VkInstance)0, inst); // Invalid to request gpu before instance exists return objs[0]; } // Return true if layer name is found and spec+implementation values are >= requested values bool VkRenderFramework::InstanceLayerSupported(const char *name, uint32_t spec, uint32_t implementation) { uint32_t layer_count = 0; std::vector layer_props; VkResult res = vkEnumerateInstanceLayerProperties(&layer_count, NULL); if (VK_SUCCESS != res) return false; if (0 == layer_count) return false; layer_props.resize(layer_count); res = vkEnumerateInstanceLayerProperties(&layer_count, layer_props.data()); if (VK_SUCCESS != res) return false; for (auto &it : layer_props) { if (0 == strncmp(name, it.layerName, VK_MAX_EXTENSION_NAME_SIZE)) { return ((it.specVersion >= spec) && (it.implementationVersion >= implementation)); } } return false; } // Enable device profile as last layer on stack overriding devsim if there, or return if not available bool VkRenderFramework::EnableDeviceProfileLayer() { if (InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) { if (VkTestFramework::m_devsim_layer) { assert(0 == strcmp(m_instance_layer_names.back(), "VK_LAYER_LUNARG_device_simulation")); m_instance_layer_names.pop_back(); m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); } else { m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); } } else { printf(" Did not find VK_LAYER_LUNARG_device_profile_api layer; skipped.\n"); return false; } return true; } // Return true if extension name is found and spec value is >= requested spec value bool VkRenderFramework::InstanceExtensionSupported(const char *ext_name, uint32_t spec) { uint32_t ext_count = 0; std::vector ext_props; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &ext_count, nullptr); if (VK_SUCCESS != res) return false; if (0 == ext_count) return false; ext_props.resize(ext_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &ext_count, ext_props.data()); if (VK_SUCCESS != res) return false; for (auto &it : ext_props) { if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) { return (it.specVersion >= spec); } } return false; } // Return true if instance exists and extension name is in the list bool VkRenderFramework::InstanceExtensionEnabled(const char *ext_name) { if (!inst) return false; bool ext_found = false; for (auto ext : m_instance_extension_names) { if (!strcmp(ext, ext_name)) { ext_found = true; break; } } return ext_found; } // Return true if extension name is found and spec value is >= requested spec value bool VkRenderFramework::DeviceExtensionSupported(VkPhysicalDevice dev, const char *layer, const char *ext_name, uint32_t spec) { if (!inst) { EXPECT_NE((VkInstance)0, inst); // Complain, not cool without an instance return false; } uint32_t ext_count = 0; std::vector ext_props; VkResult res = vkEnumerateDeviceExtensionProperties(dev, layer, &ext_count, nullptr); if (VK_SUCCESS != res) return false; if (0 == ext_count) return false; ext_props.resize(ext_count); res = vkEnumerateDeviceExtensionProperties(dev, layer, &ext_count, ext_props.data()); if (VK_SUCCESS != res) return false; for (auto &it : ext_props) { if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) { return (it.specVersion >= spec); } } return false; } // Return true if device is created and extension name is found in the list bool VkRenderFramework::DeviceExtensionEnabled(const char *ext_name) { if (NULL == m_device) return false; bool ext_found = false; for (auto ext : m_device_extension_names) { if (!strcmp(ext, ext_name)) { ext_found = true; break; } } return ext_found; } // WARNING: The DevSim layer can override the properties that are tested here, making the result of // this function dubious when DevSim is active. bool VkRenderFramework::DeviceIsMockICD() { VkPhysicalDeviceProperties props = vk_testing::PhysicalDevice(gpu()).properties(); if ((props.vendorID == 0xba5eba11) && (props.deviceID == 0xf005ba11) && (0 == strcmp("Vulkan Mock Device", props.deviceName))) { return true; } return false; } // Render into a RenderTarget and read the pixels back to see if the device can really draw. // Note: This cannot be called from inside an initialized VkRenderFramework because frameworks cannot be "nested". // It is best to call it before "Init()". bool VkRenderFramework::DeviceCanDraw() { InitFramework(NULL, NULL); InitState(NULL, NULL, 0); InitViewport(); InitRenderTarget(); // Draw a triangle that covers the entire viewport. char const *vsSource = "#version 450\n" "\n" "vec2 vertices[3];\n" "void main() { \n" " vertices[0] = vec2(-10.0, -10.0);\n" " vertices[1] = vec2( 10.0, -10.0);\n" " vertices[2] = vec2( 0.0, 10.0);\n" " gl_Position = vec4(vertices[gl_VertexIndex % 3], 0.0, 1.0);\n" "}\n"; // Draw with a solid color. char const *fsSource = "#version 450\n" "\n" "layout(location=0) out vec4 color;\n" "void main() {\n" " color = vec4(32.0/255.0);\n" "}\n"; VkShaderObj *vs = new VkShaderObj(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this); VkShaderObj *fs = new VkShaderObj(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this); VkPipelineObj *pipe = new VkPipelineObj(m_device); pipe->AddShader(vs); pipe->AddShader(fs); pipe->AddDefaultColorAttachment(); VkDescriptorSetObj *descriptorSet = new VkDescriptorSetObj(m_device); descriptorSet->CreateVKDescriptorSet(m_commandBuffer); pipe->CreateVKPipeline(descriptorSet->GetPipelineLayout(), renderPass()); m_commandBuffer->begin(); m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo); vkCmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe->handle()); m_commandBuffer->BindDescriptorSet(*descriptorSet); VkViewport viewport = m_viewports[0]; VkRect2D scissors = m_scissors[0]; vkCmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport); vkCmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissors); vkCmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0); m_commandBuffer->EndRenderPass(); m_commandBuffer->end(); VkSubmitInfo submit_info = {}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &m_commandBuffer->handle(); vkQueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE); vkQueueWaitIdle(m_device->m_queue); auto pixels = m_renderTargets[0]->Read(); delete descriptorSet; delete pipe; delete fs; delete vs; ShutdownFramework(); return pixels[0][0] == 0x20202020; } void VkRenderFramework::InitFramework(PFN_vkDebugReportCallbackEXT dbgFunction, void *userData, void *instance_pnext) { // Only enable device profile layer by default if devsim is not enabled if (!VkTestFramework::m_devsim_layer && InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) { m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); } // Assert not already initialized ASSERT_EQ((VkInstance)0, inst); // Remove any unsupported layer names from list for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end();) { if (!InstanceLayerSupported(*layer)) { ADD_FAILURE() << "InitFramework(): Requested layer " << *layer << " was not found. Disabled."; layer = m_instance_layer_names.erase(layer); } else { ++layer; } } // Remove any unsupported instance extension names from list for (auto ext = m_instance_extension_names.begin(); ext != m_instance_extension_names.end();) { if (!InstanceExtensionSupported(*ext)) { ADD_FAILURE() << "InitFramework(): Requested extension " << *ext << " was not found. Disabled."; ext = m_instance_extension_names.erase(ext); } else { ++ext; } } VkInstanceCreateInfo instInfo = {}; VkResult U_ASSERT_ONLY err; instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instInfo.pNext = instance_pnext; instInfo.pApplicationInfo = &app_info; instInfo.enabledLayerCount = m_instance_layer_names.size(); instInfo.ppEnabledLayerNames = m_instance_layer_names.data(); instInfo.enabledExtensionCount = m_instance_extension_names.size(); instInfo.ppEnabledExtensionNames = m_instance_extension_names.data(); VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; if (dbgFunction) { // Enable create time debug messages memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo)); dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; dbgCreateInfo.pfnCallback = dbgFunction; dbgCreateInfo.pUserData = userData; dbgCreateInfo.pNext = instInfo.pNext; instInfo.pNext = &dbgCreateInfo; } err = vkCreateInstance(&instInfo, NULL, &this->inst); ASSERT_VK_SUCCESS(err); err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, NULL); ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus"; ASSERT_VK_SUCCESS(err); err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, objs); ASSERT_VK_SUCCESS(err); ASSERT_GE(this->gpu_count, (uint32_t)1) << "No GPU available"; if (dbgFunction) { m_CreateDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkCreateDebugReportCallbackEXT"); ASSERT_NE(m_CreateDebugReportCallback, (PFN_vkCreateDebugReportCallbackEXT)NULL) << "Did not get function pointer for CreateDebugReportCallback"; if (m_CreateDebugReportCallback) { dbgCreateInfo.pNext = nullptr; // clean up from usage in CreateInstance above err = m_CreateDebugReportCallback(this->inst, &dbgCreateInfo, NULL, &m_globalMsgCallback); ASSERT_VK_SUCCESS(err); m_DestroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkDestroyDebugReportCallbackEXT"); ASSERT_NE(m_DestroyDebugReportCallback, (PFN_vkDestroyDebugReportCallbackEXT)NULL) << "Did not get function pointer for DestroyDebugReportCallback"; m_DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(this->inst, "vkDebugReportMessageEXT"); ASSERT_NE(m_DebugReportMessage, (PFN_vkDebugReportMessageEXT)NULL) << "Did not get function pointer for DebugReportMessage"; } } } void VkRenderFramework::ShutdownFramework() { // Nothing to shut down without a VkInstance if (!this->inst) return; delete m_commandBuffer; m_commandBuffer = nullptr; delete m_commandPool; m_commandPool = nullptr; if (m_framebuffer) vkDestroyFramebuffer(device(), m_framebuffer, NULL); m_framebuffer = VK_NULL_HANDLE; if (m_renderPass) vkDestroyRenderPass(device(), m_renderPass, NULL); m_renderPass = VK_NULL_HANDLE; if (m_globalMsgCallback) m_DestroyDebugReportCallback(this->inst, m_globalMsgCallback, NULL); m_globalMsgCallback = VK_NULL_HANDLE; if (m_devMsgCallback) m_DestroyDebugReportCallback(this->inst, m_devMsgCallback, NULL); m_devMsgCallback = VK_NULL_HANDLE; m_renderTargets.clear(); delete m_depthStencil; m_depthStencil = nullptr; // reset the driver delete m_device; m_device = nullptr; if (this->inst) vkDestroyInstance(this->inst, NULL); this->inst = (VkInstance)0; // In case we want to re-initialize } void VkRenderFramework::GetPhysicalDeviceFeatures(VkPhysicalDeviceFeatures *features) { if (NULL == m_device) { VkDeviceObj *temp_device = new VkDeviceObj(0, objs[0], m_device_extension_names); *features = temp_device->phy().features(); delete (temp_device); } else { *features = m_device->phy().features(); } } void VkRenderFramework::GetPhysicalDeviceProperties(VkPhysicalDeviceProperties *props) { *props = vk_testing::PhysicalDevice(gpu()).properties(); } void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features, void *create_device_pnext, const VkCommandPoolCreateFlags flags) { // Remove any unsupported device extension names from list for (auto ext = m_device_extension_names.begin(); ext != m_device_extension_names.end();) { if (!DeviceExtensionSupported(objs[0], nullptr, *ext)) { bool found = false; for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end(); ++layer) { if (DeviceExtensionSupported(objs[0], *layer, *ext)) { found = true; break; } } if (!found) { ADD_FAILURE() << "InitState(): The requested device extension " << *ext << " was not found. Disabled."; ext = m_device_extension_names.erase(ext); } else { ++ext; } } else { ++ext; } } m_device = new VkDeviceObj(0, objs[0], m_device_extension_names, features, create_device_pnext); m_device->SetDeviceQueue(); m_depthStencil = new VkDepthStencilObj(m_device); m_render_target_fmt = VkTestFramework::GetFormat(inst, m_device); m_lineWidth = 1.0f; m_depthBiasConstantFactor = 0.0f; m_depthBiasClamp = 0.0f; m_depthBiasSlopeFactor = 0.0f; m_blendConstants[0] = 1.0f; m_blendConstants[1] = 1.0f; m_blendConstants[2] = 1.0f; m_blendConstants[3] = 1.0f; m_minDepthBounds = 0.f; m_maxDepthBounds = 1.f; m_compareMask = 0xff; m_writeMask = 0xff; m_reference = 0; m_commandPool = new VkCommandPoolObj(m_device, m_device->graphics_queue_node_index_, flags); m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool); } void VkRenderFramework::InitViewport(float width, float height) { VkViewport viewport; VkRect2D scissor; viewport.x = 0; viewport.y = 0; viewport.width = 1.f * width; viewport.height = 1.f * height; viewport.minDepth = 0.f; viewport.maxDepth = 1.f; m_viewports.push_back(viewport); scissor.extent.width = (int32_t)width; scissor.extent.height = (int32_t)height; scissor.offset.x = 0; scissor.offset.y = 0; m_scissors.push_back(scissor); m_width = width; m_height = height; } void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); } void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); } void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); } void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); } void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) { std::vector attachments; std::vector color_references; std::vector bindings; attachments.reserve(targets + 1); // +1 for dsBinding color_references.reserve(targets); bindings.reserve(targets + 1); // +1 for dsBinding VkAttachmentDescription att = {}; att.format = m_render_target_fmt; att.samples = VK_SAMPLE_COUNT_1_BIT; att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference ref = {}; ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; m_renderPassClearValues.clear(); VkClearValue clear = {}; clear.color = m_clear_color; for (uint32_t i = 0; i < targets; i++) { attachments.push_back(att); ref.attachment = i; color_references.push_back(ref); m_renderPassClearValues.push_back(clear); std::unique_ptr img(new VkImageObj(m_device)); VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props); if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_LINEAR); } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL); } else { FAIL() << "Neither Linear nor Optimal allowed for render target"; } bindings.push_back(img->targetView(m_render_target_fmt)); m_renderTargets.push_back(std::move(img)); } VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = targets; subpass.pColorAttachments = color_references.data(); subpass.pResolveAttachments = NULL; VkAttachmentReference ds_reference; if (dsBinding) { att.format = m_depth_stencil_fmt; att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; ; att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments.push_back(att); clear.depthStencil.depth = m_depth_clear_color; clear.depthStencil.stencil = m_stencil_clear_color; m_renderPassClearValues.push_back(clear); bindings.push_back(*dsBinding); ds_reference.attachment = targets; ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; subpass.pDepthStencilAttachment = &ds_reference; } else { subpass.pDepthStencilAttachment = NULL; } subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; VkRenderPassCreateInfo rp_info = {}; rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; rp_info.attachmentCount = attachments.size(); rp_info.pAttachments = attachments.data(); rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; VkSubpassDependency subpass_dep = {}; if (m_addRenderPassSelfDependency) { // Add a subpass self-dependency to subpass 0 of default renderPass subpass_dep.srcSubpass = 0; subpass_dep.dstSubpass = 0; // Just using all framebuffer-space pipeline stages in order to get a reasonably large // set of bits that can be used for both src & dst subpass_dep.srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpass_dep.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; // Add all of the gfx mem access bits that correlate to the fb-space pipeline stages subpass_dep.srcAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; subpass_dep.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; // Must include dep_by_region bit when src & dst both include framebuffer-space stages subpass_dep.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; rp_info.dependencyCount = 1; rp_info.pDependencies = &subpass_dep; } vkCreateRenderPass(device(), &rp_info, NULL, &m_renderPass); renderPass_info_ = rp_info; // Save away a copy for tests that need access to the render pass state // Create Framebuffer and RenderPass with color attachments and any // depth/stencil attachment VkFramebufferCreateInfo fb_info = {}; fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fb_info.pNext = NULL; fb_info.renderPass = m_renderPass; fb_info.attachmentCount = bindings.size(); fb_info.pAttachments = bindings.data(); fb_info.width = (uint32_t)m_width; fb_info.height = (uint32_t)m_height; fb_info.layers = 1; vkCreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer); m_renderPassBeginInfo.renderPass = m_renderPass; m_renderPassBeginInfo.framebuffer = m_framebuffer; m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width; m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height; m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size(); m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data(); } void VkRenderFramework::DestroyRenderTarget() { vkDestroyRenderPass(device(), m_renderPass, nullptr); m_renderPass = VK_NULL_HANDLE; vkDestroyFramebuffer(device(), m_framebuffer, nullptr); m_framebuffer = VK_NULL_HANDLE; } VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) { init(); props = phy().properties(); queue_props = phy().queue_properties(); } VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, std::vector &extension_names, VkPhysicalDeviceFeatures *features, void *create_device_pnext) : vk_testing::Device(obj), id(id) { init(extension_names, features, create_device_pnext); props = phy().properties(); queue_props = phy().queue_properties(); } uint32_t VkDeviceObj::QueueFamilyMatching(VkQueueFlags with, VkQueueFlags without, bool all_bits) { // Find a queue family with and without desired capabilities for (uint32_t i = 0; i < queue_props.size(); i++) { auto flags = queue_props[i].queueFlags; bool matches = all_bits ? (flags & with) == with : (flags & with) != 0; if (matches && ((flags & without) == 0) && (queue_props[i].queueCount > 0)) { return i; } } return UINT32_MAX; } void VkDeviceObj::SetDeviceQueue() { ASSERT_NE(true, graphics_queues().empty()); m_queue = graphics_queues()[0]->handle(); } VkQueueObj *VkDeviceObj::GetDefaultQueue() { if (graphics_queues().empty()) return nullptr; return graphics_queues()[0]; } VkDescriptorSetLayoutObj::VkDescriptorSetLayoutObj(const VkDeviceObj *device, const std::vector &descriptor_set_bindings, VkDescriptorSetLayoutCreateFlags flags) { VkDescriptorSetLayoutCreateInfo dsl_ci = {}; dsl_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; dsl_ci.flags = flags; dsl_ci.bindingCount = static_cast(descriptor_set_bindings.size()); dsl_ci.pBindings = descriptor_set_bindings.data(); init(*device, dsl_ci); } VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {} VkDescriptorSetObj::~VkDescriptorSetObj() { if (m_set) { delete m_set; } } int VkDescriptorSetObj::AppendDummy() { /* request a descriptor but do not update it */ VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount; return m_nextSlot++; } int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) { assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = type; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[type] += binding.descriptorCount; m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1, &constantBuffer.m_descriptorBufferInfo)); return m_nextSlot++; } int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) { VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount; VkDescriptorImageInfo tmp = texture->DescriptorImageInfo(); tmp.sampler = sampler->handle(); m_imageSamplerDescriptors.push_back(tmp); m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp)); return m_nextSlot++; } VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); } VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const { if (m_set) return m_set->handle(); else return VK_NULL_HANDLE; } void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) { if (m_type_counts.size()) { // create VkDescriptorPool VkDescriptorPoolSize poolSize; vector sizes; for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) { poolSize.descriptorCount = it->second; poolSize.type = it->first; sizes.push_back(poolSize); } VkDescriptorPoolCreateInfo pool = {}; pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; pool.poolSizeCount = sizes.size(); pool.maxSets = 1; pool.pPoolSizes = sizes.data(); init(*m_device, pool); } // create VkDescriptorSetLayout VkDescriptorSetLayoutCreateInfo layout = {}; layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layout.bindingCount = m_layout_bindings.size(); layout.pBindings = m_layout_bindings.data(); m_layout.init(*m_device, layout); vector layouts; layouts.push_back(&m_layout); // create VkPipelineLayout VkPipelineLayoutCreateInfo pipeline_layout = {}; pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipeline_layout.setLayoutCount = layouts.size(); pipeline_layout.pSetLayouts = NULL; m_pipeline_layout.init(*m_device, pipeline_layout, layouts); if (m_type_counts.size()) { // create VkDescriptorSet m_set = alloc_sets(*m_device, m_layout); // build the update array size_t imageSamplerCount = 0; for (std::vector::iterator it = m_writes.begin(); it != m_writes.end(); it++) { it->dstSet = m_set->handle(); if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++]; } // do the updates m_device->update_descriptor_sets(m_writes); } } VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev) { // Create a renderPass with a single color attachment VkAttachmentReference attach = {}; attach.layout = VK_IMAGE_LAYOUT_GENERAL; VkSubpassDescription subpass = {}; subpass.pColorAttachments = &attach; subpass.colorAttachmentCount = 1; VkRenderPassCreateInfo rpci = {}; rpci.subpassCount = 1; rpci.pSubpasses = &subpass; rpci.attachmentCount = 1; VkAttachmentDescription attach_desc = {}; attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM; attach_desc.samples = VK_SAMPLE_COUNT_1_BIT; attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL; rpci.pAttachments = &attach_desc; rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; device = dev->device(); vkCreateRenderPass(device, &rpci, NULL, &m_renderpass); } VkRenderpassObj::~VkRenderpassObj() { vkDestroyRenderPass(device, m_renderpass, NULL); } VkImageObj::VkImageObj(VkDeviceObj *dev) { m_device = dev; m_descriptorImageInfo.imageView = VK_NULL_HANDLE; m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL; } // clang-format off void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkFlags output_mask /*= VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_MEMORY_OUTPUT_COPY_BIT*/, VkFlags input_mask /*= VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout) { // clang-format on // TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS const VkImageSubresourceRange subresourceRange = subresource_range(aspect, 0, /*VK_REMAINING_MIP_LEVELS*/ 1, 0, 1 /*VK_REMAINING_ARRAY_LAYERS*/); VkImageMemoryBarrier barrier; barrier = image_memory_barrier(output_mask, input_mask, Layout(), image_layout, subresourceRange); VkImageMemoryBarrier *pmemory_barrier = &barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; // write barrier to the command buffer vkCmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); } void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) { VkFlags src_mask, dst_mask; const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; if (image_layout == m_descriptorImageInfo.imageLayout) { return; } switch (image_layout) { case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; else src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT; break; case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; else src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; break; case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) src_mask = VK_ACCESS_TRANSFER_READ_BIT; else src_mask = 0; dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; break; case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; src_mask = all_cache_outputs; break; default: src_mask = all_cache_outputs; dst_mask = all_cache_inputs; break; } if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_UNDEFINED) src_mask = 0; ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout); m_descriptorImageInfo.imageLayout = image_layout; } void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) { if (image_layout == m_descriptorImageInfo.imageLayout) { return; } VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); VkCommandBufferObj cmd_buf(m_device, &pool); /* Build command buffer to set image layout in the driver */ cmd_buf.begin(); SetLayout(&cmd_buf, aspect, image_layout); cmd_buf.end(); cmd_buf.QueueCommandBuffer(); } bool VkImageObj::IsCompatible(const VkImageUsageFlags usages, const VkFormatFeatureFlags features) { VkFormatFeatureFlags all_feature_flags = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT | VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT | VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT | VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT | VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT | VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT; if (m_device->IsEnabledExtension(VK_IMG_FILTER_CUBIC_EXTENSION_NAME)) { all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG; } if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) { all_feature_flags |= VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR; } if (m_device->IsEnabledExtension(VK_EXT_SAMPLER_FILTER_MINMAX_EXTENSION_NAME)) { all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT; } if (m_device->IsEnabledExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME)) { all_feature_flags |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR | VK_FORMAT_FEATURE_DISJOINT_BIT_KHR | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR; } if ((features & all_feature_flags) == 0) return false; // whole format unsupported if ((usages & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) return false; if ((usages & VK_IMAGE_USAGE_STORAGE_BIT) && !(features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) return false; if ((usages & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) return false; if ((usages & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) return false; if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) { // WORKAROUND: for DevSim not reporting extended enums, and possibly some drivers too const auto all_nontransfer_feature_flags = all_feature_flags ^ (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR); const bool transfer_probably_supported_anyway = (features & all_nontransfer_feature_flags) > 0; if (!transfer_probably_supported_anyway) { if ((usages & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR)) return false; if ((usages & VK_IMAGE_USAGE_TRANSFER_DST_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) return false; } } return true; } void VkImageObj::InitNoLayout(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format, VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs, const std::vector *queue_families) { VkFormatProperties image_fmt; VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL; vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), format, &image_fmt); if (requested_tiling == VK_IMAGE_TILING_LINEAR) { if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { tiling = VK_IMAGE_TILING_LINEAR; } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { tiling = VK_IMAGE_TILING_OPTIMAL; } else { FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage << ", supported linear features: " << image_fmt.linearTilingFeatures; } } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { tiling = VK_IMAGE_TILING_OPTIMAL; } else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { tiling = VK_IMAGE_TILING_LINEAR; } else { FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage << ", supported optimal features: " << image_fmt.optimalTilingFeatures; } VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent.width = width; imageCreateInfo.extent.height = height; imageCreateInfo.mipLevels = mipLevels; imageCreateInfo.tiling = tiling; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Automatically set sharing mode etc. based on queue family information if (queue_families && (queue_families->size() > 1)) { imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; imageCreateInfo.queueFamilyIndexCount = static_cast(queue_families->size()); imageCreateInfo.pQueueFamilyIndices = queue_families->data(); } Layout(imageCreateInfo.initialLayout); imageCreateInfo.usage = usage; vk_testing::Image::init(*m_device, imageCreateInfo, reqs); } void VkImageObj::Init(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format, VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs, const std::vector *queue_families) { InitNoLayout(width, height, mipLevels, format, usage, requested_tiling, reqs, queue_families); if (!initialized()) return; // We don't have a valid handle from early stage init, and thus SetLayout will fail VkImageLayout newLayout; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT) newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; else newLayout = m_descriptorImageInfo.imageLayout; VkImageAspectFlags image_aspect = 0; if (FormatIsDepthAndStencil(format)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; } else if (FormatIsDepthOnly(format)) { image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT; } else if (FormatIsStencilOnly(format)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT; } else { // color image_aspect = VK_IMAGE_ASPECT_COLOR_BIT; } SetLayout(image_aspect, newLayout); } void VkImageObj::init(const VkImageCreateInfo *create_info) { VkFormatProperties image_fmt; vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info->format, &image_fmt); switch (create_info->tiling) { case VK_IMAGE_TILING_OPTIMAL: if (!IsCompatible(create_info->usage, image_fmt.optimalTilingFeatures)) { FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << create_info->usage << ", supported optimal features: " << image_fmt.optimalTilingFeatures; } break; case VK_IMAGE_TILING_LINEAR: if (!IsCompatible(create_info->usage, image_fmt.linearTilingFeatures)) { FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << create_info->usage << ", supported linear features: " << image_fmt.linearTilingFeatures; } break; default: break; } Layout(create_info->initialLayout); vk_testing::Image::init(*m_device, *create_info, 0); VkImageAspectFlags image_aspect = 0; if (FormatIsDepthAndStencil(create_info->format)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; } else if (FormatIsDepthOnly(create_info->format)) { image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT; } else if (FormatIsStencilOnly(create_info->format)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT; } else { // color image_aspect = VK_IMAGE_ASPECT_COLOR_BIT; } SetLayout(image_aspect, VK_IMAGE_LAYOUT_GENERAL); } VkResult VkImageObj::CopyImage(VkImageObj &src_image) { VkImageLayout src_image_layout, dest_image_layout; VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); VkCommandBufferObj cmd_buf(m_device, &pool); /* Build command buffer to copy staging texture to usable texture */ cmd_buf.begin(); /* TODO: Can we determine image aspect from image object? */ src_image_layout = src_image.Layout(); src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); dest_image_layout = (this->Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->Layout(); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); VkImageCopy copy_region = {}; copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.srcSubresource.baseArrayLayer = 0; copy_region.srcSubresource.mipLevel = 0; copy_region.srcSubresource.layerCount = 1; copy_region.srcOffset.x = 0; copy_region.srcOffset.y = 0; copy_region.srcOffset.z = 0; copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.dstSubresource.baseArrayLayer = 0; copy_region.dstSubresource.mipLevel = 0; copy_region.dstSubresource.layerCount = 1; copy_region.dstOffset.x = 0; copy_region.dstOffset.y = 0; copy_region.dstOffset.z = 0; copy_region.extent = src_image.extent(); vkCmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.Layout(), handle(), Layout(), 1, ©_region); src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout); cmd_buf.end(); cmd_buf.QueueCommandBuffer(); return VK_SUCCESS; } // Same as CopyImage, but in the opposite direction VkResult VkImageObj::CopyImageOut(VkImageObj &dst_image) { VkImageLayout src_image_layout, dest_image_layout; VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); VkCommandBufferObj cmd_buf(m_device, &pool); cmd_buf.begin(); src_image_layout = this->Layout(); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); dest_image_layout = (dst_image.Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->Layout(); dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); VkImageCopy copy_region = {}; copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.srcSubresource.baseArrayLayer = 0; copy_region.srcSubresource.mipLevel = 0; copy_region.srcSubresource.layerCount = 1; copy_region.srcOffset.x = 0; copy_region.srcOffset.y = 0; copy_region.srcOffset.z = 0; copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.dstSubresource.baseArrayLayer = 0; copy_region.dstSubresource.mipLevel = 0; copy_region.dstSubresource.layerCount = 1; copy_region.dstOffset.x = 0; copy_region.dstOffset.y = 0; copy_region.dstOffset.z = 0; copy_region.extent = dst_image.extent(); vkCmdCopyImage(cmd_buf.handle(), handle(), Layout(), dst_image.handle(), dst_image.Layout(), 1, ©_region); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout); dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout); cmd_buf.end(); cmd_buf.QueueCommandBuffer(); return VK_SUCCESS; } // Return 16x16 pixel block std::array, 16> VkImageObj::Read() { VkImageObj stagingImage(m_device); VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; stagingImage.Init(16, 16, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR, reqs); stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL); VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0)); CopyImageOut(stagingImage); void *data = stagingImage.MapMemory(); std::array, 16> m = {}; if (data) { for (uint32_t y = 0; y < stagingImage.extent().height; y++) { uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y); for (uint32_t x = 0; x < stagingImage.extent().width; x++) m[y][x] = row[x]; } } stagingImage.UnmapMemory(); return m; } VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) { m_device = device; const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM; uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00}; void *data; uint32_t x, y; VkImageObj stagingImage(device); VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; stagingImage.Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR, reqs); VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0)); if (colors == NULL) colors = tex_colors; VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = tex_format; view.components.r = VK_COMPONENT_SWIZZLE_R; view.components.g = VK_COMPONENT_SWIZZLE_G; view.components.b = VK_COMPONENT_SWIZZLE_B; view.components.a = VK_COMPONENT_SWIZZLE_A; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.levelCount = 1; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; /* create image */ Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL); stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL); /* create image view */ view.image = handle(); m_textureView.init(*m_device, view); m_descriptorImageInfo.imageView = m_textureView.handle(); data = stagingImage.MapMemory(); for (y = 0; y < extent().height; y++) { uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y); for (x = 0; x < extent().width; x++) row[x] = colors[(x & 1) ^ (y & 1)]; } stagingImage.UnmapMemory(); stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); VkImageObj::CopyImage(stagingImage); } VkSamplerObj::VkSamplerObj(VkDeviceObj *device) { m_device = device; VkSamplerCreateInfo samplerCreateInfo; memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo)); samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samplerCreateInfo.magFilter = VK_FILTER_NEAREST; samplerCreateInfo.minFilter = VK_FILTER_NEAREST; samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.mipLodBias = 0.0; samplerCreateInfo.anisotropyEnable = VK_FALSE; samplerCreateInfo.maxAnisotropy = 1; samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; samplerCreateInfo.minLod = 0.0; samplerCreateInfo.maxLod = 0.0; samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; samplerCreateInfo.unnormalizedCoordinates = VK_FALSE; init(*m_device, samplerCreateInfo); } /* * Basic ConstantBuffer constructor. Then use create methods to fill in the * details. */ VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) { m_device = device; memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); // Special case for usages outside of original limits of framework if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) { init_no_mem(*m_device, create_info(0, usage)); } } VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkDeviceSize allocationSize, const void *data, VkBufferUsageFlags usage) { m_device = device; memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) { init_as_src_and_dst(*m_device, allocationSize, reqs); } else { init(*m_device, create_info(allocationSize, usage), reqs); } void *pData = memory().map(); memcpy(pData, data, static_cast(allocationSize)); memory().unmap(); /* * Constant buffers are going to be used as vertex input buffers * or as shader uniform buffers. So, we'll create the shaderbuffer * descriptor here so it's ready if needed. */ this->m_descriptorBufferInfo.buffer = handle(); this->m_descriptorBufferInfo.offset = 0; this->m_descriptorBufferInfo.range = allocationSize; } VkPipelineShaderStageCreateInfo const &VkShaderObj::GetStageCreateInfo() const { return m_stage_info; } VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework, char const *name, bool debug) { VkResult U_ASSERT_ONLY err = VK_SUCCESS; std::vector spv; VkShaderModuleCreateInfo moduleCreateInfo; m_device = device; m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; m_stage_info.pNext = nullptr; m_stage_info.flags = 0; m_stage_info.stage = stage; m_stage_info.module = VK_NULL_HANDLE; m_stage_info.pName = name; m_stage_info.pSpecializationInfo = nullptr; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = nullptr; framework->GLSLtoSPV(stage, shader_code, spv, debug); moduleCreateInfo.pCode = spv.data(); moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int); moduleCreateInfo.flags = 0; err = init_try(*m_device, moduleCreateInfo); m_stage_info.module = handle(); assert(VK_SUCCESS == err); } VkShaderObj::VkShaderObj(VkDeviceObj *device, const std::string spv_source, VkShaderStageFlagBits stage, VkRenderFramework *framework, char const *name) { VkResult U_ASSERT_ONLY err = VK_SUCCESS; std::vector spv; VkShaderModuleCreateInfo moduleCreateInfo; m_device = device; m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; m_stage_info.pNext = nullptr; m_stage_info.flags = 0; m_stage_info.stage = stage; m_stage_info.module = VK_NULL_HANDLE; m_stage_info.pName = name; m_stage_info.pSpecializationInfo = nullptr; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = nullptr; framework->ASMtoSPV(SPV_ENV_VULKAN_1_0, 0, spv_source.data(), spv); moduleCreateInfo.pCode = spv.data(); moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int); moduleCreateInfo.flags = 0; err = init_try(*m_device, moduleCreateInfo); m_stage_info.module = handle(); assert(VK_SUCCESS == err); } VkPipelineLayoutObj::VkPipelineLayoutObj(VkDeviceObj *device, const std::vector &descriptor_layouts, const std::vector &push_constant_ranges) { VkPipelineLayoutCreateInfo pl_ci = {}; pl_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pl_ci.pushConstantRangeCount = static_cast(push_constant_ranges.size()); pl_ci.pPushConstantRanges = push_constant_ranges.data(); auto descriptor_layouts_unwrapped = MakeTestbindingHandles(descriptor_layouts); init(*device, pl_ci, descriptor_layouts_unwrapped); } void VkPipelineLayoutObj::Reset() { *this = VkPipelineLayoutObj(); } VkPipelineObj::VkPipelineObj(VkDeviceObj *device) { m_device = device; m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; m_vi_state.pNext = nullptr; m_vi_state.flags = 0; m_vi_state.vertexBindingDescriptionCount = 0; m_vi_state.pVertexBindingDescriptions = nullptr; m_vi_state.vertexAttributeDescriptionCount = 0; m_vi_state.pVertexAttributeDescriptions = nullptr; m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; m_ia_state.pNext = nullptr; m_ia_state.flags = 0; m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; m_ia_state.primitiveRestartEnable = VK_FALSE; m_te_state = nullptr; m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; m_vp_state.pNext = VK_NULL_HANDLE; m_vp_state.flags = 0; m_vp_state.viewportCount = 1; m_vp_state.scissorCount = 1; m_vp_state.pViewports = nullptr; m_vp_state.pScissors = nullptr; m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; m_rs_state.pNext = nullptr; m_rs_state.flags = 0; m_rs_state.depthClampEnable = VK_FALSE; m_rs_state.rasterizerDiscardEnable = VK_FALSE; m_rs_state.polygonMode = VK_POLYGON_MODE_FILL; m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT; m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE; m_rs_state.depthBiasEnable = VK_FALSE; m_rs_state.depthBiasConstantFactor = 0.0f; m_rs_state.depthBiasClamp = 0.0f; m_rs_state.depthBiasSlopeFactor = 0.0f; m_rs_state.lineWidth = 1.0f; m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; m_ms_state.pNext = nullptr; m_ms_state.flags = 0; m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; m_ms_state.sampleShadingEnable = VK_FALSE; m_ms_state.minSampleShading = 0.0f; m_ms_state.pSampleMask = nullptr; m_ms_state.alphaToCoverageEnable = VK_FALSE; m_ms_state.alphaToOneEnable = VK_FALSE; m_ds_state = nullptr; memset(&m_cb_state, 0, sizeof(m_cb_state)); m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; m_cb_state.blendConstants[0] = 1.0f; m_cb_state.blendConstants[1] = 1.0f; m_cb_state.blendConstants[2] = 1.0f; m_cb_state.blendConstants[3] = 1.0f; memset(&m_pd_state, 0, sizeof(m_pd_state)); } void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderStages.push_back(shader->GetStageCreateInfo()); } void VkPipelineObj::AddShader(VkPipelineShaderStageCreateInfo const &createInfo) { m_shaderStages.push_back(createInfo); } void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) { m_vi_state.pVertexAttributeDescriptions = vi_attrib; m_vi_state.vertexAttributeDescriptionCount = count; } void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) { m_vi_state.pVertexBindingDescriptions = vi_binding; m_vi_state.vertexBindingDescriptionCount = count; } void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState &att) { if (binding + 1 > m_colorAttachments.size()) { m_colorAttachments.resize(binding + 1); } m_colorAttachments[binding] = att; } void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) { m_ds_state = ds_state; } void VkPipelineObj::SetViewport(const vector viewports) { m_viewports = viewports; // If we explicitly set a null viewport, pass it through to create info // but preserve viewportCount because it musn't change if (m_viewports.size() == 0) { m_vp_state.pViewports = nullptr; } } void VkPipelineObj::SetScissor(const vector scissors) { m_scissors = scissors; // If we explicitly set a null scissor, pass it through to create info // but preserve scissorCount because it musn't change if (m_scissors.size() == 0) { m_vp_state.pScissors = nullptr; } } void VkPipelineObj::MakeDynamic(VkDynamicState state) { /* Only add a state once */ for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) { if ((*it) == state) return; } m_dynamic_state_enables.push_back(state); } void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; } void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; } void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) { m_rs_state = *rs_state; } void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = te_state; } void VkPipelineObj::InitGraphicsPipelineCreateInfo(VkGraphicsPipelineCreateInfo *gp_ci) { gp_ci->stageCount = m_shaderStages.size(); gp_ci->pStages = m_shaderStages.size() ? m_shaderStages.data() : nullptr; m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; gp_ci->pVertexInputState = &m_vi_state; m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; gp_ci->pInputAssemblyState = &m_ia_state; gp_ci->sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; gp_ci->pNext = NULL; gp_ci->flags = 0; m_cb_state.attachmentCount = m_colorAttachments.size(); m_cb_state.pAttachments = m_colorAttachments.data(); if (m_viewports.size() > 0) { m_vp_state.viewportCount = m_viewports.size(); m_vp_state.pViewports = m_viewports.data(); } else { MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT); } if (m_scissors.size() > 0) { m_vp_state.scissorCount = m_scissors.size(); m_vp_state.pScissors = m_scissors.data(); } else { MakeDynamic(VK_DYNAMIC_STATE_SCISSOR); } memset(&m_pd_state, 0, sizeof(m_pd_state)); if (m_dynamic_state_enables.size() > 0) { m_pd_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; m_pd_state.dynamicStateCount = m_dynamic_state_enables.size(); m_pd_state.pDynamicStates = m_dynamic_state_enables.data(); gp_ci->pDynamicState = &m_pd_state; } gp_ci->subpass = 0; gp_ci->pViewportState = &m_vp_state; gp_ci->pRasterizationState = &m_rs_state; gp_ci->pMultisampleState = &m_ms_state; gp_ci->pDepthStencilState = m_ds_state; gp_ci->pColorBlendState = &m_cb_state; gp_ci->pTessellationState = m_te_state; } VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass, VkGraphicsPipelineCreateInfo *gp_ci) { VkGraphicsPipelineCreateInfo info = {}; // if not given a CreateInfo, create and initialize a local one. if (gp_ci == nullptr) { gp_ci = &info; InitGraphicsPipelineCreateInfo(gp_ci); } gp_ci->layout = layout; gp_ci->renderPass = render_pass; return init_try(*m_device, *gp_ci); } VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPoolObj *pool, VkCommandBufferLevel level, VkQueueObj *queue) { m_device = device; if (queue) { m_queue = queue; } else { m_queue = m_device->GetDefaultQueue(); } assert(m_queue); auto create_info = vk_testing::CommandBuffer::create_info(pool->handle()); create_info.level = level; init(*device, create_info); } void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) { vkCmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } void VkCommandBufferObj::ClearAllBuffers(const vector> &color_objs, VkClearColorValue clear_color, VkDepthStencilObj *depth_stencil_obj, float depth_clear_value, uint32_t stencil_clear_value) { // whatever we want to do, we do it to the whole buffer VkImageSubresourceRange subrange = {}; // srRange.aspectMask to be set later subrange.baseMipLevel = 0; // TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS subrange.levelCount = 1; // VK_REMAINING_MIP_LEVELS; subrange.baseArrayLayer = 0; // TODO: Mesa crashing with VK_REMAINING_ARRAY_LAYERS subrange.layerCount = 1; // VK_REMAINING_ARRAY_LAYERS; const VkImageLayout clear_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; for (const auto &color_obj : color_objs) { subrange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; color_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED); color_obj->SetLayout(this, subrange.aspectMask, clear_layout); ClearColorImage(color_obj->image(), clear_layout, &clear_color, 1, &subrange); } if (depth_stencil_obj && depth_stencil_obj->Initialized()) { subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; if (FormatIsDepthOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (FormatIsStencilOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; depth_stencil_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED); depth_stencil_obj->SetLayout(this, subrange.aspectMask, clear_layout); VkClearDepthStencilValue clear_value = {depth_clear_value, stencil_clear_value}; ClearDepthStencilImage(depth_stencil_obj->handle(), clear_layout, &clear_value, 1, &subrange); } } void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) { vkCmdFillBuffer(handle(), buffer, offset, fill_size, data); } void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) { vkCmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData); } void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy *pRegions) { vkCmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) { vkCmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } void VkCommandBufferObj::ClearColorImage(VkImage image, VkImageLayout imageLayout, const VkClearColorValue *pColor, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { vkCmdClearColorImage(handle(), image, imageLayout, pColor, rangeCount, pRanges); } void VkCommandBufferObj::ClearDepthStencilImage(VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue *pColor, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { vkCmdClearDepthStencilImage(handle(), image, imageLayout, pColor, rangeCount, pRanges); } void VkCommandBufferObj::PrepareAttachments(const vector> &color_atts, VkDepthStencilObj *depth_stencil_att) { for (const auto &color_att : color_atts) { color_att->SetLayout(this, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } if (depth_stencil_att && depth_stencil_att->Initialized()) { VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; if (FormatIsDepthOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_DEPTH_BIT; if (FormatIsStencilOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_STENCIL_BIT; depth_stencil_att->SetLayout(this, aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); } } void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info) { vkCmdBeginRenderPass(handle(), &info, VK_SUBPASS_CONTENTS_INLINE); } void VkCommandBufferObj::EndRenderPass() { vkCmdEndRenderPass(handle()); } void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) { vkCmdSetViewport(handle(), firstViewport, viewportCount, pViewports); } void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) { vkCmdSetStencilReference(handle(), faceMask, reference); } void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { vkCmdDrawIndexed(handle(), indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); } void VkCommandBufferObj::Draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { vkCmdDraw(handle(), vertexCount, instanceCount, firstVertex, firstInstance); } void VkCommandBufferObj::QueueCommandBuffer(bool checkSuccess) { VkFenceObj nullFence; QueueCommandBuffer(nullFence, checkSuccess); } void VkCommandBufferObj::QueueCommandBuffer(const VkFenceObj &fence, bool checkSuccess) { VkResult err = VK_SUCCESS; err = m_queue->submit(*this, fence, checkSuccess); if (checkSuccess) { ASSERT_VK_SUCCESS(err); } err = m_queue->wait(); if (checkSuccess) { ASSERT_VK_SUCCESS(err); } // TODO: Determine if we really want this serialization here // Wait for work to finish before cleaning up. vkDeviceWaitIdle(m_device->device()); } void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet) { VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle(); // bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer view) if (set_obj) { vkCmdBindDescriptorSets(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet.GetPipelineLayout(), 0, 1, &set_obj, 0, NULL); } } void VkCommandBufferObj::BindIndexBuffer(VkBufferObj *indexBuffer, VkDeviceSize offset, VkIndexType indexType) { vkCmdBindIndexBuffer(handle(), indexBuffer->handle(), offset, indexType); } void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding) { vkCmdBindVertexBuffers(handle(), binding, 1, &vertexBuffer->handle(), &offset); } VkCommandPoolObj::VkCommandPoolObj(VkDeviceObj *device, uint32_t queue_family_index, VkCommandPoolCreateFlags flags) { init(*device, vk_testing::CommandPool::create_info(queue_family_index, flags)); } bool VkDepthStencilObj::Initialized() { return m_initialized; } VkDepthStencilObj::VkDepthStencilObj(VkDeviceObj *device) : VkImageObj(device) { m_initialized = false; } VkImageView *VkDepthStencilObj::BindInfo() { return &m_attachmentBindInfo; } VkFormat VkDepthStencilObj::Format() const { return this->m_depth_stencil_fmt; } void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height, VkFormat format, VkImageUsageFlags usage) { VkImageViewCreateInfo view_info = {}; m_device = device; m_initialized = true; m_depth_stencil_fmt = format; /* create image */ VkImageObj::Init(width, height, 1, m_depth_stencil_fmt, usage, VK_IMAGE_TILING_OPTIMAL); VkImageAspectFlags aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; if (FormatIsDepthOnly(format)) aspect = VK_IMAGE_ASPECT_DEPTH_BIT; else if (FormatIsStencilOnly(format)) aspect = VK_IMAGE_ASPECT_STENCIL_BIT; SetLayout(aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.pNext = NULL; view_info.image = VK_NULL_HANDLE; view_info.subresourceRange.aspectMask = aspect; view_info.subresourceRange.baseMipLevel = 0; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.baseArrayLayer = 0; view_info.subresourceRange.layerCount = 1; view_info.flags = 0; view_info.format = m_depth_stencil_fmt; view_info.image = handle(); view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; m_imageView.init(*m_device, view_info); m_attachmentBindInfo = m_imageView.handle(); }