/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/pacing/paced_sender.h" #include #include #include #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/modules/pacing/bitrate_prober.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/system_wrappers/include/critical_section_wrapper.h" #include "webrtc/system_wrappers/include/field_trial.h" namespace { // Time limit in milliseconds between packet bursts. const int64_t kMinPacketLimitMs = 5; // Upper cap on process interval, in case process has not been called in a long // time. const int64_t kMaxIntervalTimeMs = 30; } // namespace // TODO(sprang): Move at least PacketQueue and MediaBudget out to separate // files, so that we can more easily test them. namespace webrtc { namespace paced_sender { struct Packet { Packet(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t seq_number, int64_t capture_time_ms, int64_t enqueue_time_ms, size_t length_in_bytes, bool retransmission, uint64_t enqueue_order) : priority(priority), ssrc(ssrc), sequence_number(seq_number), capture_time_ms(capture_time_ms), enqueue_time_ms(enqueue_time_ms), bytes(length_in_bytes), retransmission(retransmission), enqueue_order(enqueue_order) {} RtpPacketSender::Priority priority; uint32_t ssrc; uint16_t sequence_number; int64_t capture_time_ms; int64_t enqueue_time_ms; size_t bytes; bool retransmission; uint64_t enqueue_order; std::list::iterator this_it; }; // Used by priority queue to sort packets. struct Comparator { bool operator()(const Packet* first, const Packet* second) { // Highest prio = 0. if (first->priority != second->priority) return first->priority > second->priority; // Retransmissions go first. if (second->retransmission && !first->retransmission) return true; // Older frames have higher prio. if (first->capture_time_ms != second->capture_time_ms) return first->capture_time_ms > second->capture_time_ms; return first->enqueue_order > second->enqueue_order; } }; // Class encapsulating a priority queue with some extensions. class PacketQueue { public: explicit PacketQueue(Clock* clock) : bytes_(0), clock_(clock), queue_time_sum_(0), time_last_updated_(clock_->TimeInMilliseconds()) {} virtual ~PacketQueue() {} void Push(const Packet& packet) { if (!AddToDupeSet(packet)) return; UpdateQueueTime(packet.enqueue_time_ms); // Store packet in list, use pointers in priority queue for cheaper moves. // Packets have a handle to its own iterator in the list, for easy removal // when popping from queue. packet_list_.push_front(packet); std::list::iterator it = packet_list_.begin(); it->this_it = it; // Handle for direct removal from list. prio_queue_.push(&(*it)); // Pointer into list. bytes_ += packet.bytes; } const Packet& BeginPop() { const Packet& packet = *prio_queue_.top(); prio_queue_.pop(); return packet; } void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); } void FinalizePop(const Packet& packet) { RemoveFromDupeSet(packet); bytes_ -= packet.bytes; queue_time_sum_ -= (time_last_updated_ - packet.enqueue_time_ms); packet_list_.erase(packet.this_it); RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size()); if (packet_list_.empty()) RTC_DCHECK_EQ(0u, queue_time_sum_); } bool Empty() const { return prio_queue_.empty(); } size_t SizeInPackets() const { return prio_queue_.size(); } uint64_t SizeInBytes() const { return bytes_; } int64_t OldestEnqueueTimeMs() const { auto it = packet_list_.rbegin(); if (it == packet_list_.rend()) return 0; return it->enqueue_time_ms; } void UpdateQueueTime(int64_t timestamp_ms) { RTC_DCHECK_GE(timestamp_ms, time_last_updated_); int64_t delta = timestamp_ms - time_last_updated_; // Use packet packet_list_.size() not prio_queue_.size() here, as there // might be an outstanding element popped from prio_queue_ currently in the // SendPacket() call, while packet_list_ will always be correct. queue_time_sum_ += delta * packet_list_.size(); time_last_updated_ = timestamp_ms; } int64_t AverageQueueTimeMs() const { if (prio_queue_.empty()) return 0; return queue_time_sum_ / packet_list_.size(); } private: // Try to add a packet to the set of ssrc/seqno identifiers currently in the // queue. Return true if inserted, false if this is a duplicate. bool AddToDupeSet(const Packet& packet) { SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); if (it == dupe_map_.end()) { // First for this ssrc, just insert. dupe_map_[packet.ssrc].insert(packet.sequence_number); return true; } // Insert returns a pair, where second is a bool set to true if new element. return it->second.insert(packet.sequence_number).second; } void RemoveFromDupeSet(const Packet& packet) { SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); RTC_DCHECK(it != dupe_map_.end()); it->second.erase(packet.sequence_number); if (it->second.empty()) { dupe_map_.erase(it); } } // List of packets, in the order the were enqueued. Since dequeueing may // occur out of order, use list instead of vector. std::list packet_list_; // Priority queue of the packets, sorted according to Comparator. // Use pointers into list, to avoid moving whole struct within heap. std::priority_queue, Comparator> prio_queue_; // Total number of bytes in the queue. uint64_t bytes_; // Map >, for checking duplicates. typedef std::map > SsrcSeqNoMap; SsrcSeqNoMap dupe_map_; Clock* const clock_; int64_t queue_time_sum_; int64_t time_last_updated_; }; class IntervalBudget { public: explicit IntervalBudget(int initial_target_rate_kbps) : target_rate_kbps_(initial_target_rate_kbps), bytes_remaining_(0) {} void set_target_rate_kbps(int target_rate_kbps) { target_rate_kbps_ = target_rate_kbps; bytes_remaining_ = std::max(-kWindowMs * target_rate_kbps_ / 8, bytes_remaining_); } void IncreaseBudget(int64_t delta_time_ms) { int64_t bytes = target_rate_kbps_ * delta_time_ms / 8; if (bytes_remaining_ < 0) { // We overused last interval, compensate this interval. bytes_remaining_ = bytes_remaining_ + bytes; } else { // If we underused last interval we can't use it this interval. bytes_remaining_ = bytes; } } void UseBudget(size_t bytes) { bytes_remaining_ = std::max(bytes_remaining_ - static_cast(bytes), -kWindowMs * target_rate_kbps_ / 8); } size_t bytes_remaining() const { return static_cast(std::max(0, bytes_remaining_)); } int target_rate_kbps() const { return target_rate_kbps_; } private: static const int kWindowMs = 500; int target_rate_kbps_; int bytes_remaining_; }; } // namespace paced_sender const int64_t PacedSender::kMaxQueueLengthMs = 2000; const float PacedSender::kDefaultPaceMultiplier = 2.5f; PacedSender::PacedSender(Clock* clock, Callback* callback, int bitrate_kbps, int max_bitrate_kbps, int min_bitrate_kbps) : clock_(clock), callback_(callback), critsect_(CriticalSectionWrapper::CreateCriticalSection()), paused_(false), probing_enabled_(true), media_budget_(new paced_sender::IntervalBudget(max_bitrate_kbps)), padding_budget_(new paced_sender::IntervalBudget(min_bitrate_kbps)), prober_(new BitrateProber()), bitrate_bps_(1000 * bitrate_kbps), max_bitrate_kbps_(max_bitrate_kbps), time_last_update_us_(clock->TimeInMicroseconds()), packets_(new paced_sender::PacketQueue(clock)), packet_counter_(0) { UpdateBytesPerInterval(kMinPacketLimitMs); } PacedSender::~PacedSender() {} void PacedSender::Pause() { CriticalSectionScoped cs(critsect_.get()); paused_ = true; } void PacedSender::Resume() { CriticalSectionScoped cs(critsect_.get()); paused_ = false; } void PacedSender::SetProbingEnabled(bool enabled) { RTC_CHECK_EQ(0u, packet_counter_); probing_enabled_ = enabled; } void PacedSender::UpdateBitrate(int bitrate_kbps, int max_bitrate_kbps, int min_bitrate_kbps) { CriticalSectionScoped cs(critsect_.get()); // Don't set media bitrate here as it may be boosted in order to meet max // queue time constraint. Just update max_bitrate_kbps_ and let media_budget_ // be updated in Process(). padding_budget_->set_target_rate_kbps(min_bitrate_kbps); bitrate_bps_ = 1000 * bitrate_kbps; max_bitrate_kbps_ = max_bitrate_kbps; } void PacedSender::InsertPacket(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, size_t bytes, bool retransmission) { CriticalSectionScoped cs(critsect_.get()); if (probing_enabled_ && !prober_->IsProbing()) prober_->SetEnabled(true); prober_->MaybeInitializeProbe(bitrate_bps_); int64_t now_ms = clock_->TimeInMilliseconds(); if (capture_time_ms < 0) capture_time_ms = now_ms; packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes, retransmission, packet_counter_++)); } int64_t PacedSender::ExpectedQueueTimeMs() const { CriticalSectionScoped cs(critsect_.get()); RTC_DCHECK_GT(max_bitrate_kbps_, 0); return static_cast(packets_->SizeInBytes() * 8 / max_bitrate_kbps_); } size_t PacedSender::QueueSizePackets() const { CriticalSectionScoped cs(critsect_.get()); return packets_->SizeInPackets(); } int64_t PacedSender::QueueInMs() const { CriticalSectionScoped cs(critsect_.get()); int64_t oldest_packet = packets_->OldestEnqueueTimeMs(); if (oldest_packet == 0) return 0; return clock_->TimeInMilliseconds() - oldest_packet; } int64_t PacedSender::AverageQueueTimeMs() { CriticalSectionScoped cs(critsect_.get()); packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); return packets_->AverageQueueTimeMs(); } int64_t PacedSender::TimeUntilNextProcess() { CriticalSectionScoped cs(critsect_.get()); if (prober_->IsProbing()) { int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); if (ret >= 0) return ret; } int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; return std::max(kMinPacketLimitMs - elapsed_time_ms, 0); } int32_t PacedSender::Process() { int64_t now_us = clock_->TimeInMicroseconds(); CriticalSectionScoped cs(critsect_.get()); int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000; time_last_update_us_ = now_us; int target_bitrate_kbps = max_bitrate_kbps_; // TODO(holmer): Remove the !paused_ check when issue 5307 has been fixed. if (!paused_ && elapsed_time_ms > 0) { size_t queue_size_bytes = packets_->SizeInBytes(); if (queue_size_bytes > 0) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); int64_t avg_time_left_ms = std::max( 1, kMaxQueueLengthMs - packets_->AverageQueueTimeMs()); int min_bitrate_needed_kbps = static_cast(queue_size_bytes * 8 / avg_time_left_ms); if (min_bitrate_needed_kbps > target_bitrate_kbps) target_bitrate_kbps = min_bitrate_needed_kbps; } media_budget_->set_target_rate_kbps(target_bitrate_kbps); int64_t delta_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms); UpdateBytesPerInterval(delta_time_ms); } while (!packets_->Empty()) { if (media_budget_->bytes_remaining() == 0 && !prober_->IsProbing()) return 0; // Since we need to release the lock in order to send, we first pop the // element from the priority queue but keep it in storage, so that we can // reinsert it if send fails. const paced_sender::Packet& packet = packets_->BeginPop(); if (SendPacket(packet)) { // Send succeeded, remove it from the queue. packets_->FinalizePop(packet); if (prober_->IsProbing()) return 0; } else { // Send failed, put it back into the queue. packets_->CancelPop(packet); return 0; } } // TODO(holmer): Remove the paused_ check when issue 5307 has been fixed. if (paused_ || !packets_->Empty()) return 0; size_t padding_needed; if (prober_->IsProbing()) { padding_needed = prober_->RecommendedPacketSize(); } else { padding_needed = padding_budget_->bytes_remaining(); } if (padding_needed > 0) SendPadding(static_cast(padding_needed)); return 0; } bool PacedSender::SendPacket(const paced_sender::Packet& packet) { // TODO(holmer): Because of this bug issue 5307 we have to send audio // packets even when the pacer is paused. Here we assume audio packets are // always high priority and that they are the only high priority packets. if (paused_ && packet.priority != kHighPriority) return false; critsect_->Leave(); const bool success = callback_->TimeToSendPacket(packet.ssrc, packet.sequence_number, packet.capture_time_ms, packet.retransmission); critsect_->Enter(); // TODO(holmer): High priority packets should only be accounted for if we are // allocating bandwidth for audio. if (success && packet.priority != kHighPriority) { // Update media bytes sent. prober_->PacketSent(clock_->TimeInMilliseconds(), packet.bytes); media_budget_->UseBudget(packet.bytes); padding_budget_->UseBudget(packet.bytes); } return success; } void PacedSender::SendPadding(size_t padding_needed) { critsect_->Leave(); size_t bytes_sent = callback_->TimeToSendPadding(padding_needed); critsect_->Enter(); if (bytes_sent > 0) { prober_->PacketSent(clock_->TimeInMilliseconds(), bytes_sent); media_budget_->UseBudget(bytes_sent); padding_budget_->UseBudget(bytes_sent); } } void PacedSender::UpdateBytesPerInterval(int64_t delta_time_ms) { media_budget_->IncreaseBudget(delta_time_ms); padding_budget_->IncreaseBudget(delta_time_ms); } } // namespace webrtc