/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/p2p/base/port.h" #include #include #include "webrtc/p2p/base/common.h" #include "webrtc/p2p/base/portallocator.h" #include "webrtc/base/base64.h" #include "webrtc/base/crc32.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" #include "webrtc/base/messagedigest.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/stringencode.h" #include "webrtc/base/stringutils.h" namespace { // Determines whether we have seen at least the given maximum number of // pings fail to have a response. inline bool TooManyFailures( const std::vector& pings_since_last_response, uint32_t maximum_failures, uint32_t rtt_estimate, uint32_t now) { // If we haven't sent that many pings, then we can't have failed that many. if (pings_since_last_response.size() < maximum_failures) return false; // Check if the window in which we would expect a response to the ping has // already elapsed. uint32_t expected_response_time = pings_since_last_response[maximum_failures - 1].sent_time + rtt_estimate; return now > expected_response_time; } // Determines whether we have gone too long without seeing any response. inline bool TooLongWithoutResponse( const std::vector& pings_since_last_response, uint32_t maximum_time, uint32_t now) { if (pings_since_last_response.size() == 0) return false; auto first = pings_since_last_response[0]; return now > (first.sent_time + maximum_time); } // We will restrict RTT estimates (when used for determining state) to be // within a reasonable range. const uint32_t MINIMUM_RTT = 100; // 0.1 seconds const uint32_t MAXIMUM_RTT = 3000; // 3 seconds // When we don't have any RTT data, we have to pick something reasonable. We // use a large value just in case the connection is really slow. const uint32_t DEFAULT_RTT = MAXIMUM_RTT; // Computes our estimate of the RTT given the current estimate. inline uint32_t ConservativeRTTEstimate(uint32_t rtt) { return std::max(MINIMUM_RTT, std::min(MAXIMUM_RTT, 2 * rtt)); } // Weighting of the old rtt value to new data. const int RTT_RATIO = 3; // 3 : 1 // The delay before we begin checking if this port is useless. const int kPortTimeoutDelay = 30 * 1000; // 30 seconds } namespace cricket { // TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires // the signaling part be updated correspondingly as well. const char LOCAL_PORT_TYPE[] = "local"; const char STUN_PORT_TYPE[] = "stun"; const char PRFLX_PORT_TYPE[] = "prflx"; const char RELAY_PORT_TYPE[] = "relay"; const char UDP_PROTOCOL_NAME[] = "udp"; const char TCP_PROTOCOL_NAME[] = "tcp"; const char SSLTCP_PROTOCOL_NAME[] = "ssltcp"; static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME, TCP_PROTOCOL_NAME, SSLTCP_PROTOCOL_NAME }; const char* ProtoToString(ProtocolType proto) { return PROTO_NAMES[proto]; } bool StringToProto(const char* value, ProtocolType* proto) { for (size_t i = 0; i <= PROTO_LAST; ++i) { if (_stricmp(PROTO_NAMES[i], value) == 0) { *proto = static_cast(i); return true; } } return false; } // RFC 6544, TCP candidate encoding rules. const int DISCARD_PORT = 9; const char TCPTYPE_ACTIVE_STR[] = "active"; const char TCPTYPE_PASSIVE_STR[] = "passive"; const char TCPTYPE_SIMOPEN_STR[] = "so"; // Foundation: An arbitrary string that is the same for two candidates // that have the same type, base IP address, protocol (UDP, TCP, // etc.), and STUN or TURN server. If any of these are different, // then the foundation will be different. Two candidate pairs with // the same foundation pairs are likely to have similar network // characteristics. Foundations are used in the frozen algorithm. static std::string ComputeFoundation( const std::string& type, const std::string& protocol, const rtc::SocketAddress& base_address) { std::ostringstream ost; ost << type << base_address.ipaddr().ToString() << protocol; return rtc::ToString(rtc::ComputeCrc32(ost.str())); } Port::Port(rtc::Thread* thread, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, const std::string& username_fragment, const std::string& password) : thread_(thread), factory_(factory), send_retransmit_count_attribute_(false), network_(network), ip_(ip), min_port_(0), max_port_(0), component_(ICE_CANDIDATE_COMPONENT_DEFAULT), generation_(0), ice_username_fragment_(username_fragment), password_(password), timeout_delay_(kPortTimeoutDelay), enable_port_packets_(false), ice_role_(ICEROLE_UNKNOWN), tiebreaker_(0), shared_socket_(true), candidate_filter_(CF_ALL) { Construct(); } Port::Port(rtc::Thread* thread, const std::string& type, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, uint16_t min_port, uint16_t max_port, const std::string& username_fragment, const std::string& password) : thread_(thread), factory_(factory), type_(type), send_retransmit_count_attribute_(false), network_(network), ip_(ip), min_port_(min_port), max_port_(max_port), component_(ICE_CANDIDATE_COMPONENT_DEFAULT), generation_(0), ice_username_fragment_(username_fragment), password_(password), timeout_delay_(kPortTimeoutDelay), enable_port_packets_(false), ice_role_(ICEROLE_UNKNOWN), tiebreaker_(0), shared_socket_(false), candidate_filter_(CF_ALL) { ASSERT(factory_ != NULL); Construct(); } void Port::Construct() { // TODO(pthatcher): Remove this old behavior once we're sure no one // relies on it. If the username_fragment and password are empty, // we should just create one. if (ice_username_fragment_.empty()) { ASSERT(password_.empty()); ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH); password_ = rtc::CreateRandomString(ICE_PWD_LENGTH); } LOG_J(LS_INFO, this) << "Port created"; } Port::~Port() { // Delete all of the remaining connections. We copy the list up front // because each deletion will cause it to be modified. std::vector list; AddressMap::iterator iter = connections_.begin(); while (iter != connections_.end()) { list.push_back(iter->second); ++iter; } for (uint32_t i = 0; i < list.size(); i++) delete list[i]; } Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) { AddressMap::const_iterator iter = connections_.find(remote_addr); if (iter != connections_.end()) return iter->second; else return NULL; } void Port::AddAddress(const rtc::SocketAddress& address, const rtc::SocketAddress& base_address, const rtc::SocketAddress& related_address, const std::string& protocol, const std::string& relay_protocol, const std::string& tcptype, const std::string& type, uint32_t type_preference, uint32_t relay_preference, bool final) { if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) { ASSERT(!tcptype.empty()); } Candidate c; c.set_id(rtc::CreateRandomString(8)); c.set_component(component_); c.set_type(type); c.set_protocol(protocol); c.set_relay_protocol(relay_protocol); c.set_tcptype(tcptype); c.set_address(address); c.set_priority(c.GetPriority(type_preference, network_->preference(), relay_preference)); c.set_username(username_fragment()); c.set_password(password_); c.set_network_name(network_->name()); c.set_network_type(network_->type()); c.set_generation(generation_); c.set_related_address(related_address); c.set_foundation(ComputeFoundation(type, protocol, base_address)); candidates_.push_back(c); SignalCandidateReady(this, c); if (final) { SignalPortComplete(this); } } void Port::AddConnection(Connection* conn) { connections_[conn->remote_candidate().address()] = conn; conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed); SignalConnectionCreated(this, conn); } void Port::OnReadPacket( const char* data, size_t size, const rtc::SocketAddress& addr, ProtocolType proto) { // If the user has enabled port packets, just hand this over. if (enable_port_packets_) { SignalReadPacket(this, data, size, addr); return; } // If this is an authenticated STUN request, then signal unknown address and // send back a proper binding response. rtc::scoped_ptr msg; std::string remote_username; if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) { LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address (" << addr.ToSensitiveString() << ")"; } else if (!msg) { // STUN message handled already } else if (msg->type() == STUN_BINDING_REQUEST) { LOG(LS_INFO) << "Received STUN ping " << " id=" << rtc::hex_encode(msg->transaction_id()) << " from unknown address " << addr.ToSensitiveString(); // Check for role conflicts. if (!MaybeIceRoleConflict(addr, msg.get(), remote_username)) { LOG(LS_INFO) << "Received conflicting role from the peer."; return; } SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false); } else { // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we // pruned a connection for this port while it had STUN requests in flight, // because we then get back responses for them, which this code correctly // does not handle. if (msg->type() != STUN_BINDING_RESPONSE) { LOG_J(LS_ERROR, this) << "Received unexpected STUN message type (" << msg->type() << ") from unknown address (" << addr.ToSensitiveString() << ")"; } } } void Port::OnReadyToSend() { AddressMap::iterator iter = connections_.begin(); for (; iter != connections_.end(); ++iter) { iter->second->OnReadyToSend(); } } size_t Port::AddPrflxCandidate(const Candidate& local) { candidates_.push_back(local); return (candidates_.size() - 1); } bool Port::GetStunMessage(const char* data, size_t size, const rtc::SocketAddress& addr, IceMessage** out_msg, std::string* out_username) { // NOTE: This could clearly be optimized to avoid allocating any memory. // However, at the data rates we'll be looking at on the client side, // this probably isn't worth worrying about. ASSERT(out_msg != NULL); ASSERT(out_username != NULL); *out_msg = NULL; out_username->clear(); // Don't bother parsing the packet if we can tell it's not STUN. // In ICE mode, all STUN packets will have a valid fingerprint. if (!StunMessage::ValidateFingerprint(data, size)) { return false; } // Parse the request message. If the packet is not a complete and correct // STUN message, then ignore it. rtc::scoped_ptr stun_msg(new IceMessage()); rtc::ByteBuffer buf(data, size); if (!stun_msg->Read(&buf) || (buf.Length() > 0)) { return false; } if (stun_msg->type() == STUN_BINDING_REQUEST) { // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first. // If not present, fail with a 400 Bad Request. if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) || !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY)) { LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I " << "from " << addr.ToSensitiveString(); SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST, STUN_ERROR_REASON_BAD_REQUEST); return true; } // If the username is bad or unknown, fail with a 401 Unauthorized. std::string local_ufrag; std::string remote_ufrag; if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag) || local_ufrag != username_fragment()) { LOG_J(LS_ERROR, this) << "Received STUN request with bad local username " << local_ufrag << " from " << addr.ToSensitiveString(); SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); return true; } // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized if (!stun_msg->ValidateMessageIntegrity(data, size, password_)) { LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I " << "from " << addr.ToSensitiveString() << ", password_=" << password_; SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); return true; } out_username->assign(remote_ufrag); } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) || (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) { if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) { if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) { LOG_J(LS_ERROR, this) << "Received STUN binding error:" << " class=" << error_code->eclass() << " number=" << error_code->number() << " reason='" << error_code->reason() << "'" << " from " << addr.ToSensitiveString(); // Return message to allow error-specific processing } else { LOG_J(LS_ERROR, this) << "Received STUN binding error without a error " << "code from " << addr.ToSensitiveString(); return true; } } // NOTE: Username should not be used in verifying response messages. out_username->clear(); } else if (stun_msg->type() == STUN_BINDING_INDICATION) { LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:" << " from " << addr.ToSensitiveString(); out_username->clear(); // No stun attributes will be verified, if it's stun indication message. // Returning from end of the this method. } else { LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type (" << stun_msg->type() << ") from " << addr.ToSensitiveString(); return true; } // Return the STUN message found. *out_msg = stun_msg.release(); return true; } bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) { int family = ip().family(); // We use single-stack sockets, so families must match. if (addr.family() != family) { return false; } // Link-local IPv6 ports can only connect to other link-local IPv6 ports. if (family == AF_INET6 && (IPIsLinkLocal(ip()) != IPIsLinkLocal(addr.ipaddr()))) { return false; } return true; } bool Port::ParseStunUsername(const StunMessage* stun_msg, std::string* local_ufrag, std::string* remote_ufrag) const { // The packet must include a username that either begins or ends with our // fragment. It should begin with our fragment if it is a request and it // should end with our fragment if it is a response. local_ufrag->clear(); remote_ufrag->clear(); const StunByteStringAttribute* username_attr = stun_msg->GetByteString(STUN_ATTR_USERNAME); if (username_attr == NULL) return false; // RFRAG:LFRAG const std::string username = username_attr->GetString(); size_t colon_pos = username.find(":"); if (colon_pos == std::string::npos) { return false; } *local_ufrag = username.substr(0, colon_pos); *remote_ufrag = username.substr(colon_pos + 1, username.size()); return true; } bool Port::MaybeIceRoleConflict( const rtc::SocketAddress& addr, IceMessage* stun_msg, const std::string& remote_ufrag) { // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes. bool ret = true; IceRole remote_ice_role = ICEROLE_UNKNOWN; uint64_t remote_tiebreaker = 0; const StunUInt64Attribute* stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); if (stun_attr) { remote_ice_role = ICEROLE_CONTROLLING; remote_tiebreaker = stun_attr->value(); } // If |remote_ufrag| is same as port local username fragment and // tie breaker value received in the ping message matches port // tiebreaker value this must be a loopback call. // We will treat this as valid scenario. if (remote_ice_role == ICEROLE_CONTROLLING && username_fragment() == remote_ufrag && remote_tiebreaker == IceTiebreaker()) { return true; } stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); if (stun_attr) { remote_ice_role = ICEROLE_CONTROLLED; remote_tiebreaker = stun_attr->value(); } switch (ice_role_) { case ICEROLE_CONTROLLING: if (ICEROLE_CONTROLLING == remote_ice_role) { if (remote_tiebreaker >= tiebreaker_) { SignalRoleConflict(this); } else { // Send Role Conflict (487) error response. SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); ret = false; } } break; case ICEROLE_CONTROLLED: if (ICEROLE_CONTROLLED == remote_ice_role) { if (remote_tiebreaker < tiebreaker_) { SignalRoleConflict(this); } else { // Send Role Conflict (487) error response. SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); ret = false; } } break; default: ASSERT(false); } return ret; } void Port::CreateStunUsername(const std::string& remote_username, std::string* stun_username_attr_str) const { stun_username_attr_str->clear(); *stun_username_attr_str = remote_username; stun_username_attr_str->append(":"); stun_username_attr_str->append(username_fragment()); } void Port::SendBindingResponse(StunMessage* request, const rtc::SocketAddress& addr) { ASSERT(request->type() == STUN_BINDING_REQUEST); // Retrieve the username from the request. const StunByteStringAttribute* username_attr = request->GetByteString(STUN_ATTR_USERNAME); ASSERT(username_attr != NULL); if (username_attr == NULL) { // No valid username, skip the response. return; } // Fill in the response message. StunMessage response; response.SetType(STUN_BINDING_RESPONSE); response.SetTransactionID(request->transaction_id()); const StunUInt32Attribute* retransmit_attr = request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); if (retransmit_attr) { // Inherit the incoming retransmit value in the response so the other side // can see our view of lost pings. response.AddAttribute(new StunUInt32Attribute( STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value())); if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) { LOG_J(LS_INFO, this) << "Received a remote ping with high retransmit count: " << retransmit_attr->value(); } } response.AddAttribute( new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr)); response.AddMessageIntegrity(password_); response.AddFingerprint(); // Send the response message. rtc::ByteBuffer buf; response.Write(&buf); rtc::PacketOptions options(DefaultDscpValue()); auto err = SendTo(buf.Data(), buf.Length(), addr, options, false); if (err < 0) { LOG_J(LS_ERROR, this) << "Failed to send STUN ping response" << ", to=" << addr.ToSensitiveString() << ", err=" << err << ", id=" << rtc::hex_encode(response.transaction_id()); } else { // Log at LS_INFO if we send a stun ping response on an unwritable // connection. Connection* conn = GetConnection(addr); rtc::LoggingSeverity sev = (conn && !conn->writable()) ? rtc::LS_INFO : rtc::LS_VERBOSE; LOG_JV(sev, this) << "Sent STUN ping response" << ", to=" << addr.ToSensitiveString() << ", id=" << rtc::hex_encode(response.transaction_id()); } } void Port::SendBindingErrorResponse(StunMessage* request, const rtc::SocketAddress& addr, int error_code, const std::string& reason) { ASSERT(request->type() == STUN_BINDING_REQUEST); // Fill in the response message. StunMessage response; response.SetType(STUN_BINDING_ERROR_RESPONSE); response.SetTransactionID(request->transaction_id()); // When doing GICE, we need to write out the error code incorrectly to // maintain backwards compatiblility. StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode(); error_attr->SetCode(error_code); error_attr->SetReason(reason); response.AddAttribute(error_attr); // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY, // because we don't have enough information to determine the shared secret. if (error_code != STUN_ERROR_BAD_REQUEST && error_code != STUN_ERROR_UNAUTHORIZED) response.AddMessageIntegrity(password_); response.AddFingerprint(); // Send the response message. rtc::ByteBuffer buf; response.Write(&buf); rtc::PacketOptions options(DefaultDscpValue()); SendTo(buf.Data(), buf.Length(), addr, options, false); LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason << " to " << addr.ToSensitiveString(); } void Port::OnMessage(rtc::Message *pmsg) { ASSERT(pmsg->message_id == MSG_DEAD); if (dead()) { Destroy(); } } std::string Port::ToString() const { std::stringstream ss; ss << "Port[" << content_name_ << ":" << component_ << ":" << generation_ << ":" << type_ << ":" << network_->ToString() << "]"; return ss.str(); } void Port::EnablePortPackets() { enable_port_packets_ = true; } void Port::OnConnectionDestroyed(Connection* conn) { AddressMap::iterator iter = connections_.find(conn->remote_candidate().address()); ASSERT(iter != connections_.end()); connections_.erase(iter); // On the controlled side, ports time out after all connections fail. // Note: If a new connection is added after this message is posted, but it // fails and is removed before kPortTimeoutDelay, then this message will // still cause the Port to be destroyed. if (dead()) { thread_->PostDelayed(timeout_delay_, this, MSG_DEAD); } } void Port::Destroy() { ASSERT(connections_.empty()); LOG_J(LS_INFO, this) << "Port deleted"; SignalDestroyed(this); delete this; } const std::string Port::username_fragment() const { return ice_username_fragment_; } // A ConnectionRequest is a simple STUN ping used to determine writability. class ConnectionRequest : public StunRequest { public: explicit ConnectionRequest(Connection* connection) : StunRequest(new IceMessage()), connection_(connection) { } virtual ~ConnectionRequest() { } void Prepare(StunMessage* request) override { request->SetType(STUN_BINDING_REQUEST); std::string username; connection_->port()->CreateStunUsername( connection_->remote_candidate().username(), &username); request->AddAttribute( new StunByteStringAttribute(STUN_ATTR_USERNAME, username)); // connection_ already holds this ping, so subtract one from count. if (connection_->port()->send_retransmit_count_attribute()) { request->AddAttribute(new StunUInt32Attribute( STUN_ATTR_RETRANSMIT_COUNT, static_cast(connection_->pings_since_last_response_.size() - 1))); } // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role. if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) { request->AddAttribute(new StunUInt64Attribute( STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker())); // Since we are trying aggressive nomination, sending USE-CANDIDATE // attribute in every ping. // If we are dealing with a ice-lite end point, nomination flag // in Connection will be set to false by default. Once the connection // becomes "best connection", nomination flag will be turned on. if (connection_->use_candidate_attr()) { request->AddAttribute(new StunByteStringAttribute( STUN_ATTR_USE_CANDIDATE)); } } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) { request->AddAttribute(new StunUInt64Attribute( STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker())); } else { ASSERT(false); } // Adding PRIORITY Attribute. // Changing the type preference to Peer Reflexive and local preference // and component id information is unchanged from the original priority. // priority = (2^24)*(type preference) + // (2^8)*(local preference) + // (2^0)*(256 - component ID) uint32_t prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 | (connection_->local_candidate().priority() & 0x00FFFFFF); request->AddAttribute( new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority)); // Adding Message Integrity attribute. request->AddMessageIntegrity(connection_->remote_candidate().password()); // Adding Fingerprint. request->AddFingerprint(); } void OnResponse(StunMessage* response) override { connection_->OnConnectionRequestResponse(this, response); } void OnErrorResponse(StunMessage* response) override { connection_->OnConnectionRequestErrorResponse(this, response); } void OnTimeout() override { connection_->OnConnectionRequestTimeout(this); } void OnSent() override { connection_->OnConnectionRequestSent(this); // Each request is sent only once. After a single delay , the request will // time out. timeout_ = true; } int resend_delay() override { return CONNECTION_RESPONSE_TIMEOUT; } private: Connection* connection_; }; // // Connection // Connection::Connection(Port* port, size_t index, const Candidate& remote_candidate) : port_(port), local_candidate_index_(index), remote_candidate_(remote_candidate), write_state_(STATE_WRITE_INIT), receiving_(false), connected_(true), pruned_(false), use_candidate_attr_(false), nominated_(false), remote_ice_mode_(ICEMODE_FULL), requests_(port->thread()), rtt_(DEFAULT_RTT), last_ping_sent_(0), last_ping_received_(0), last_data_received_(0), last_ping_response_received_(0), recv_rate_tracker_(100u, 10u), send_rate_tracker_(100u, 10u), sent_packets_discarded_(0), sent_packets_total_(0), reported_(false), state_(STATE_WAITING), receiving_timeout_(WEAK_CONNECTION_RECEIVE_TIMEOUT), time_created_ms_(rtc::Time()) { // All of our connections start in WAITING state. // TODO(mallinath) - Start connections from STATE_FROZEN. // Wire up to send stun packets requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket); LOG_J(LS_INFO, this) << "Connection created"; } Connection::~Connection() { } const Candidate& Connection::local_candidate() const { ASSERT(local_candidate_index_ < port_->Candidates().size()); return port_->Candidates()[local_candidate_index_]; } uint64_t Connection::priority() const { uint64_t priority = 0; // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs // Let G be the priority for the candidate provided by the controlling // agent. Let D be the priority for the candidate provided by the // controlled agent. // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) IceRole role = port_->GetIceRole(); if (role != ICEROLE_UNKNOWN) { uint32_t g = 0; uint32_t d = 0; if (role == ICEROLE_CONTROLLING) { g = local_candidate().priority(); d = remote_candidate_.priority(); } else { g = remote_candidate_.priority(); d = local_candidate().priority(); } priority = std::min(g, d); priority = priority << 32; priority += 2 * std::max(g, d) + (g > d ? 1 : 0); } return priority; } void Connection::set_write_state(WriteState value) { WriteState old_value = write_state_; write_state_ = value; if (value != old_value) { LOG_J(LS_VERBOSE, this) << "set_write_state from: " << old_value << " to " << value; SignalStateChange(this); } } void Connection::set_receiving(bool value) { if (value != receiving_) { LOG_J(LS_VERBOSE, this) << "set_receiving to " << value; receiving_ = value; SignalStateChange(this); } } void Connection::set_state(State state) { State old_state = state_; state_ = state; if (state != old_state) { LOG_J(LS_VERBOSE, this) << "set_state"; } } void Connection::set_connected(bool value) { bool old_value = connected_; connected_ = value; if (value != old_value) { LOG_J(LS_VERBOSE, this) << "set_connected from: " << old_value << " to " << value; } } void Connection::set_use_candidate_attr(bool enable) { use_candidate_attr_ = enable; } void Connection::OnSendStunPacket(const void* data, size_t size, StunRequest* req) { rtc::PacketOptions options(port_->DefaultDscpValue()); auto err = port_->SendTo( data, size, remote_candidate_.address(), options, false); if (err < 0) { LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << " err=" << err << " id=" << rtc::hex_encode(req->id()); } } void Connection::OnReadPacket( const char* data, size_t size, const rtc::PacketTime& packet_time) { rtc::scoped_ptr msg; std::string remote_ufrag; const rtc::SocketAddress& addr(remote_candidate_.address()); if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) { // The packet did not parse as a valid STUN message // This is a data packet, pass it along. set_receiving(true); last_data_received_ = rtc::Time(); recv_rate_tracker_.AddSamples(size); SignalReadPacket(this, data, size, packet_time); // If timed out sending writability checks, start up again if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) { LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. " << "Resetting state to STATE_WRITE_INIT."; set_write_state(STATE_WRITE_INIT); } } else if (!msg) { // The packet was STUN, but failed a check and was handled internally. } else { // The packet is STUN and passed the Port checks. // Perform our own checks to ensure this packet is valid. // If this is a STUN request, then update the receiving bit and respond. // If this is a STUN response, then update the writable bit. // Log at LS_INFO if we receive a ping on an unwritable connection. rtc::LoggingSeverity sev = (!writable() ? rtc::LS_INFO : rtc::LS_VERBOSE); switch (msg->type()) { case STUN_BINDING_REQUEST: LOG_JV(sev, this) << "Received STUN ping" << ", id=" << rtc::hex_encode(msg->transaction_id()); if (remote_ufrag == remote_candidate_.username()) { HandleBindingRequest(msg.get()); } else { // The packet had the right local username, but the remote username // was not the right one for the remote address. LOG_J(LS_ERROR, this) << "Received STUN request with bad remote username " << remote_ufrag; port_->SendBindingErrorResponse(msg.get(), addr, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); } break; // Response from remote peer. Does it match request sent? // This doesn't just check, it makes callbacks if transaction // id's match. case STUN_BINDING_RESPONSE: case STUN_BINDING_ERROR_RESPONSE: if (msg->ValidateMessageIntegrity( data, size, remote_candidate().password())) { requests_.CheckResponse(msg.get()); } // Otherwise silently discard the response message. break; // Remote end point sent an STUN indication instead of regular binding // request. In this case |last_ping_received_| will be updated but no // response will be sent. case STUN_BINDING_INDICATION: ReceivedPing(); break; default: ASSERT(false); break; } } } void Connection::HandleBindingRequest(IceMessage* msg) { // This connection should now be receiving. ReceivedPing(); const rtc::SocketAddress& remote_addr = remote_candidate_.address(); const std::string& remote_ufrag = remote_candidate_.username(); // Check for role conflicts. if (!port_->MaybeIceRoleConflict(remote_addr, msg, remote_ufrag)) { // Received conflicting role from the peer. LOG(LS_INFO) << "Received conflicting role from the peer."; return; } // This is a validated stun request from remote peer. port_->SendBindingResponse(msg, remote_addr); // If it timed out on writing check, start up again if (!pruned_ && write_state_ == STATE_WRITE_TIMEOUT) { set_write_state(STATE_WRITE_INIT); } if (port_->GetIceRole() == ICEROLE_CONTROLLED) { const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(STUN_ATTR_USE_CANDIDATE); if (use_candidate_attr) { set_nominated(true); SignalNominated(this); } } } void Connection::OnReadyToSend() { if (write_state_ == STATE_WRITABLE) { SignalReadyToSend(this); } } void Connection::Prune() { if (!pruned_ || active()) { LOG_J(LS_VERBOSE, this) << "Connection pruned"; pruned_ = true; requests_.Clear(); set_write_state(STATE_WRITE_TIMEOUT); } } void Connection::Destroy() { LOG_J(LS_VERBOSE, this) << "Connection destroyed"; port_->thread()->Post(this, MSG_DELETE); } void Connection::FailAndDestroy() { set_state(Connection::STATE_FAILED); Destroy(); } void Connection::PrintPingsSinceLastResponse(std::string* s, size_t max) { std::ostringstream oss; oss << std::boolalpha; if (pings_since_last_response_.size() > max) { for (size_t i = 0; i < max; i++) { const SentPing& ping = pings_since_last_response_[i]; oss << rtc::hex_encode(ping.id) << " "; } oss << "... " << (pings_since_last_response_.size() - max) << " more"; } else { for (const SentPing& ping : pings_since_last_response_) { oss << rtc::hex_encode(ping.id) << " "; } } *s = oss.str(); } void Connection::UpdateState(uint32_t now) { uint32_t rtt = ConservativeRTTEstimate(rtt_); if (LOG_CHECK_LEVEL(LS_VERBOSE)) { std::string pings; PrintPingsSinceLastResponse(&pings, 5); LOG_J(LS_VERBOSE, this) << "UpdateState()" << ", ms since last received response=" << now - last_ping_response_received_ << ", ms since last received data=" << now - last_data_received_ << ", rtt=" << rtt << ", pings_since_last_response=" << pings; } // Check the writable state. (The order of these checks is important.) // // Before becoming unwritable, we allow for a fixed number of pings to fail // (i.e., receive no response). We also have to give the response time to // get back, so we include a conservative estimate of this. // // Before timing out writability, we give a fixed amount of time. This is to // allow for changes in network conditions. if ((write_state_ == STATE_WRITABLE) && TooManyFailures(pings_since_last_response_, CONNECTION_WRITE_CONNECT_FAILURES, rtt, now) && TooLongWithoutResponse(pings_since_last_response_, CONNECTION_WRITE_CONNECT_TIMEOUT, now)) { uint32_t max_pings = CONNECTION_WRITE_CONNECT_FAILURES; LOG_J(LS_INFO, this) << "Unwritable after " << max_pings << " ping failures and " << now - pings_since_last_response_[0].sent_time << " ms without a response," << " ms since last received ping=" << now - last_ping_received_ << " ms since last received data=" << now - last_data_received_ << " rtt=" << rtt; set_write_state(STATE_WRITE_UNRELIABLE); } if ((write_state_ == STATE_WRITE_UNRELIABLE || write_state_ == STATE_WRITE_INIT) && TooLongWithoutResponse(pings_since_last_response_, CONNECTION_WRITE_TIMEOUT, now)) { LOG_J(LS_INFO, this) << "Timed out after " << now - pings_since_last_response_[0].sent_time << " ms without a response" << ", rtt=" << rtt; set_write_state(STATE_WRITE_TIMEOUT); } // Check the receiving state. uint32_t last_recv_time = last_received(); bool receiving = now <= last_recv_time + receiving_timeout_; set_receiving(receiving); if (dead(now)) { Destroy(); } } void Connection::Ping(uint32_t now) { last_ping_sent_ = now; ConnectionRequest *req = new ConnectionRequest(this); pings_since_last_response_.push_back(SentPing(req->id(), now)); LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << ", id=" << rtc::hex_encode(req->id()); requests_.Send(req); state_ = STATE_INPROGRESS; } void Connection::ReceivedPing() { set_receiving(true); last_ping_received_ = rtc::Time(); } void Connection::ReceivedPingResponse() { // We've already validated that this is a STUN binding response with // the correct local and remote username for this connection. // So if we're not already, become writable. We may be bringing a pruned // connection back to life, but if we don't really want it, we can always // prune it again. set_receiving(true); set_write_state(STATE_WRITABLE); set_state(STATE_SUCCEEDED); pings_since_last_response_.clear(); last_ping_response_received_ = rtc::Time(); } bool Connection::dead(uint32_t now) const { if (last_received() > 0) { // If it has ever received anything, we keep it alive until it hasn't // received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT. This covers the // normal case of a successfully used connection that stops working. This // also allows a remote peer to continue pinging over a locally inactive // (pruned) connection. return (now > (last_received() + DEAD_CONNECTION_RECEIVE_TIMEOUT)); } if (active()) { // If it has never received anything, keep it alive as long as it is // actively pinging and not pruned. Otherwise, the connection might be // deleted before it has a chance to ping. This is the normal case for a // new connection that is pinging but hasn't received anything yet. return false; } // If it has never received anything and is not actively pinging (pruned), we // keep it around for at least MIN_CONNECTION_LIFETIME to prevent connections // from being pruned too quickly during a network change event when two // networks would be up simultaneously but only for a brief period. return now > (time_created_ms_ + MIN_CONNECTION_LIFETIME); } std::string Connection::ToDebugId() const { std::stringstream ss; ss << std::hex << this; return ss.str(); } std::string Connection::ToString() const { const char CONNECT_STATE_ABBREV[2] = { '-', // not connected (false) 'C', // connected (true) }; const char RECEIVE_STATE_ABBREV[2] = { '-', // not receiving (false) 'R', // receiving (true) }; const char WRITE_STATE_ABBREV[4] = { 'W', // STATE_WRITABLE 'w', // STATE_WRITE_UNRELIABLE '-', // STATE_WRITE_INIT 'x', // STATE_WRITE_TIMEOUT }; const std::string ICESTATE[4] = { "W", // STATE_WAITING "I", // STATE_INPROGRESS "S", // STATE_SUCCEEDED "F" // STATE_FAILED }; const Candidate& local = local_candidate(); const Candidate& remote = remote_candidate(); std::stringstream ss; ss << "Conn[" << ToDebugId() << ":" << port_->content_name() << ":" << local.id() << ":" << local.component() << ":" << local.generation() << ":" << local.type() << ":" << local.protocol() << ":" << local.address().ToSensitiveString() << "->" << remote.id() << ":" << remote.component() << ":" << remote.priority() << ":" << remote.type() << ":" << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|" << CONNECT_STATE_ABBREV[connected()] << RECEIVE_STATE_ABBREV[receiving()] << WRITE_STATE_ABBREV[write_state()] << ICESTATE[state()] << "|" << priority() << "|"; if (rtt_ < DEFAULT_RTT) { ss << rtt_ << "]"; } else { ss << "-]"; } return ss.str(); } std::string Connection::ToSensitiveString() const { return ToString(); } void Connection::OnConnectionRequestResponse(ConnectionRequest* request, StunMessage* response) { // Log at LS_INFO if we receive a ping response on an unwritable // connection. rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; uint32_t rtt = request->Elapsed(); ReceivedPingResponse(); if (LOG_CHECK_LEVEL_V(sev)) { bool use_candidate = ( response->GetByteString(STUN_ATTR_USE_CANDIDATE) != nullptr); std::string pings; PrintPingsSinceLastResponse(&pings, 5); LOG_JV(sev, this) << "Received STUN ping response" << ", id=" << rtc::hex_encode(request->id()) << ", code=0" // Makes logging easier to parse. << ", rtt=" << rtt << ", use_candidate=" << use_candidate << ", pings_since_last_response=" << pings; } rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1); MaybeAddPrflxCandidate(request, response); } void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request, StunMessage* response) { const StunErrorCodeAttribute* error_attr = response->GetErrorCode(); int error_code = STUN_ERROR_GLOBAL_FAILURE; if (error_attr) { error_code = error_attr->code(); } LOG_J(LS_INFO, this) << "Received STUN error response" << " id=" << rtc::hex_encode(request->id()) << " code=" << error_code << " rtt=" << request->Elapsed(); if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE || error_code == STUN_ERROR_SERVER_ERROR || error_code == STUN_ERROR_UNAUTHORIZED) { // Recoverable error, retry } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) { // Race failure, retry } else if (error_code == STUN_ERROR_ROLE_CONFLICT) { HandleRoleConflictFromPeer(); } else { // This is not a valid connection. LOG_J(LS_ERROR, this) << "Received STUN error response, code=" << error_code << "; killing connection"; FailAndDestroy(); } } void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) { // Log at LS_INFO if we miss a ping on a writable connection. rtc::LoggingSeverity sev = writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; LOG_JV(sev, this) << "Timing-out STUN ping " << rtc::hex_encode(request->id()) << " after " << request->Elapsed() << " ms"; } void Connection::OnConnectionRequestSent(ConnectionRequest* request) { // Log at LS_INFO if we send a ping on an unwritable connection. rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; bool use_candidate = use_candidate_attr(); LOG_JV(sev, this) << "Sent STUN ping" << ", id=" << rtc::hex_encode(request->id()) << ", use_candidate=" << use_candidate; } void Connection::HandleRoleConflictFromPeer() { port_->SignalRoleConflict(port_); } void Connection::MaybeSetRemoteIceCredentials(const std::string& ice_ufrag, const std::string& ice_pwd) { if (remote_candidate_.username() == ice_ufrag && remote_candidate_.password().empty()) { remote_candidate_.set_password(ice_pwd); } } void Connection::MaybeUpdatePeerReflexiveCandidate( const Candidate& new_candidate) { if (remote_candidate_.type() == PRFLX_PORT_TYPE && new_candidate.type() != PRFLX_PORT_TYPE && remote_candidate_.protocol() == new_candidate.protocol() && remote_candidate_.address() == new_candidate.address() && remote_candidate_.username() == new_candidate.username() && remote_candidate_.password() == new_candidate.password() && remote_candidate_.generation() == new_candidate.generation()) { remote_candidate_ = new_candidate; } } void Connection::OnMessage(rtc::Message *pmsg) { ASSERT(pmsg->message_id == MSG_DELETE); LOG_J(LS_INFO, this) << "Connection deleted"; SignalDestroyed(this); delete this; } uint32_t Connection::last_received() const { return std::max(last_data_received_, std::max(last_ping_received_, last_ping_response_received_)); } size_t Connection::recv_bytes_second() { return round(recv_rate_tracker_.ComputeRate()); } size_t Connection::recv_total_bytes() { return recv_rate_tracker_.TotalSampleCount(); } size_t Connection::sent_bytes_second() { return round(send_rate_tracker_.ComputeRate()); } size_t Connection::sent_total_bytes() { return send_rate_tracker_.TotalSampleCount(); } size_t Connection::sent_discarded_packets() { return sent_packets_discarded_; } size_t Connection::sent_total_packets() { return sent_packets_total_; } void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request, StunMessage* response) { // RFC 5245 // The agent checks the mapped address from the STUN response. If the // transport address does not match any of the local candidates that the // agent knows about, the mapped address represents a new candidate -- a // peer reflexive candidate. const StunAddressAttribute* addr = response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); if (!addr) { LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " << "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the " << "stun response message"; return; } bool known_addr = false; for (size_t i = 0; i < port_->Candidates().size(); ++i) { if (port_->Candidates()[i].address() == addr->GetAddress()) { known_addr = true; break; } } if (known_addr) { return; } // RFC 5245 // Its priority is set equal to the value of the PRIORITY attribute // in the Binding request. const StunUInt32Attribute* priority_attr = request->msg()->GetUInt32(STUN_ATTR_PRIORITY); if (!priority_attr) { LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " << "No STUN_ATTR_PRIORITY found in the " << "stun response message"; return; } const uint32_t priority = priority_attr->value(); std::string id = rtc::CreateRandomString(8); Candidate new_local_candidate; new_local_candidate.set_id(id); new_local_candidate.set_component(local_candidate().component()); new_local_candidate.set_type(PRFLX_PORT_TYPE); new_local_candidate.set_protocol(local_candidate().protocol()); new_local_candidate.set_address(addr->GetAddress()); new_local_candidate.set_priority(priority); new_local_candidate.set_username(local_candidate().username()); new_local_candidate.set_password(local_candidate().password()); new_local_candidate.set_network_name(local_candidate().network_name()); new_local_candidate.set_network_type(local_candidate().network_type()); new_local_candidate.set_related_address(local_candidate().address()); new_local_candidate.set_foundation( ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(), local_candidate().address())); // Change the local candidate of this Connection to the new prflx candidate. local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate); // SignalStateChange to force a re-sort in P2PTransportChannel as this // Connection's local candidate has changed. SignalStateChange(this); } ProxyConnection::ProxyConnection(Port* port, size_t index, const Candidate& remote_candidate) : Connection(port, index, remote_candidate) {} int ProxyConnection::Send(const void* data, size_t size, const rtc::PacketOptions& options) { if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) { error_ = EWOULDBLOCK; return SOCKET_ERROR; } sent_packets_total_++; int sent = port_->SendTo(data, size, remote_candidate_.address(), options, true); if (sent <= 0) { ASSERT(sent < 0); error_ = port_->GetError(); sent_packets_discarded_++; } else { send_rate_tracker_.AddSamples(sent); } return sent; } } // namespace cricket