/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/system_wrappers/include/clock.h" #if defined(_WIN32) // Windows needs to be included before mmsystem.h #include "webrtc/base/win32.h" #include #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC)) #include #include #endif #include "webrtc/base/criticalsection.h" #include "webrtc/system_wrappers/include/rw_lock_wrapper.h" #include "webrtc/system_wrappers/include/tick_util.h" namespace webrtc { const double kNtpFracPerMs = 4.294967296E6; int64_t Clock::NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) { const double ntp_frac_ms = static_cast(ntp_frac) / kNtpFracPerMs; return 1000 * static_cast(ntp_secs) + static_cast(ntp_frac_ms + 0.5); } class RealTimeClock : public Clock { // Return a timestamp in milliseconds relative to some arbitrary source; the // source is fixed for this clock. int64_t TimeInMilliseconds() const override { return TickTime::MillisecondTimestamp(); } // Return a timestamp in microseconds relative to some arbitrary source; the // source is fixed for this clock. int64_t TimeInMicroseconds() const override { return TickTime::MicrosecondTimestamp(); } // Retrieve an NTP absolute timestamp in seconds and fractions of a second. void CurrentNtp(uint32_t& seconds, uint32_t& fractions) const override { timeval tv = CurrentTimeVal(); double microseconds_in_seconds; Adjust(tv, &seconds, µseconds_in_seconds); fractions = static_cast( microseconds_in_seconds * kMagicNtpFractionalUnit + 0.5); } // Retrieve an NTP absolute timestamp in milliseconds. int64_t CurrentNtpInMilliseconds() const override { timeval tv = CurrentTimeVal(); uint32_t seconds; double microseconds_in_seconds; Adjust(tv, &seconds, µseconds_in_seconds); return 1000 * static_cast(seconds) + static_cast(1000.0 * microseconds_in_seconds + 0.5); } protected: virtual timeval CurrentTimeVal() const = 0; static void Adjust(const timeval& tv, uint32_t* adjusted_s, double* adjusted_us_in_s) { *adjusted_s = tv.tv_sec + kNtpJan1970; *adjusted_us_in_s = tv.tv_usec / 1e6; if (*adjusted_us_in_s >= 1) { *adjusted_us_in_s -= 1; ++*adjusted_s; } else if (*adjusted_us_in_s < -1) { *adjusted_us_in_s += 1; --*adjusted_s; } } }; #if defined(_WIN32) // TODO(pbos): Consider modifying the implementation to synchronize itself // against system time (update ref_point_, make it non-const) periodically to // prevent clock drift. class WindowsRealTimeClock : public RealTimeClock { public: WindowsRealTimeClock() : last_time_ms_(0), num_timer_wraps_(0), ref_point_(GetSystemReferencePoint()) {} virtual ~WindowsRealTimeClock() {} protected: struct ReferencePoint { FILETIME file_time; LARGE_INTEGER counter_ms; }; timeval CurrentTimeVal() const override { const uint64_t FILETIME_1970 = 0x019db1ded53e8000; FILETIME StartTime; uint64_t Time; struct timeval tv; // We can't use query performance counter since they can change depending on // speed stepping. GetTime(&StartTime); Time = (((uint64_t) StartTime.dwHighDateTime) << 32) + (uint64_t) StartTime.dwLowDateTime; // Convert the hecto-nano second time to tv format. Time -= FILETIME_1970; tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000); tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10); return tv; } void GetTime(FILETIME* current_time) const { DWORD t; LARGE_INTEGER elapsed_ms; { rtc::CritScope lock(&crit_); // time MUST be fetched inside the critical section to avoid non-monotonic // last_time_ms_ values that'll register as incorrect wraparounds due to // concurrent calls to GetTime. t = timeGetTime(); if (t < last_time_ms_) num_timer_wraps_++; last_time_ms_ = t; elapsed_ms.HighPart = num_timer_wraps_; } elapsed_ms.LowPart = t; elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart; // Translate to 100-nanoseconds intervals (FILETIME resolution) // and add to reference FILETIME to get current FILETIME. ULARGE_INTEGER filetime_ref_as_ul; filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime; filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime; filetime_ref_as_ul.QuadPart += static_cast((elapsed_ms.QuadPart) * 1000 * 10); // Copy to result current_time->dwHighDateTime = filetime_ref_as_ul.HighPart; current_time->dwLowDateTime = filetime_ref_as_ul.LowPart; } static ReferencePoint GetSystemReferencePoint() { ReferencePoint ref = {}; FILETIME ft0 = {}; FILETIME ft1 = {}; // Spin waiting for a change in system time. As soon as this change happens, // get the matching call for timeGetTime() as soon as possible. This is // assumed to be the most accurate offset that we can get between // timeGetTime() and system time. // Set timer accuracy to 1 ms. timeBeginPeriod(1); GetSystemTimeAsFileTime(&ft0); do { GetSystemTimeAsFileTime(&ft1); ref.counter_ms.QuadPart = timeGetTime(); Sleep(0); } while ((ft0.dwHighDateTime == ft1.dwHighDateTime) && (ft0.dwLowDateTime == ft1.dwLowDateTime)); ref.file_time = ft1; timeEndPeriod(1); return ref; } // mutable as time-accessing functions are const. mutable rtc::CriticalSection crit_; mutable DWORD last_time_ms_; mutable LONG num_timer_wraps_; const ReferencePoint ref_point_; }; #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC)) class UnixRealTimeClock : public RealTimeClock { public: UnixRealTimeClock() {} ~UnixRealTimeClock() override {} protected: timeval CurrentTimeVal() const override { struct timeval tv; struct timezone tz; tz.tz_minuteswest = 0; tz.tz_dsttime = 0; gettimeofday(&tv, &tz); return tv; } }; #endif #if defined(_WIN32) static WindowsRealTimeClock* volatile g_shared_clock = nullptr; #endif Clock* Clock::GetRealTimeClock() { #if defined(_WIN32) // This read relies on volatile read being atomic-load-acquire. This is // true in MSVC since at least 2005: // "A read of a volatile object (volatile read) has Acquire semantics" if (g_shared_clock != nullptr) return g_shared_clock; WindowsRealTimeClock* clock = new WindowsRealTimeClock; if (InterlockedCompareExchangePointer( reinterpret_cast(&g_shared_clock), clock, nullptr) != nullptr) { // g_shared_clock was assigned while we constructed/tried to assign our // instance, delete our instance and use the existing one. delete clock; } return g_shared_clock; #elif defined(WEBRTC_LINUX) || defined(WEBRTC_MAC) static UnixRealTimeClock clock; return &clock; #else return NULL; #endif } SimulatedClock::SimulatedClock(int64_t initial_time_us) : time_us_(initial_time_us), lock_(RWLockWrapper::CreateRWLock()) { } SimulatedClock::~SimulatedClock() { } int64_t SimulatedClock::TimeInMilliseconds() const { ReadLockScoped synchronize(*lock_); return (time_us_ + 500) / 1000; } int64_t SimulatedClock::TimeInMicroseconds() const { ReadLockScoped synchronize(*lock_); return time_us_; } void SimulatedClock::CurrentNtp(uint32_t& seconds, uint32_t& fractions) const { int64_t now_ms = TimeInMilliseconds(); seconds = (now_ms / 1000) + kNtpJan1970; fractions = static_cast((now_ms % 1000) * kMagicNtpFractionalUnit / 1000); } int64_t SimulatedClock::CurrentNtpInMilliseconds() const { return TimeInMilliseconds() + 1000 * static_cast(kNtpJan1970); } void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) { AdvanceTimeMicroseconds(1000 * milliseconds); } void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) { WriteLockScoped synchronize(*lock_); time_us_ += microseconds; } }; // namespace webrtc