/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "C2SoftFlacEnc" #include #include #include #include #include #include "C2SoftFlacEnc.h" namespace android { namespace { constexpr char COMPONENT_NAME[] = "c2.android.flac.encoder"; } // namespace class C2SoftFlacEnc::IntfImpl : public SimpleInterface::BaseParams { public: explicit IntfImpl(const std::shared_ptr &helper) : SimpleInterface::BaseParams( helper, COMPONENT_NAME, C2Component::KIND_ENCODER, C2Component::DOMAIN_AUDIO, MEDIA_MIMETYPE_AUDIO_FLAC) { noPrivateBuffers(); noInputReferences(); noOutputReferences(); noInputLatency(); noTimeStretch(); setDerivedInstance(this); addParameter( DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES) .withConstValue(new C2ComponentAttributesSetting( C2Component::ATTRIB_IS_TEMPORAL)) .build()); addParameter( DefineParam(mSampleRate, C2_PARAMKEY_SAMPLE_RATE) .withDefault(new C2StreamSampleRateInfo::input(0u, 44100)) .withFields({C2F(mSampleRate, value).inRange(1, 655350)}) .withSetter((Setter::StrictValueWithNoDeps)) .build()); addParameter( DefineParam(mChannelCount, C2_PARAMKEY_CHANNEL_COUNT) .withDefault(new C2StreamChannelCountInfo::input(0u, 1)) .withFields({C2F(mChannelCount, value).inRange(1, 2)}) .withSetter(Setter::StrictValueWithNoDeps) .build()); addParameter( DefineParam(mBitrate, C2_PARAMKEY_BITRATE) .withDefault(new C2StreamBitrateInfo::output(0u, 768000)) .withFields({C2F(mBitrate, value).inRange(1, 21000000)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY) .withDefault(new C2StreamComplexityTuning::output(0u, FLAC_COMPRESSION_LEVEL_DEFAULT)) .withFields({C2F(mComplexity, value).inRange( FLAC_COMPRESSION_LEVEL_MIN, FLAC_COMPRESSION_LEVEL_MAX)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mInputMaxBufSize, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE) .withConstValue(new C2StreamMaxBufferSizeInfo::input(0u, 4608)) .build()); addParameter( DefineParam(mPcmEncodingInfo, C2_PARAMKEY_PCM_ENCODING) .withDefault(new C2StreamPcmEncodingInfo::input(0u, C2Config::PCM_16)) .withFields({C2F(mPcmEncodingInfo, value).oneOf({ C2Config::PCM_16, // C2Config::PCM_8, C2Config::PCM_FLOAT}) }) .withSetter((Setter::StrictValueWithNoDeps)) .build()); } uint32_t getSampleRate() const { return mSampleRate->value; } uint32_t getChannelCount() const { return mChannelCount->value; } uint32_t getBitrate() const { return mBitrate->value; } uint32_t getComplexity() const { return mComplexity->value; } int32_t getPcmEncodingInfo() const { return mPcmEncodingInfo->value; } private: std::shared_ptr mSampleRate; std::shared_ptr mChannelCount; std::shared_ptr mBitrate; std::shared_ptr mComplexity; std::shared_ptr mInputMaxBufSize; std::shared_ptr mPcmEncodingInfo; }; C2SoftFlacEnc::C2SoftFlacEnc( const char *name, c2_node_id_t id, const std::shared_ptr &intfImpl) : SimpleC2Component(std::make_shared>(name, id, intfImpl)), mIntf(intfImpl), mFlacStreamEncoder(nullptr), mInputBufferPcm32(nullptr) { } C2SoftFlacEnc::~C2SoftFlacEnc() { onRelease(); } c2_status_t C2SoftFlacEnc::onInit() { mFlacStreamEncoder = FLAC__stream_encoder_new(); if (!mFlacStreamEncoder) return C2_CORRUPTED; mInputBufferPcm32 = (FLAC__int32*) malloc( kInBlockSize * kMaxNumChannels * sizeof(FLAC__int32)); if (!mInputBufferPcm32) return C2_NO_MEMORY; mSignalledError = false; mSignalledOutputEos = false; mIsFirstFrame = true; mAnchorTimeStamp = 0ull; mProcessedSamples = 0u; mEncoderWriteData = false; mEncoderReturnedNbBytes = 0; mHeaderOffset = 0; mWroteHeader = false; status_t err = configureEncoder(); return err == OK ? C2_OK : C2_CORRUPTED; } void C2SoftFlacEnc::onRelease() { if (mFlacStreamEncoder) { FLAC__stream_encoder_delete(mFlacStreamEncoder); mFlacStreamEncoder = nullptr; } if (mInputBufferPcm32) { free(mInputBufferPcm32); mInputBufferPcm32 = nullptr; } } void C2SoftFlacEnc::onReset() { (void) onStop(); } c2_status_t C2SoftFlacEnc::onStop() { mSignalledError = false; mSignalledOutputEos = false; mIsFirstFrame = true; mAnchorTimeStamp = 0ull; mProcessedSamples = 0u; mEncoderWriteData = false; mEncoderReturnedNbBytes = 0; mHeaderOffset = 0; mWroteHeader = false; c2_status_t status = drain(DRAIN_COMPONENT_NO_EOS, nullptr); if (C2_OK != status) return status; status_t err = configureEncoder(); if (err != OK) mSignalledError = true; return C2_OK; } c2_status_t C2SoftFlacEnc::onFlush_sm() { return onStop(); } static void fillEmptyWork(const std::unique_ptr &work) { work->worklets.front()->output.flags = work->input.flags; work->worklets.front()->output.buffers.clear(); work->worklets.front()->output.ordinal = work->input.ordinal; } void C2SoftFlacEnc::process( const std::unique_ptr &work, const std::shared_ptr &pool) { // Initialize output work work->result = C2_OK; work->workletsProcessed = 1u; work->worklets.front()->output.flags = work->input.flags; if (mSignalledError || mSignalledOutputEos) { work->result = C2_BAD_VALUE; return; } bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0); C2ReadView rView = mDummyReadView; size_t inOffset = 0u; size_t inSize = 0u; if (!work->input.buffers.empty()) { rView = work->input.buffers[0]->data().linearBlocks().front().map().get(); inSize = rView.capacity(); if (inSize && rView.error()) { ALOGE("read view map failed %d", rView.error()); work->result = C2_CORRUPTED; return; } } ALOGV("in buffer attr. size %zu timestamp %d frameindex %d, flags %x", inSize, (int)work->input.ordinal.timestamp.peeku(), (int)work->input.ordinal.frameIndex.peeku(), work->input.flags); if (mIsFirstFrame && inSize) { mAnchorTimeStamp = work->input.ordinal.timestamp.peekull(); mIsFirstFrame = false; } if (!mWroteHeader) { std::unique_ptr csd = C2StreamInitDataInfo::output::AllocUnique(mHeaderOffset, 0u); if (!csd) { ALOGE("CSD allocation failed"); mSignalledError = true; work->result = C2_NO_MEMORY; return; } memcpy(csd->m.value, mHeader, mHeaderOffset); ALOGV("put csd, %d bytes", mHeaderOffset); work->worklets.front()->output.configUpdate.push_back(std::move(csd)); mWroteHeader = true; } const uint32_t sampleRate = mIntf->getSampleRate(); const uint32_t channelCount = mIntf->getChannelCount(); const bool inputFloat = mIntf->getPcmEncodingInfo() == C2Config::PCM_FLOAT; const unsigned sampleSize = inputFloat ? sizeof(float) : sizeof(int16_t); const unsigned frameSize = channelCount * sampleSize; const uint64_t outTimeStamp = mProcessedSamples * 1000000ll / sampleRate; size_t outCapacity = inSize; outCapacity += mBlockSize * frameSize; C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE }; c2_status_t err = pool->fetchLinearBlock(outCapacity, usage, &mOutputBlock); if (err != C2_OK) { ALOGE("fetchLinearBlock for Output failed with status %d", err); work->result = C2_NO_MEMORY; return; } C2WriteView wView = mOutputBlock->map().get(); if (wView.error()) { ALOGE("write view map failed %d", wView.error()); work->result = C2_CORRUPTED; return; } mEncoderWriteData = true; mEncoderReturnedNbBytes = 0; size_t inPos = 0; while (inPos < inSize) { const uint8_t *inPtr = rView.data() + inOffset; const size_t processSize = MIN(kInBlockSize * frameSize, (inSize - inPos)); const unsigned nbInputFrames = processSize / frameSize; const unsigned nbInputSamples = processSize / sampleSize; ALOGV("about to encode %zu bytes", processSize); if (inputFloat) { const float * const pcmFloat = reinterpret_cast(inPtr + inPos); memcpy_to_q8_23_from_float_with_clamp(mInputBufferPcm32, pcmFloat, nbInputSamples); } else { const int16_t * const pcm16 = reinterpret_cast(inPtr + inPos); for (unsigned i = 0; i < nbInputSamples; i++) { mInputBufferPcm32[i] = (FLAC__int32) pcm16[i]; } } FLAC__bool ok = FLAC__stream_encoder_process_interleaved( mFlacStreamEncoder, mInputBufferPcm32, nbInputFrames); if (!ok) { ALOGE("error encountered during encoding"); mSignalledError = true; work->result = C2_CORRUPTED; mOutputBlock.reset(); return; } inPos += processSize; } if (eos && (C2_OK != drain(DRAIN_COMPONENT_WITH_EOS, pool))) { ALOGE("error encountered during encoding"); mSignalledError = true; work->result = C2_CORRUPTED; mOutputBlock.reset(); return; } fillEmptyWork(work); if (mEncoderReturnedNbBytes != 0) { std::shared_ptr buffer = createLinearBuffer(std::move(mOutputBlock), 0, mEncoderReturnedNbBytes); work->worklets.front()->output.buffers.push_back(buffer); work->worklets.front()->output.ordinal.timestamp = mAnchorTimeStamp + outTimeStamp; } else { ALOGV("encoder process_interleaved returned without data to write"); } mOutputBlock = nullptr; if (eos) { mSignalledOutputEos = true; ALOGV("signalled EOS"); } mEncoderWriteData = false; mEncoderReturnedNbBytes = 0; } FLAC__StreamEncoderWriteStatus C2SoftFlacEnc::onEncodedFlacAvailable( const FLAC__byte buffer[], size_t bytes, unsigned samples, unsigned current_frame) { (void) current_frame; ALOGV("%s (bytes=%zu, samples=%u, curr_frame=%u)", __func__, bytes, samples, current_frame); if (samples == 0) { ALOGI("saving %zu bytes of header", bytes); memcpy(mHeader + mHeaderOffset, buffer, bytes); mHeaderOffset += bytes;// will contain header size when finished receiving header return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } if ((samples == 0) || !mEncoderWriteData) { // called by the encoder because there's header data to save, but it's not the role // of this component (unless WRITE_FLAC_HEADER_IN_FIRST_BUFFER is defined) ALOGV("ignoring %zu bytes of header data (samples=%d)", bytes, samples); return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } // write encoded data C2WriteView wView = mOutputBlock->map().get(); uint8_t* outData = wView.data(); ALOGV("writing %zu bytes of encoded data on output", bytes); // increment mProcessedSamples to maintain audio synchronization during // play back mProcessedSamples += samples; if (bytes + mEncoderReturnedNbBytes > mOutputBlock->capacity()) { ALOGE("not enough space left to write encoded data, dropping %zu bytes", bytes); // a fatal error would stop the encoding return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } memcpy(outData + mEncoderReturnedNbBytes, buffer, bytes); mEncoderReturnedNbBytes += bytes; return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } status_t C2SoftFlacEnc::configureEncoder() { ALOGV("%s numChannel=%d, sampleRate=%d", __func__, mIntf->getChannelCount(), mIntf->getSampleRate()); if (mSignalledError || !mFlacStreamEncoder) { ALOGE("can't configure encoder: no encoder or invalid state"); return UNKNOWN_ERROR; } const bool inputFloat = mIntf->getPcmEncodingInfo() == C2Config::PCM_FLOAT; const int bitsPerSample = inputFloat ? 24 : 16; FLAC__bool ok = true; ok = ok && FLAC__stream_encoder_set_channels(mFlacStreamEncoder, mIntf->getChannelCount()); ok = ok && FLAC__stream_encoder_set_sample_rate(mFlacStreamEncoder, mIntf->getSampleRate()); ok = ok && FLAC__stream_encoder_set_bits_per_sample(mFlacStreamEncoder, bitsPerSample); ok = ok && FLAC__stream_encoder_set_compression_level(mFlacStreamEncoder, mIntf->getComplexity()); ok = ok && FLAC__stream_encoder_set_verify(mFlacStreamEncoder, false); if (!ok) { ALOGE("unknown error when configuring encoder"); return UNKNOWN_ERROR; } ok &= FLAC__STREAM_ENCODER_INIT_STATUS_OK == FLAC__stream_encoder_init_stream(mFlacStreamEncoder, flacEncoderWriteCallback /*write_callback*/, nullptr /*seek_callback*/, nullptr /*tell_callback*/, nullptr /*metadata_callback*/, (void *) this /*client_data*/); if (!ok) { ALOGE("unknown error when configuring encoder"); return UNKNOWN_ERROR; } mBlockSize = FLAC__stream_encoder_get_blocksize(mFlacStreamEncoder); ALOGV("encoder successfully configured"); return OK; } FLAC__StreamEncoderWriteStatus C2SoftFlacEnc::flacEncoderWriteCallback( const FLAC__StreamEncoder *, const FLAC__byte buffer[], size_t bytes, unsigned samples, unsigned current_frame, void *client_data) { return ((C2SoftFlacEnc*) client_data)->onEncodedFlacAvailable( buffer, bytes, samples, current_frame); } c2_status_t C2SoftFlacEnc::drain( uint32_t drainMode, const std::shared_ptr &pool) { (void) pool; switch (drainMode) { case NO_DRAIN: ALOGW("drain with NO_DRAIN: no-op"); return C2_OK; case DRAIN_CHAIN: ALOGW("DRAIN_CHAIN not supported"); return C2_OMITTED; case DRAIN_COMPONENT_WITH_EOS: // TODO: This flag is not being sent back to the client // because there are no items in PendingWork queue as all the // inputs are being sent back with emptywork or valid encoded data // mSignalledOutputEos = true; case DRAIN_COMPONENT_NO_EOS: break; default: return C2_BAD_VALUE; } FLAC__bool ok = FLAC__stream_encoder_finish(mFlacStreamEncoder); if (!ok) return C2_CORRUPTED; mIsFirstFrame = true; mAnchorTimeStamp = 0ull; mProcessedSamples = 0u; return C2_OK; } class C2SoftFlacEncFactory : public C2ComponentFactory { public: C2SoftFlacEncFactory() : mHelper(std::static_pointer_cast( GetCodec2PlatformComponentStore()->getParamReflector())) { } virtual c2_status_t createComponent( c2_node_id_t id, std::shared_ptr* const component, std::function deleter) override { *component = std::shared_ptr( new C2SoftFlacEnc(COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } virtual c2_status_t createInterface( c2_node_id_t id, std::shared_ptr* const interface, std::function deleter) override { *interface = std::shared_ptr( new SimpleInterface( COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } virtual ~C2SoftFlacEncFactory() override = default; private: std::shared_ptr mHelper; }; } // namespace android extern "C" ::C2ComponentFactory* CreateCodec2Factory() { ALOGV("in %s", __func__); return new ::android::C2SoftFlacEncFactory(); } extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) { ALOGV("in %s", __func__); delete factory; }