/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef C2PARAM_H_ #define C2PARAM_H_ #include #include #include #include #include #include #include #include /// \addtogroup Parameters /// @{ /// \defgroup internal Internal helpers. /*! * \file * PARAMETERS: SETTINGs, TUNINGs, and INFOs * === * * These represent miscellaneous control and metadata information and are likely copied into * kernel space. Therefore, these are C-like structures designed to carry just a small amount of * information. We are using C++ to be able to add constructors, as well as non-virtual and class * methods. * * ==Specification details: * * Restrictions: * - must be POD struct, e.g. no vtable (no virtual destructor) * - must have the same size in 64-bit and 32-bit mode (no size_t) * - as such, no pointer members * - some common member field names are reserved as they are defined as methods for all * parameters: * they are: size, type, kind, index and stream * * Behavior: * - Params can be global (not related to input or output), related to input or output, * or related to an input/output stream. * - All params are queried/set using a unique param index, which incorporates a potential stream * index and/or port. * - Querying (supported) params MUST never fail. * - All params MUST have default values. * - If some fields have "unsupported" or "invalid" values during setting, this SHOULD be * communicated to the app. * a) Ideally, this should be avoided. When setting parameters, in general, component should do * "best effort" to apply all settings. It should change "invalid/unsupported" values to the * nearest supported values. * - This is communicated to the client by changing the source values in tune()/ * configure(). * b) If falling back to a supported value is absolutely impossible, the component SHALL return * an error for the specific setting, but should continue to apply other settings. * TODO: this currently may result in unintended results. * * **NOTE:** unlike OMX, params are not versioned. Instead, a new struct with new param index * SHALL be added as new versions are required. * * The proper subtype (Setting, Info or Param) is incorporated into the class type. Define structs * to define multiple subtyped versions of related parameters. * * ==Implementation details: * * - Use macros to define parameters * - All parameters must have a default constructor * - This is only used for instantiating the class in source (e.g. will not be used * when building a parameter by the framework from key/value pairs.) */ /// \ingroup internal /** * Parameter base class. */ struct C2Param { // param index encompasses the following: // // - kind (setting, tuning, info, struct) // - scope // - direction (global, input, output) // - stream flag // - stream ID (usually 0) // - and the parameter's type (core index) // - flexible parameter flag // - vendor extension flag // - type index (this includes the vendor extension flag) // // layout: // // kind : <------- scope -------> : <----- core index -----> // +------+-----+---+------+--------+----|------+--------------+ // | kind | dir | - |stream|streamID|flex|vendor| type index | // +------+-----+---+------+--------+----+------+--------------+ // bit: 31..30 29.28 25 24 .. 17 16 15 14 .. 0 // public: /** * C2Param kinds, usable as bitmaps. */ enum kind_t : uint32_t { NONE = 0, STRUCT = (1 << 0), INFO = (1 << 1), SETTING = (1 << 2), TUNING = (1 << 3) | SETTING, // tunings are settings }; /** * The parameter type index specifies the underlying parameter type of a parameter as * an integer value. * * Parameter types are divided into two groups: platform types and vendor types. * * Platform types are defined by the platform and are common for all implementations. * * Vendor types are defined by each vendors, so they may differ between implementations. * It is recommended that vendor types be the same for all implementations by a specific * vendor. */ typedef uint32_t type_index_t; enum : uint32_t { TYPE_INDEX_VENDOR_START = 0x00008000, ///< vendor indices SHALL start after this }; /** * Core index is the underlying parameter type for a parameter. It is used to describe the * layout of the parameter structure regardless of the component or parameter kind/scope. * * It is used to identify and distinguish global parameters, and also parameters on a given * port or stream. They must be unique for the set of global parameters, as well as for the * set of parameters on each port or each stream, but the same core index can be used for * parameters on different streams or ports, as well as for global parameters and port/stream * parameters. * * Multiple parameter types can share the same layout. * * \note The layout for all parameters with the same core index across all components must * be identical. */ struct CoreIndex { //public: enum : uint32_t { IS_FLEX_FLAG = 0x00010000, IS_REQUEST_FLAG = 0x00020000, }; protected: enum : uint32_t { KIND_MASK = 0xC0000000, KIND_STRUCT = 0x00000000, KIND_TUNING = 0x40000000, KIND_SETTING = 0x80000000, KIND_INFO = 0xC0000000, DIR_MASK = 0x30000000, DIR_GLOBAL = 0x20000000, DIR_UNDEFINED = DIR_MASK, // MUST have all bits set DIR_INPUT = 0x00000000, DIR_OUTPUT = 0x10000000, IS_STREAM_FLAG = 0x02000000, STREAM_ID_MASK = 0x01F00000, STREAM_ID_SHIFT = 20, MAX_STREAM_ID = STREAM_ID_MASK >> STREAM_ID_SHIFT, STREAM_MASK = IS_STREAM_FLAG | STREAM_ID_MASK, IS_VENDOR_FLAG = 0x00008000, TYPE_INDEX_MASK = 0x0000FFFF, CORE_MASK = TYPE_INDEX_MASK | IS_FLEX_FLAG, }; public: /// constructor/conversion from uint32_t inline CoreIndex(uint32_t index) : mIndex(index) { } // no conversion from uint64_t inline CoreIndex(uint64_t index) = delete; /// returns true iff this is a vendor extension parameter inline bool isVendor() const { return mIndex & IS_VENDOR_FLAG; } /// returns true iff this is a flexible parameter (with variable size) inline bool isFlexible() const { return mIndex & IS_FLEX_FLAG; } /// returns the core index /// This is the combination of the parameter type index and the flexible flag. inline uint32_t coreIndex() const { return mIndex & CORE_MASK; } /// returns the parameter type index inline type_index_t typeIndex() const { return mIndex & TYPE_INDEX_MASK; } DEFINE_FIELD_AND_MASK_BASED_COMPARISON_OPERATORS(CoreIndex, mIndex, CORE_MASK) protected: uint32_t mIndex; }; /** * Type encompasses the parameter's kind (tuning, setting, info), its scope (whether the * parameter is global, input or output, and whether it is for a stream) and the its base * index (which also determines its layout). */ struct Type : public CoreIndex { //public: /// returns true iff this is a global parameter (not for input nor output) inline bool isGlobal() const { return (mIndex & DIR_MASK) == DIR_GLOBAL; } /// returns true iff this is an input or input stream parameter inline bool forInput() const { return (mIndex & DIR_MASK) == DIR_INPUT; } /// returns true iff this is an output or output stream parameter inline bool forOutput() const { return (mIndex & DIR_MASK) == DIR_OUTPUT; } /// returns true iff this is a stream parameter inline bool forStream() const { return mIndex & IS_STREAM_FLAG; } /// returns true iff this is a port (input or output) parameter inline bool forPort() const { return !forStream() && !isGlobal(); } /// returns the parameter type: the parameter index without the stream ID inline uint32_t type() const { return mIndex & (~STREAM_ID_MASK); } /// return the kind (struct, info, setting or tuning) of this param inline kind_t kind() const { switch (mIndex & KIND_MASK) { case KIND_STRUCT: return STRUCT; case KIND_INFO: return INFO; case KIND_SETTING: return SETTING; case KIND_TUNING: return TUNING; default: return NONE; // should not happen } } /// constructor/conversion from uint32_t inline Type(uint32_t index) : CoreIndex(index) { } // no conversion from uint64_t inline Type(uint64_t index) = delete; DEFINE_FIELD_AND_MASK_BASED_COMPARISON_OPERATORS(Type, mIndex, ~STREAM_ID_MASK) private: friend struct C2Param; // for setPort() friend struct C2Tuning; // for KIND_TUNING friend struct C2Setting; // for KIND_SETTING friend struct C2Info; // for KIND_INFO // for DIR_GLOBAL template friend struct C2GlobalParam; template friend struct C2PortParam; // for kDir* template friend struct C2StreamParam; // for kDir* friend struct _C2ParamInspector; // for testing /** * Sets the port/stream direction. * @return true on success, false if could not set direction (e.g. it is global param). */ inline bool setPort(bool output) { if (isGlobal()) { return false; } else { mIndex = (mIndex & ~DIR_MASK) | (output ? DIR_OUTPUT : DIR_INPUT); return true; } } }; /** * index encompasses all remaining information: basically the stream ID. */ struct Index : public Type { /// returns the index as uint32_t inline operator uint32_t() const { return mIndex; } /// constructor/conversion from uint32_t inline Index(uint32_t index) : Type(index) { } /// copy constructor inline Index(const Index &index) = default; // no conversion from uint64_t inline Index(uint64_t index) = delete; /// returns the stream ID or ~0 if not a stream inline unsigned stream() const { return forStream() ? rawStream() : ~0U; } /// Returns an index with stream field set to given stream. inline Index withStream(unsigned stream) const { Index ix = mIndex; (void)ix.setStream(stream); return ix; } /// sets the port (direction). Returns true iff successful. inline Index withPort(bool output) const { Index ix = mIndex; (void)ix.setPort(output); return ix; } DEFINE_FIELD_BASED_COMPARISON_OPERATORS(Index, mIndex) private: friend struct C2Param; // for setStream, MakeStreamId, isValid friend struct _C2ParamInspector; // for testing /** * @return true if the type is valid, e.g. direction is not undefined AND * stream is 0 if not a stream param. */ inline bool isValid() const { // there is no Type::isValid (even though some of this check could be // performed on types) as this is only used on index... return (forStream() ? rawStream() < MAX_STREAM_ID : rawStream() == 0) && (mIndex & DIR_MASK) != DIR_UNDEFINED; } /// returns the raw stream ID field inline unsigned rawStream() const { return (mIndex & STREAM_ID_MASK) >> STREAM_ID_SHIFT; } /// returns the streamId bitfield for a given |stream|. If stream is invalid, /// returns an invalid bitfield. inline static uint32_t MakeStreamId(unsigned stream) { // saturate stream ID (max value is invalid) if (stream > MAX_STREAM_ID) { stream = MAX_STREAM_ID; } return (stream << STREAM_ID_SHIFT) & STREAM_ID_MASK; } inline bool convertToStream(bool output, unsigned stream) { mIndex = (mIndex & ~DIR_MASK) | IS_STREAM_FLAG; (void)setPort(output); return setStream(stream); } inline void convertToPort(bool output) { mIndex = (mIndex & ~(DIR_MASK | IS_STREAM_FLAG)); (void)setPort(output); } inline void convertToGlobal() { mIndex = (mIndex & ~(DIR_MASK | IS_STREAM_FLAG)) | DIR_GLOBAL; } inline void convertToRequest() { mIndex = mIndex | IS_REQUEST_FLAG; } /** * Sets the stream index. * \return true on success, false if could not set index (e.g. not a stream param). */ inline bool setStream(unsigned stream) { if (forStream()) { mIndex = (mIndex & ~STREAM_ID_MASK) | MakeStreamId(stream); return this->stream() < MAX_STREAM_ID; } return false; } }; public: // public getters for Index methods /// returns true iff this is a vendor extension parameter inline bool isVendor() const { return _mIndex.isVendor(); } /// returns true iff this is a flexible parameter inline bool isFlexible() const { return _mIndex.isFlexible(); } /// returns true iff this is a global parameter (not for input nor output) inline bool isGlobal() const { return _mIndex.isGlobal(); } /// returns true iff this is an input or input stream parameter inline bool forInput() const { return _mIndex.forInput(); } /// returns true iff this is an output or output stream parameter inline bool forOutput() const { return _mIndex.forOutput(); } /// returns true iff this is a stream parameter inline bool forStream() const { return _mIndex.forStream(); } /// returns true iff this is a port (input or output) parameter inline bool forPort() const { return _mIndex.forPort(); } /// returns the stream ID or ~0 if not a stream inline unsigned stream() const { return _mIndex.stream(); } /// returns the parameter type: the parameter index without the stream ID inline Type type() const { return _mIndex.type(); } /// returns the index of this parameter /// \todo: should we restrict this to C2ParamField? inline uint32_t index() const { return (uint32_t)_mIndex; } /// returns the core index of this parameter inline CoreIndex coreIndex() const { return _mIndex.coreIndex(); } /// returns the kind of this parameter inline kind_t kind() const { return _mIndex.kind(); } /// returns the size of the parameter or 0 if the parameter is invalid inline size_t size() const { return _mSize; } /// returns true iff the parameter is valid inline operator bool() const { return _mIndex.isValid() && _mSize > 0; } /// returns true iff the parameter is invalid inline bool operator!() const { return !operator bool(); } // equality is done by memcmp (use equals() to prevent any overread) inline bool operator==(const C2Param &o) const { return equals(o) && memcmp(this, &o, _mSize) == 0; } inline bool operator!=(const C2Param &o) const { return !operator==(o); } /// safe(r) type cast from pointer and size inline static C2Param* From(void *addr, size_t len) { // _mSize must fit into size, but really C2Param must also to be a valid param if (len < sizeof(C2Param)) { return nullptr; } // _mSize must match length C2Param *param = (C2Param*)addr; if (param->_mSize != len) { return nullptr; } return param; } /// Returns managed clone of |orig| at heap. inline static std::unique_ptr Copy(const C2Param &orig) { if (orig.size() == 0) { return nullptr; } void *mem = ::operator new (orig.size()); C2Param *param = new (mem) C2Param(orig.size(), orig._mIndex); param->updateFrom(orig); return std::unique_ptr(param); } /// Returns managed clone of |orig| as a stream parameter at heap. inline static std::unique_ptr CopyAsStream( const C2Param &orig, bool output, unsigned stream) { std::unique_ptr copy = Copy(orig); if (copy) { copy->_mIndex.convertToStream(output, stream); } return copy; } /// Returns managed clone of |orig| as a port parameter at heap. inline static std::unique_ptr CopyAsPort(const C2Param &orig, bool output) { std::unique_ptr copy = Copy(orig); if (copy) { copy->_mIndex.convertToPort(output); } return copy; } /// Returns managed clone of |orig| as a global parameter at heap. inline static std::unique_ptr CopyAsGlobal(const C2Param &orig) { std::unique_ptr copy = Copy(orig); if (copy) { copy->_mIndex.convertToGlobal(); } return copy; } /// Returns managed clone of |orig| as a stream parameter at heap. inline static std::unique_ptr CopyAsRequest(const C2Param &orig) { std::unique_ptr copy = Copy(orig); if (copy) { copy->_mIndex.convertToRequest(); } return copy; } #if 0 template P *As() { return P::From(this); } template const P *As() const { return const_cast(P::From(const_cast(this))); } #endif protected: /// sets the stream field. Returns true iff successful. inline bool setStream(unsigned stream) { return _mIndex.setStream(stream); } /// sets the port (direction). Returns true iff successful. inline bool setPort(bool output) { return _mIndex.setPort(output); } public: /// invalidate this parameter. There is no recovery from this call; e.g. parameter /// cannot be 'corrected' to be valid. inline void invalidate() { _mSize = 0; } // if other is the same kind of (valid) param as this, copy it into this and return true. // otherwise, do not copy anything, and return false. inline bool updateFrom(const C2Param &other) { if (other._mSize <= _mSize && other._mIndex == _mIndex && _mSize > 0) { memcpy(this, &other, other._mSize); return true; } return false; } protected: // returns |o| if it is a null ptr, or if can suitably be a param of given |type| (e.g. has // same type (ignoring stream ID), and size). Otherwise, returns null. If |checkDir| is false, // allow undefined or different direction (e.g. as constructed from C2PortParam() vs. // C2PortParam::input), but still require equivalent type (stream, port or global); otherwise, // return null. inline static const C2Param* IfSuitable( const C2Param* o, size_t size, Type type, size_t flexSize = 0, bool checkDir = true) { if (o == nullptr || o->_mSize < size || (flexSize && ((o->_mSize - size) % flexSize))) { return nullptr; } else if (checkDir) { return o->_mIndex.type() == type.mIndex ? o : nullptr; } else if (o->_mIndex.isGlobal()) { return nullptr; } else { return ((o->_mIndex.type() ^ type.mIndex) & ~Type::DIR_MASK) ? nullptr : o; } } /// base constructor inline C2Param(uint32_t paramSize, Index paramIndex) : _mSize(paramSize), _mIndex(paramIndex) { if (paramSize > sizeof(C2Param)) { memset(this + 1, 0, paramSize - sizeof(C2Param)); } } /// base constructor with stream set inline C2Param(uint32_t paramSize, Index paramIndex, unsigned stream) : _mSize(paramSize), _mIndex(paramIndex | Index::MakeStreamId(stream)) { if (paramSize > sizeof(C2Param)) { memset(this + 1, 0, paramSize - sizeof(C2Param)); } if (!forStream()) { invalidate(); } } private: friend struct _C2ParamInspector; // for testing /// returns true iff |o| has the same size and index as this. This performs the /// basic check for equality. inline bool equals(const C2Param &o) const { return _mSize == o._mSize && _mIndex == o._mIndex; } uint32_t _mSize; Index _mIndex; }; /// \ingroup internal /// allow C2Params access to private methods, e.g. constructors #define C2PARAM_MAKE_FRIENDS \ template friend struct C2GlobalParam; \ template friend struct C2PortParam; \ template friend struct C2StreamParam; \ /** * Setting base structure for component method signatures. Wrap constructors. */ struct C2Setting : public C2Param { protected: template inline C2Setting(const Args(&... args)) : C2Param(args...) { } public: // TODO enum : uint32_t { PARAM_KIND = Type::KIND_SETTING }; }; /** * Tuning base structure for component method signatures. Wrap constructors. */ struct C2Tuning : public C2Setting { protected: template inline C2Tuning(const Args(&... args)) : C2Setting(args...) { } public: // TODO enum : uint32_t { PARAM_KIND = Type::KIND_TUNING }; }; /** * Info base structure for component method signatures. Wrap constructors. */ struct C2Info : public C2Param { protected: template inline C2Info(const Args(&... args)) : C2Param(args...) { } public: // TODO enum : uint32_t { PARAM_KIND = Type::KIND_INFO }; }; /** * Structure uniquely specifying a field in an arbitrary structure. * * \note This structure is used differently in C2FieldDescriptor to * identify array fields, such that _mSize is the size of each element. This is * because the field descriptor contains the array-length, and we want to keep * a relevant element size for variable length arrays. */ struct _C2FieldId { //public: /** * Constructor used for C2FieldDescriptor that removes the array extent. * * \param[in] offset pointer to the field in an object at address 0. */ template::type> inline _C2FieldId(T* offset) : // offset is from "0" so will fit on 32-bits _mOffset((uint32_t)(uintptr_t)(offset)), _mSize(sizeof(B)) { } /** * Direct constructor from offset and size. * * \param[in] offset offset of the field. * \param[in] size size of the field. */ inline _C2FieldId(size_t offset, size_t size) : _mOffset(offset), _mSize(size) {} /** * Constructor used to identify a field in an object. * * \param U[type] pointer to the object that contains this field. This is needed in case the * field is in an (inherited) base class, in which case T will be that base class. * \param pm[im] member pointer to the field */ template::type> inline _C2FieldId(U *, R T::* pm) : _mOffset((uint32_t)(uintptr_t)(&(((U*)256)->*pm)) - 256u), _mSize(sizeof(B)) { } /** * Constructor used to identify a field in an object. * * \param pm[im] member pointer to the field */ template::type> inline _C2FieldId(R T::* pm) : _mOffset((uint32_t)(uintptr_t)(&(((T*)0)->*pm))), _mSize(sizeof(B)) { } inline bool operator==(const _C2FieldId &other) const { return _mOffset == other._mOffset && _mSize == other._mSize; } inline bool operator<(const _C2FieldId &other) const { return _mOffset < other._mOffset || // NOTE: order parent structure before sub field (_mOffset == other._mOffset && _mSize > other._mSize); } DEFINE_OTHER_COMPARISON_OPERATORS(_C2FieldId) #if 0 inline uint32_t offset() const { return _mOffset; } inline uint32_t size() const { return _mSize; } #endif #if defined(FRIEND_TEST) friend void PrintTo(const _C2FieldId &d, ::std::ostream*); #endif private: friend struct _C2ParamInspector; friend struct C2FieldDescriptor; uint32_t _mOffset; // offset of field uint32_t _mSize; // size of field }; /** * Structure uniquely specifying a 'field' in a configuration. The field * can be a field of a configuration, a subfield of a field of a configuration, * and even the whole configuration. Moreover, if the field can point to an * element in a array field, or to the entire array field. * * This structure is used for querying supported values for a field, as well * as communicating configuration failures and conflicts when trying to change * a configuration for a component/interface or a store. */ struct C2ParamField { //public: /** * Create a field identifier using a configuration parameter (variable), * and a pointer to member. * * ~~~~~~~~~~~~~ (.cpp) * * struct C2SomeParam { * uint32_t mField; * uint32_t mArray[2]; * C2OtherStruct mStruct; * uint32_t mFlexArray[]; * } *mParam; * * C2ParamField(mParam, &mParam->mField); * C2ParamField(mParam, &mParam->mArray); * C2ParamField(mParam, &mParam->mArray[0]); * C2ParamField(mParam, &mParam->mStruct.mSubField); * C2ParamField(mParam, &mParam->mFlexArray); * C2ParamField(mParam, &mParam->mFlexArray[2]); * * ~~~~~~~~~~~~~ * * \todo fix what this is for T[] (for now size becomes T[1]) * * \note this does not work for 64-bit members as it triggers a * 'taking address of packed member' warning. * * \param param pointer to parameter * \param offset member pointer */ template inline C2ParamField(S* param, T* offset) : _mIndex(param->index()), _mFieldId((T*)((uintptr_t)offset - (uintptr_t)param)) {} template inline static C2ParamField Make(S& param, T& offset) { return C2ParamField(param.index(), (uintptr_t)&offset - (uintptr_t)¶m, sizeof(T)); } /** * Create a field identifier using a configuration parameter (variable), * and a member pointer. This method cannot be used to refer to an * array element or a subfield. * * ~~~~~~~~~~~~~ (.cpp) * * C2SomeParam mParam; * C2ParamField(&mParam, &C2SomeParam::mMemberField); * * ~~~~~~~~~~~~~ * * \param p pointer to parameter * \param T member pointer to the field member */ template inline C2ParamField(U *p, R T::* pm) : _mIndex(p->index()), _mFieldId(p, pm) { } /** * Create a field identifier to a configuration parameter (variable). * * ~~~~~~~~~~~~~ (.cpp) * * C2SomeParam mParam; * C2ParamField(&mParam); * * ~~~~~~~~~~~~~ * * \param param pointer to parameter */ template inline C2ParamField(S* param) : _mIndex(param->index()), _mFieldId(0u, param->size()) { } /** Copy constructor. */ inline C2ParamField(const C2ParamField &other) = default; /** * Equality operator. */ inline bool operator==(const C2ParamField &other) const { return _mIndex == other._mIndex && _mFieldId == other._mFieldId; } /** * Ordering operator. */ inline bool operator<(const C2ParamField &other) const { return _mIndex < other._mIndex || (_mIndex == other._mIndex && _mFieldId < other._mFieldId); } DEFINE_OTHER_COMPARISON_OPERATORS(C2ParamField) protected: inline C2ParamField(C2Param::Index index, uint32_t offset, uint32_t size) : _mIndex(index), _mFieldId(offset, size) {} private: friend struct _C2ParamInspector; C2Param::Index _mIndex; ///< parameter index _C2FieldId _mFieldId; ///< field identifier }; /** * A shared (union) representation of numeric values */ class C2Value { public: /// A union of supported primitive types. union Primitive { // first member is always zero initialized so it must be the largest uint64_t u64; ///< uint64_t value int64_t i64; ///< int64_t value c2_cntr64_t c64; ///< c2_cntr64_t value uint32_t u32; ///< uint32_t value int32_t i32; ///< int32_t value c2_cntr32_t c32; ///< c2_cntr32_t value float fp; ///< float value // constructors - implicit Primitive(uint64_t value) : u64(value) { } Primitive(int64_t value) : i64(value) { } Primitive(c2_cntr64_t value) : c64(value) { } Primitive(uint32_t value) : u32(value) { } Primitive(int32_t value) : i32(value) { } Primitive(c2_cntr32_t value) : c32(value) { } Primitive(uint8_t value) : u32(value) { } Primitive(char value) : i32(value) { } Primitive(float value) : fp(value) { } // allow construction from enum type template::value>::type> Primitive(E value) : Primitive(static_cast::type>(value)) { } Primitive() : u64(0) { } /** gets value out of the union */ template const T &ref() const; // verify that we can assume standard aliasing static_assert(sizeof(u64) == sizeof(i64), ""); static_assert(sizeof(u64) == sizeof(c64), ""); static_assert(sizeof(u32) == sizeof(i32), ""); static_assert(sizeof(u32) == sizeof(c32), ""); }; // verify that we can assume standard aliasing static_assert(offsetof(Primitive, u64) == offsetof(Primitive, i64), ""); static_assert(offsetof(Primitive, u64) == offsetof(Primitive, c64), ""); static_assert(offsetof(Primitive, u32) == offsetof(Primitive, i32), ""); static_assert(offsetof(Primitive, u32) == offsetof(Primitive, c32), ""); enum type_t : uint32_t { NO_INIT, INT32, UINT32, CNTR32, INT64, UINT64, CNTR64, FLOAT, }; template::value> inline static constexpr type_t TypeFor() { using U = typename std::underlying_type::type; return TypeFor(); } // deprectated template::value> inline static constexpr type_t typeFor() { return TypeFor(); } // constructors - implicit template C2Value(T value) : _mType(typeFor()), _mValue(value) { } C2Value() : _mType(NO_INIT) { } inline type_t type() const { return _mType; } template inline bool get(T *value) const { if (_mType == typeFor()) { *value = _mValue.ref(); return true; } return false; } /// returns the address of the value void *get() const { return _mType == NO_INIT ? nullptr : (void*)&_mValue; } /// returns the size of the contained value size_t inline sizeOf() const { return SizeFor(_mType); } static size_t SizeFor(type_t type) { switch (type) { case INT32: case UINT32: case CNTR32: return sizeof(_mValue.i32); case INT64: case UINT64: case CNTR64: return sizeof(_mValue.i64); case FLOAT: return sizeof(_mValue.fp); default: return 0; } } private: type_t _mType; Primitive _mValue; }; template<> inline const int32_t &C2Value::Primitive::ref() const { return i32; } template<> inline const int64_t &C2Value::Primitive::ref() const { return i64; } template<> inline const uint32_t &C2Value::Primitive::ref() const { return u32; } template<> inline const uint64_t &C2Value::Primitive::ref() const { return u64; } template<> inline const c2_cntr32_t &C2Value::Primitive::ref() const { return c32; } template<> inline const c2_cntr64_t &C2Value::Primitive::ref() const { return c64; } template<> inline const float &C2Value::Primitive::ref() const { return fp; } // provide types for enums and uint8_t, char even though we don't provide reading as them template<> constexpr C2Value::type_t C2Value::TypeFor() { return INT32; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return INT32; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return INT64; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return UINT32; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return UINT32; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return UINT64; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return CNTR32; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return CNTR64; } template<> constexpr C2Value::type_t C2Value::TypeFor() { return FLOAT; } // forward declare easy enum template template struct C2EasyEnum; /** * field descriptor. A field is uniquely defined by an index into a parameter. * (Note: Stream-id is not captured as a field.) * * Ordering of fields is by offset. In case of structures, it is depth first, * with a structure taking an index just before and in addition to its members. */ struct C2FieldDescriptor { //public: /** field types and flags * \note: only 32-bit and 64-bit fields are supported (e.g. no boolean, as that * is represented using INT32). */ enum type_t : uint32_t { // primitive types INT32 = C2Value::INT32, ///< 32-bit signed integer UINT32 = C2Value::UINT32, ///< 32-bit unsigned integer CNTR32 = C2Value::CNTR32, ///< 32-bit counter INT64 = C2Value::INT64, ///< 64-bit signed integer UINT64 = C2Value::UINT64, ///< 64-bit signed integer CNTR64 = C2Value::CNTR64, ///< 64-bit counter FLOAT = C2Value::FLOAT, ///< 32-bit floating point // array types STRING = 0x100, ///< fixed-size string (POD) BLOB, ///< blob. Blobs have no sub-elements and can be thought of as byte arrays; ///< however, bytes cannot be individually addressed by clients. // complex types STRUCT_FLAG = 0x20000, ///< structs. Marked with this flag in addition to their coreIndex. }; typedef std::pair NamedValueType; typedef std::vector NamedValuesType; //typedef std::pair, std::vector> NamedValuesType; /** * Template specialization that returns the named values for a type. * * \todo hide from client. * * \return a vector of name-value pairs. */ template static NamedValuesType namedValuesFor(const B &); /** specialization for easy enums */ template inline static NamedValuesType namedValuesFor(const C2EasyEnum &) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnull-dereference" return namedValuesFor(*(E*)nullptr); #pragma GCC diagnostic pop } private: template::value || std::is_enum::value> struct C2_HIDE _NamedValuesGetter; public: inline C2FieldDescriptor(uint32_t type, uint32_t extent, C2String name, size_t offset, size_t size) : _mType((type_t)type), _mExtent(extent), _mName(name), _mFieldId(offset, size) { } inline C2FieldDescriptor(const C2FieldDescriptor &) = default; template::type> inline C2FieldDescriptor(const T* offset, const char *name) : _mType(this->GetType((B*)nullptr)), _mExtent(std::is_array::value ? std::extent::value : 1), _mName(name), _mNamedValues(_NamedValuesGetter::getNamedValues()), _mFieldId(offset) {} /// \deprecated template::type> inline C2FieldDescriptor(S*, T S::* field, const char *name) : _mType(this->GetType((B*)nullptr)), _mExtent(std::is_array::value ? std::extent::value : 1), _mName(name), _mFieldId(&(((S*)0)->*field)) {} /// returns the type of this field inline type_t type() const { return _mType; } /// returns the length of the field in case it is an array. Returns 0 for /// T[] arrays, returns 1 for T[1] arrays as well as if the field is not an array. inline size_t extent() const { return _mExtent; } /// returns the name of the field inline C2String name() const { return _mName; } const NamedValuesType &namedValues() const { return _mNamedValues; } #if defined(FRIEND_TEST) friend void PrintTo(const C2FieldDescriptor &, ::std::ostream*); friend bool operator==(const C2FieldDescriptor &, const C2FieldDescriptor &); FRIEND_TEST(C2ParamTest_ParamFieldList, VerifyStruct); #endif private: /** * Construct an offseted field descriptor. */ inline C2FieldDescriptor(const C2FieldDescriptor &desc, size_t offset) : _mType(desc._mType), _mExtent(desc._mExtent), _mName(desc._mName), _mNamedValues(desc._mNamedValues), _mFieldId(desc._mFieldId._mOffset + offset, desc._mFieldId._mSize) { } type_t _mType; uint32_t _mExtent; // the last member can be arbitrary length if it is T[] array, // extending to the end of the parameter (this is marked with // 0). T[0]-s are not fields. C2String _mName; NamedValuesType _mNamedValues; _C2FieldId _mFieldId; // field identifier (offset and size) // NOTE: We do not capture default value(s) here as that may depend on the component. // NOTE: We also do not capture bestEffort, as 1) this should be true for most fields, // 2) this is at parameter granularity. // type resolution inline static type_t GetType(int32_t*) { return INT32; } inline static type_t GetType(uint32_t*) { return UINT32; } inline static type_t GetType(c2_cntr32_t*) { return CNTR32; } inline static type_t GetType(int64_t*) { return INT64; } inline static type_t GetType(uint64_t*) { return UINT64; } inline static type_t GetType(c2_cntr64_t*) { return CNTR64; } inline static type_t GetType(float*) { return FLOAT; } inline static type_t GetType(char*) { return STRING; } inline static type_t GetType(uint8_t*) { return BLOB; } template::value>::type> inline static type_t GetType(T*) { typename std::underlying_type::type underlying(0); return GetType(&underlying); } // verify C2Struct by having a FieldList() and a CORE_INDEX. template inline static type_t GetType(T*) { static_assert(!std::is_base_of::value, "cannot use C2Params as fields"); return (type_t)(T::CORE_INDEX | STRUCT_FLAG); } friend struct _C2ParamInspector; }; // no named values for compound types template struct C2FieldDescriptor::_NamedValuesGetter { inline static C2FieldDescriptor::NamedValuesType getNamedValues() { return NamedValuesType(); } }; template struct C2FieldDescriptor::_NamedValuesGetter { inline static C2FieldDescriptor::NamedValuesType getNamedValues() { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnull-dereference" return C2FieldDescriptor::namedValuesFor(*(B*)nullptr); #pragma GCC diagnostic pop } }; #define DEFINE_NO_NAMED_VALUES_FOR(type) \ template<> inline C2FieldDescriptor::NamedValuesType C2FieldDescriptor::namedValuesFor(const type &) { \ return NamedValuesType(); \ } // We cannot subtype constructor for enumerated types so insted define no named values for // non-enumerated integral types. DEFINE_NO_NAMED_VALUES_FOR(int32_t) DEFINE_NO_NAMED_VALUES_FOR(uint32_t) DEFINE_NO_NAMED_VALUES_FOR(c2_cntr32_t) DEFINE_NO_NAMED_VALUES_FOR(int64_t) DEFINE_NO_NAMED_VALUES_FOR(uint64_t) DEFINE_NO_NAMED_VALUES_FOR(c2_cntr64_t) DEFINE_NO_NAMED_VALUES_FOR(uint8_t) DEFINE_NO_NAMED_VALUES_FOR(char) DEFINE_NO_NAMED_VALUES_FOR(float) /** * Describes the fields of a structure. */ struct C2StructDescriptor { public: /// Returns the core index of the struct inline C2Param::CoreIndex coreIndex() const { return _mType.coreIndex(); } // Returns the number of fields in this struct (not counting any recursive fields). // Must be at least 1 for valid structs. inline size_t numFields() const { return _mFields.size(); } // Returns the list of direct fields (not counting any recursive fields). typedef std::vector::const_iterator field_iterator; inline field_iterator cbegin() const { return _mFields.cbegin(); } inline field_iterator cend() const { return _mFields.cend(); } // only supplying const iterator - but these names are needed for range based loops inline field_iterator begin() const { return _mFields.cbegin(); } inline field_iterator end() const { return _mFields.cend(); } template inline C2StructDescriptor(T*) : C2StructDescriptor(T::CORE_INDEX, T::FieldList()) { } inline C2StructDescriptor( C2Param::CoreIndex type, const std::vector &fields) : _mType(type), _mFields(fields) { } private: friend struct _C2ParamInspector; inline C2StructDescriptor( C2Param::CoreIndex type, std::vector &&fields) : _mType(type), _mFields(std::move(fields)) { } const C2Param::CoreIndex _mType; const std::vector _mFields; }; /** * Describes parameters for a component. */ struct C2ParamDescriptor { public: /** * Returns whether setting this param is required to configure this component. * This can only be true for builtin params for platform-defined components (e.g. video and * audio encoders/decoders, video/audio filters). * For vendor-defined components, it can be true even for vendor-defined params, * but it is not recommended, in case the component becomes platform-defined. */ inline bool isRequired() const { return _mAttrib & IS_REQUIRED; } /** * Returns whether this parameter is persistent. This is always true for C2Tuning and C2Setting, * but may be false for C2Info. If true, this parameter persists across frames and applies to * the current and subsequent frames. If false, this C2Info parameter only applies to the * current frame and is not assumed to have the same value (or even be present) on subsequent * frames, unless it is specified for those frames. */ inline bool isPersistent() const { return _mAttrib & IS_PERSISTENT; } inline bool isStrict() const { return _mAttrib & IS_STRICT; } inline bool isReadOnly() const { return _mAttrib & IS_READ_ONLY; } inline bool isVisible() const { return !(_mAttrib & IS_HIDDEN); } inline bool isPublic() const { return !(_mAttrib & IS_INTERNAL); } /// Returns the name of this param. /// This defaults to the underlying C2Struct's name, but could be altered for a component. inline C2String name() const { return _mName; } /// Returns the parameter index inline C2Param::Index index() const { return _mIndex; } /// Returns the indices of parameters that this parameter has a dependency on inline const std::vector &dependencies() const { return _mDependencies; } /// \deprecated template inline C2ParamDescriptor(bool isRequired, C2StringLiteral name, const T*) : _mIndex(T::PARAM_TYPE), _mAttrib(IS_PERSISTENT | (isRequired ? IS_REQUIRED : 0)), _mName(name) { } /// \deprecated inline C2ParamDescriptor( bool isRequired, C2StringLiteral name, C2Param::Index index) : _mIndex(index), _mAttrib(IS_PERSISTENT | (isRequired ? IS_REQUIRED : 0)), _mName(name) { } enum attrib_t : uint32_t { // flags that default on IS_REQUIRED = 1u << 0, ///< parameter is required to be specified IS_PERSISTENT = 1u << 1, ///< parameter retains its value // flags that default off IS_STRICT = 1u << 2, ///< parameter is strict IS_READ_ONLY = 1u << 3, ///< parameter is publicly read-only IS_HIDDEN = 1u << 4, ///< parameter shall not be visible to clients IS_INTERNAL = 1u << 5, ///< parameter shall not be used by framework (other than testing) IS_CONST = 1u << 6 | IS_READ_ONLY, ///< parameter is publicly const (hence read-only) }; inline C2ParamDescriptor( C2Param::Index index, attrib_t attrib, C2StringLiteral name) : _mIndex(index), _mAttrib(attrib), _mName(name) { } inline C2ParamDescriptor( C2Param::Index index, attrib_t attrib, C2String &&name, std::vector &&dependencies) : _mIndex(index), _mAttrib(attrib), _mName(name), _mDependencies(std::move(dependencies)) { } private: const C2Param::Index _mIndex; const uint32_t _mAttrib; const C2String _mName; std::vector _mDependencies; friend struct _C2ParamInspector; }; DEFINE_ENUM_OPERATORS(::C2ParamDescriptor::attrib_t) /// \ingroup internal /// Define a structure without CORE_INDEX. /// \note _FIELD_LIST is used only during declaration so that C2Struct declarations can end with /// a simple list of C2FIELD-s and closing bracket. Mark it unused as it is not used in templated /// structs. #define DEFINE_BASE_C2STRUCT(name) \ private: \ const static std::vector _FIELD_LIST __unused; /**< structure fields */ \ public: \ typedef C2##name##Struct _type; /**< type name shorthand */ \ static const std::vector FieldList(); /**< structure fields factory */ /// Define a structure with matching CORE_INDEX. #define DEFINE_C2STRUCT(name) \ public: \ enum : uint32_t { CORE_INDEX = kParamIndex##name }; \ DEFINE_BASE_C2STRUCT(name) /// Define a flexible structure without CORE_INDEX. #define DEFINE_BASE_FLEX_C2STRUCT(name, flexMember) \ public: \ FLEX(C2##name##Struct, flexMember) \ DEFINE_BASE_C2STRUCT(name) /// Define a flexible structure with matching CORE_INDEX. #define DEFINE_FLEX_C2STRUCT(name, flexMember) \ public: \ FLEX(C2##name##Struct, flexMember) \ enum : uint32_t { CORE_INDEX = kParamIndex##name | C2Param::CoreIndex::IS_FLEX_FLAG }; \ DEFINE_BASE_C2STRUCT(name) /// \ingroup internal /// Describe a structure of a templated structure. // Use list... as the argument gets resubsitituted and it contains commas. Alternative would be // to wrap list in an expression, e.g. ({ std::vector list; })) which converts // it from an initializer list to a vector. #define DESCRIBE_TEMPLATED_C2STRUCT(strukt, list...) \ _DESCRIBE_TEMPLATABLE_C2STRUCT(template<>, strukt, __C2_GENERATE_GLOBAL_VARS__, list) /// \deprecated /// Describe the fields of a structure using an initializer list. #define DESCRIBE_C2STRUCT(name, list...) \ _DESCRIBE_TEMPLATABLE_C2STRUCT(, C2##name##Struct, __C2_GENERATE_GLOBAL_VARS__, list) /// \ingroup internal /// Macro layer to get value of enabled that is passed in as a macro variable #define _DESCRIBE_TEMPLATABLE_C2STRUCT(template, strukt, enabled, list...) \ __DESCRIBE_TEMPLATABLE_C2STRUCT(template, strukt, enabled, list) /// \ingroup internal /// Macro layer to resolve to the specific macro based on macro variable #define __DESCRIBE_TEMPLATABLE_C2STRUCT(template, strukt, enabled, list...) \ ___DESCRIBE_TEMPLATABLE_C2STRUCT##enabled(template, strukt, list) #define ___DESCRIBE_TEMPLATABLE_C2STRUCT(template, strukt, list...) \ template \ const std::vector strukt::FieldList() { return list; } #define ___DESCRIBE_TEMPLATABLE_C2STRUCT__C2_GENERATE_GLOBAL_VARS__(template, strukt, list...) /** * Describe a field of a structure. * These must be in order. * * There are two ways to use this macro: * * ~~~~~~~~~~~~~ (.cpp) * struct C2VideoWidthStruct { * int32_t width; * C2VideoWidthStruct() {} // optional default constructor * C2VideoWidthStruct(int32_t _width) : width(_width) {} * * DEFINE_AND_DESCRIBE_C2STRUCT(VideoWidth) * C2FIELD(width, "width") * }; * ~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~ (.cpp) * struct C2VideoWidthStruct { * int32_t width; * C2VideoWidthStruct() = default; // optional default constructor * C2VideoWidthStruct(int32_t _width) : width(_width) {} * * DEFINE_C2STRUCT(VideoWidth) * } C2_PACK; * * DESCRIBE_C2STRUCT(VideoWidth, { * C2FIELD(width, "width") * }) * ~~~~~~~~~~~~~ * * For flexible structures (those ending in T[]), use the flexible macros: * * ~~~~~~~~~~~~~ (.cpp) * struct C2VideoFlexWidthsStruct { * int32_t widths[]; * C2VideoFlexWidthsStruct(); // must have a default constructor * * private: * // may have private constructors taking number of widths as the first argument * // This is used by the C2Param factory methods, e.g. * // C2VideoFlexWidthsGlobalParam::AllocUnique(size_t, int32_t); * C2VideoFlexWidthsStruct(size_t flexCount, int32_t value) { * for (size_t i = 0; i < flexCount; ++i) { * widths[i] = value; * } * } * * // If the last argument is T[N] or std::initializer_list, the flexCount will * // be automatically calculated and passed by the C2Param factory methods, e.g. * // int widths[] = { 1, 2, 3 }; * // C2VideoFlexWidthsGlobalParam::AllocUnique(widths); * template * C2VideoFlexWidthsStruct(size_t flexCount, const int32_t(&init)[N]) { * for (size_t i = 0; i < flexCount; ++i) { * widths[i] = init[i]; * } * } * * DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(VideoFlexWidths, widths) * C2FIELD(widths, "widths") * }; * ~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~ (.cpp) * struct C2VideoFlexWidthsStruct { * int32_t mWidths[]; * C2VideoFlexWidthsStruct(); // must have a default constructor * * DEFINE_FLEX_C2STRUCT(VideoFlexWidths, mWidths) * } C2_PACK; * * DESCRIBE_C2STRUCT(VideoFlexWidths, { * C2FIELD(mWidths, "widths") * }) * ~~~~~~~~~~~~~ * */ #define DESCRIBE_C2FIELD(member, name) \ C2FieldDescriptor(&((_type*)(nullptr))->member, name), #define C2FIELD(member, name) _C2FIELD(member, name, __C2_GENERATE_GLOBAL_VARS__) /// \if 0 #define _C2FIELD(member, name, enabled) __C2FIELD(member, name, enabled) #define __C2FIELD(member, name, enabled) DESCRIBE_C2FIELD##enabled(member, name) #define DESCRIBE_C2FIELD__C2_GENERATE_GLOBAL_VARS__(member, name) /// \endif /// Define a structure with matching CORE_INDEX and start describing its fields. /// This must be at the end of the structure definition. #define DEFINE_AND_DESCRIBE_C2STRUCT(name) \ _DEFINE_AND_DESCRIBE_C2STRUCT(name, DEFINE_C2STRUCT, __C2_GENERATE_GLOBAL_VARS__) /// Define a base structure (with no CORE_INDEX) and start describing its fields. /// This must be at the end of the structure definition. #define DEFINE_AND_DESCRIBE_BASE_C2STRUCT(name) \ _DEFINE_AND_DESCRIBE_C2STRUCT(name, DEFINE_BASE_C2STRUCT, __C2_GENERATE_GLOBAL_VARS__) /// Define a flexible structure with matching CORE_INDEX and start describing its fields. /// This must be at the end of the structure definition. #define DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(name, flexMember) \ _DEFINE_AND_DESCRIBE_FLEX_C2STRUCT( \ name, flexMember, DEFINE_FLEX_C2STRUCT, __C2_GENERATE_GLOBAL_VARS__) /// Define a flexible base structure (with no CORE_INDEX) and start describing its fields. /// This must be at the end of the structure definition. #define DEFINE_AND_DESCRIBE_BASE_FLEX_C2STRUCT(name, flexMember) \ _DEFINE_AND_DESCRIBE_FLEX_C2STRUCT( \ name, flexMember, DEFINE_BASE_FLEX_C2STRUCT, __C2_GENERATE_GLOBAL_VARS__) /// \if 0 /* Alternate declaration of field definitions in case no field list is to be generated. The specific macro is chosed based on the value of __C2_GENERATE_GLOBAL_VARS__ (whether it is defined (to be empty) or not. This requires two level of macro substitution. TRICKY: use namespace declaration to handle closing bracket that is normally after these macros. */ #define _DEFINE_AND_DESCRIBE_C2STRUCT(name, defineMacro, enabled) \ __DEFINE_AND_DESCRIBE_C2STRUCT(name, defineMacro, enabled) #define __DEFINE_AND_DESCRIBE_C2STRUCT(name, defineMacro, enabled) \ ___DEFINE_AND_DESCRIBE_C2STRUCT##enabled(name, defineMacro) #define ___DEFINE_AND_DESCRIBE_C2STRUCT__C2_GENERATE_GLOBAL_VARS__(name, defineMacro) \ defineMacro(name) } C2_PACK; namespace { #define ___DEFINE_AND_DESCRIBE_C2STRUCT(name, defineMacro) \ defineMacro(name) } C2_PACK; \ const std::vector C2##name##Struct::FieldList() { return _FIELD_LIST; } \ const std::vector C2##name##Struct::_FIELD_LIST = { #define _DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(name, flexMember, defineMacro, enabled) \ __DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(name, flexMember, defineMacro, enabled) #define __DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(name, flexMember, defineMacro, enabled) \ ___DEFINE_AND_DESCRIBE_FLEX_C2STRUCT##enabled(name, flexMember, defineMacro) #define ___DEFINE_AND_DESCRIBE_FLEX_C2STRUCT__C2_GENERATE_GLOBAL_VARS__(name, flexMember, defineMacro) \ defineMacro(name, flexMember) } C2_PACK; namespace { #define ___DEFINE_AND_DESCRIBE_FLEX_C2STRUCT(name, flexMember, defineMacro) \ defineMacro(name, flexMember) } C2_PACK; \ const std::vector C2##name##Struct::FieldList() { return _FIELD_LIST; } \ const std::vector C2##name##Struct::_FIELD_LIST = { /// \endif /** * Parameter reflector class. * * This class centralizes the description of parameter structures. This can be shared * by multiple components as describing a parameter does not imply support of that * parameter. However, each supported parameter and any dependent structures within * must be described by the parameter reflector provided by a component. */ class C2ParamReflector { public: /** * Describes a parameter structure. * * \param[in] coreIndex the core index of the parameter structure containing at least the * core index * * \return the description of the parameter structure * \retval nullptr if the parameter is not supported by this reflector * * This methods shall not block and return immediately. * * \note this class does not take a set of indices because we would then prefer * to also return any dependent structures, and we don't want this logic to be * repeated in each reflector. Alternately, this could just return a map of all * descriptions, but we want to conserve memory if client only wants the description * of a few indices. */ virtual std::unique_ptr describe(C2Param::CoreIndex coreIndex) const = 0; protected: virtual ~C2ParamReflector() = default; }; /** * Generic supported values for a field. * * This can be either a range or a set of values. The range can be a simple range, an arithmetic, * geometric or multiply-accumulate series with a clear minimum and maximum value. Values can * be discrete values, or can optionally represent flags to be or-ed. * * \note Do not use flags to represent bitfields. Use individual values or separate fields instead. */ struct C2FieldSupportedValues { //public: enum type_t { EMPTY, ///< no supported values RANGE, ///< a numeric range that can be continuous or discrete VALUES, ///< a list of values FLAGS ///< a list of flags that can be OR-ed }; type_t type; /** Type of values for this field. */ typedef C2Value::Primitive Primitive; /** * Range specifier for supported value. Used if type is RANGE. * * If step is 0 and num and denom are both 1, the supported values are any value, for which * min <= value <= max. * * Otherwise, the range represents a geometric/arithmetic/multiply-accumulate series, where * successive supported values can be derived from previous values (starting at min), using the * following formula: * v[0] = min * v[i] = v[i-1] * num / denom + step for i >= 1, while min < v[i] <= max. */ struct { /** Lower end of the range (inclusive). */ Primitive min; /** Upper end of the range (inclusive if permitted by series). */ Primitive max; /** Step between supported values. */ Primitive step; /** Numerator of a geometric series. */ Primitive num; /** Denominator of a geometric series. */ Primitive denom; } range; /** * List of values. Used if type is VALUES or FLAGS. * * If type is VALUES, this is the list of supported values in decreasing preference. * * If type is FLAGS, this vector contains { min-mask, flag1, flag2... }. Basically, the first * value is the required set of flags to be set, and the rest of the values are flags that can * be set independently. FLAGS is only supported for integral types. Supported flags should * not overlap, as it can make validation non-deterministic. The standard validation method * is that starting from the original value, if each flag is removed when fully present (the * min-mask must be fully present), we shall arrive at 0. */ std::vector values; C2FieldSupportedValues() : type(EMPTY) { } template C2FieldSupportedValues(T min, T max, T step = T(std::is_floating_point::value ? 0 : 1)) : type(RANGE), range{min, max, step, (T)1, (T)1} { } template C2FieldSupportedValues(T min, T max, T num, T den) : type(RANGE), range{min, max, (T)0, num, den} { } template C2FieldSupportedValues(T min, T max, T step, T num, T den) : type(RANGE), range{min, max, step, num, den} { } /// \deprecated template C2FieldSupportedValues(bool flags, std::initializer_list list) : type(flags ? FLAGS : VALUES), range{(T)0, (T)0, (T)0, (T)0, (T)0} { for (T value : list) { values.emplace_back(value); } } /// \deprecated template C2FieldSupportedValues(bool flags, const std::vector& list) : type(flags ? FLAGS : VALUES), range{(T)0, (T)0, (T)0, (T)0, (T)0} { for(T value : list) { values.emplace_back(value); } } /// \internal /// \todo: create separate values vs. flags initializer as for flags we want /// to list both allowed and required flags #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnull-dereference" template C2FieldSupportedValues(bool flags, const T*) : type(flags ? FLAGS : VALUES), range{(T)0, (T)0, (T)0, (T)0, (T)0} { C2FieldDescriptor::NamedValuesType named = C2FieldDescriptor::namedValuesFor(*(T*)nullptr); if (flags) { values.emplace_back(0); // min-mask defaults to 0 } for (const C2FieldDescriptor::NamedValueType &item : named){ values.emplace_back(item.second); } } }; #pragma GCC diagnostic pop /** * Supported values for a specific field. * * This is a pair of the field specifier together with an optional supported values object. * This structure is used when reporting parameter configuration failures and conflicts. */ struct C2ParamFieldValues { C2ParamField paramOrField; ///< the field or parameter /// optional supported values for the field if paramOrField specifies an actual field that is /// numeric (non struct, blob or string). Supported values for arrays (including string and /// blobs) describe the supported values for each element (character for string, and bytes for /// blobs). It is optional for read-only strings and blobs. std::unique_ptr values; // This struct is meant to be move constructed. C2_DEFAULT_MOVE(C2ParamFieldValues); // Copy constructor/assignment is also provided as this object may get copied. C2ParamFieldValues(const C2ParamFieldValues &other) : paramOrField(other.paramOrField), values(other.values ? std::make_unique(*other.values) : nullptr) { } C2ParamFieldValues& operator=(const C2ParamFieldValues &other) { paramOrField = other.paramOrField; values = other.values ? std::make_unique(*other.values) : nullptr; return *this; } /** * Construct with no values. */ C2ParamFieldValues(const C2ParamField ¶mOrField_) : paramOrField(paramOrField_) { } /** * Construct with values. */ C2ParamFieldValues(const C2ParamField ¶mOrField_, const C2FieldSupportedValues &values_) : paramOrField(paramOrField_), values(std::make_unique(values_)) { } /** * Construct from fields. */ C2ParamFieldValues(const C2ParamField ¶mOrField_, std::unique_ptr &&values_) : paramOrField(paramOrField_), values(std::move(values_)) { } }; /// @} // include debug header for C2Params.h if C2Debug.h was already included #ifdef C2UTILS_DEBUG_H_ #include #endif #endif // C2PARAM_H_