/* * Copyright (C) 2013-2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Camera3-Device" #define ATRACE_TAG ATRACE_TAG_CAMERA //#define LOG_NDEBUG 0 //#define LOG_NNDEBUG 0 // Per-frame verbose logging #ifdef LOG_NNDEBUG #define ALOGVV(...) ALOGV(__VA_ARGS__) #else #define ALOGVV(...) ((void)0) #endif // Convenience macro for transient errors #define CLOGE(fmt, ...) ALOGE("Camera %s: %s: " fmt, mId.string(), __FUNCTION__, \ ##__VA_ARGS__) // Convenience macros for transitioning to the error state #define SET_ERR(fmt, ...) setErrorState( \ "%s: " fmt, __FUNCTION__, \ ##__VA_ARGS__) #define SET_ERR_L(fmt, ...) setErrorStateLocked( \ "%s: " fmt, __FUNCTION__, \ ##__VA_ARGS__) #include #include #include #include #include #include #include #include "utils/CameraTraces.h" #include "mediautils/SchedulingPolicyService.h" #include "device3/Camera3Device.h" #include "device3/Camera3OutputStream.h" #include "device3/Camera3InputStream.h" #include "device3/Camera3DummyStream.h" #include "device3/Camera3SharedOutputStream.h" #include "CameraService.h" #include "utils/CameraThreadState.h" #include using namespace android::camera3; using namespace android::hardware::camera; using namespace android::hardware::camera::device::V3_2; namespace android { Camera3Device::Camera3Device(const String8 &id): mId(id), mOperatingMode(NO_MODE), mIsConstrainedHighSpeedConfiguration(false), mStatus(STATUS_UNINITIALIZED), mStatusWaiters(0), mUsePartialResult(false), mNumPartialResults(1), mTimestampOffset(0), mNextResultFrameNumber(0), mNextReprocessResultFrameNumber(0), mNextZslStillResultFrameNumber(0), mNextShutterFrameNumber(0), mNextReprocessShutterFrameNumber(0), mNextZslStillShutterFrameNumber(0), mListener(NULL), mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID), mLastTemplateId(-1), mNeedFixupMonochromeTags(false) { ATRACE_CALL(); ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.string()); } Camera3Device::~Camera3Device() { ATRACE_CALL(); ALOGV("%s: Tearing down for camera id %s", __FUNCTION__, mId.string()); disconnectImpl(); } const String8& Camera3Device::getId() const { return mId; } status_t Camera3Device::initialize(sp manager, const String8& monitorTags) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); ALOGV("%s: Initializing HIDL device for camera %s", __FUNCTION__, mId.string()); if (mStatus != STATUS_UNINITIALIZED) { CLOGE("Already initialized!"); return INVALID_OPERATION; } if (manager == nullptr) return INVALID_OPERATION; sp session; ATRACE_BEGIN("CameraHal::openSession"); status_t res = manager->openSession(mId.string(), this, /*out*/ &session); ATRACE_END(); if (res != OK) { SET_ERR_L("Could not open camera session: %s (%d)", strerror(-res), res); return res; } res = manager->getCameraCharacteristics(mId.string(), &mDeviceInfo); if (res != OK) { SET_ERR_L("Could not retrieve camera characteristics: %s (%d)", strerror(-res), res); session->close(); return res; } std::vector physicalCameraIds; bool isLogical = manager->isLogicalCamera(mId.string(), &physicalCameraIds); if (isLogical) { for (auto& physicalId : physicalCameraIds) { res = manager->getCameraCharacteristics( physicalId, &mPhysicalDeviceInfoMap[physicalId]); if (res != OK) { SET_ERR_L("Could not retrieve camera %s characteristics: %s (%d)", physicalId.c_str(), strerror(-res), res); session->close(); return res; } if (DistortionMapper::isDistortionSupported(mPhysicalDeviceInfoMap[physicalId])) { mDistortionMappers[physicalId].setupStaticInfo(mPhysicalDeviceInfoMap[physicalId]); if (res != OK) { SET_ERR_L("Unable to read camera %s's calibration fields for distortion " "correction", physicalId.c_str()); session->close(); return res; } } } } std::shared_ptr queue; auto requestQueueRet = session->getCaptureRequestMetadataQueue( [&queue](const auto& descriptor) { queue = std::make_shared(descriptor); if (!queue->isValid() || queue->availableToWrite() <= 0) { ALOGE("HAL returns empty request metadata fmq, not use it"); queue = nullptr; // don't use the queue onwards. } }); if (!requestQueueRet.isOk()) { ALOGE("Transaction error when getting request metadata fmq: %s, not use it", requestQueueRet.description().c_str()); return DEAD_OBJECT; } std::unique_ptr& resQueue = mResultMetadataQueue; auto resultQueueRet = session->getCaptureResultMetadataQueue( [&resQueue](const auto& descriptor) { resQueue = std::make_unique(descriptor); if (!resQueue->isValid() || resQueue->availableToWrite() <= 0) { ALOGE("HAL returns empty result metadata fmq, not use it"); resQueue = nullptr; // Don't use the resQueue onwards. } }); if (!resultQueueRet.isOk()) { ALOGE("Transaction error when getting result metadata queue from camera session: %s", resultQueueRet.description().c_str()); return DEAD_OBJECT; } IF_ALOGV() { session->interfaceChain([]( ::android::hardware::hidl_vec<::android::hardware::hidl_string> interfaceChain) { ALOGV("Session interface chain:"); for (const auto& iface : interfaceChain) { ALOGV(" %s", iface.c_str()); } }); } camera_metadata_entry bufMgrMode = mDeviceInfo.find(ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION); if (bufMgrMode.count > 0) { mUseHalBufManager = (bufMgrMode.data.u8[0] == ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5); } mInterface = new HalInterface(session, queue, mUseHalBufManager); std::string providerType; mVendorTagId = manager->getProviderTagIdLocked(mId.string()); mTagMonitor.initialize(mVendorTagId); if (!monitorTags.isEmpty()) { mTagMonitor.parseTagsToMonitor(String8(monitorTags)); } // Metadata tags needs fixup for monochrome camera device version less // than 3.5. hardware::hidl_version maxVersion{0,0}; res = manager->getHighestSupportedVersion(mId.string(), &maxVersion); if (res != OK) { ALOGE("%s: Error in getting camera device version id: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } int deviceVersion = HARDWARE_DEVICE_API_VERSION( maxVersion.get_major(), maxVersion.get_minor()); bool isMonochrome = false; camera_metadata_entry_t entry = mDeviceInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); for (size_t i = 0; i < entry.count; i++) { uint8_t capability = entry.data.u8[i]; if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) { isMonochrome = true; } } mNeedFixupMonochromeTags = (isMonochrome && deviceVersion < CAMERA_DEVICE_API_VERSION_3_5); return initializeCommonLocked(); } status_t Camera3Device::initializeCommonLocked() { /** Start up status tracker thread */ mStatusTracker = new StatusTracker(this); status_t res = mStatusTracker->run(String8::format("C3Dev-%s-Status", mId.string()).string()); if (res != OK) { SET_ERR_L("Unable to start status tracking thread: %s (%d)", strerror(-res), res); mInterface->close(); mStatusTracker.clear(); return res; } /** Register in-flight map to the status tracker */ mInFlightStatusId = mStatusTracker->addComponent(); if (mUseHalBufManager) { res = mRequestBufferSM.initialize(mStatusTracker); if (res != OK) { SET_ERR_L("Unable to start request buffer state machine: %s (%d)", strerror(-res), res); mInterface->close(); mStatusTracker.clear(); return res; } } /** Create buffer manager */ mBufferManager = new Camera3BufferManager(); Vector sessionParamKeys; camera_metadata_entry_t sessionKeysEntry = mDeviceInfo.find( ANDROID_REQUEST_AVAILABLE_SESSION_KEYS); if (sessionKeysEntry.count > 0) { sessionParamKeys.insertArrayAt(sessionKeysEntry.data.i32, 0, sessionKeysEntry.count); } /** Start up request queue thread */ mRequestThread = new RequestThread( this, mStatusTracker, mInterface, sessionParamKeys, mUseHalBufManager); res = mRequestThread->run(String8::format("C3Dev-%s-ReqQueue", mId.string()).string()); if (res != OK) { SET_ERR_L("Unable to start request queue thread: %s (%d)", strerror(-res), res); mInterface->close(); mRequestThread.clear(); return res; } mPreparerThread = new PreparerThread(); internalUpdateStatusLocked(STATUS_UNCONFIGURED); mNextStreamId = 0; mDummyStreamId = NO_STREAM; mNeedConfig = true; mPauseStateNotify = false; // Measure the clock domain offset between camera and video/hw_composer camera_metadata_entry timestampSource = mDeviceInfo.find(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE); if (timestampSource.count > 0 && timestampSource.data.u8[0] == ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME) { mTimestampOffset = getMonoToBoottimeOffset(); } // Will the HAL be sending in early partial result metadata? camera_metadata_entry partialResultsCount = mDeviceInfo.find(ANDROID_REQUEST_PARTIAL_RESULT_COUNT); if (partialResultsCount.count > 0) { mNumPartialResults = partialResultsCount.data.i32[0]; mUsePartialResult = (mNumPartialResults > 1); } camera_metadata_entry configs = mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS); for (uint32_t i = 0; i < configs.count; i += 4) { if (configs.data.i32[i] == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED && configs.data.i32[i + 3] == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT) { mSupportedOpaqueInputSizes.add(Size(configs.data.i32[i + 1], configs.data.i32[i + 2])); } } if (DistortionMapper::isDistortionSupported(mDeviceInfo)) { res = mDistortionMappers[mId.c_str()].setupStaticInfo(mDeviceInfo); if (res != OK) { SET_ERR_L("Unable to read necessary calibration fields for distortion correction"); return res; } } return OK; } status_t Camera3Device::disconnect() { return disconnectImpl(); } status_t Camera3Device::disconnectImpl() { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); ALOGI("%s: E", __FUNCTION__); status_t res = OK; std::vector> streams; nsecs_t maxExpectedDuration = getExpectedInFlightDuration(); { Mutex::Autolock l(mLock); if (mStatus == STATUS_UNINITIALIZED) return res; if (mStatus == STATUS_ACTIVE || (mStatus == STATUS_ERROR && mRequestThread != NULL)) { res = mRequestThread->clearRepeatingRequests(); if (res != OK) { SET_ERR_L("Can't stop streaming"); // Continue to close device even in case of error } else { res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration); if (res != OK) { SET_ERR_L("Timeout waiting for HAL to drain (% " PRIi64 " ns)", maxExpectedDuration); // Continue to close device even in case of error } } } if (mStatus == STATUS_ERROR) { CLOGE("Shutting down in an error state"); } if (mStatusTracker != NULL) { mStatusTracker->requestExit(); } if (mRequestThread != NULL) { mRequestThread->requestExit(); } streams.reserve(mOutputStreams.size() + (mInputStream != nullptr ? 1 : 0)); for (size_t i = 0; i < mOutputStreams.size(); i++) { streams.push_back(mOutputStreams[i]); } if (mInputStream != nullptr) { streams.push_back(mInputStream); } } // Joining done without holding mLock, otherwise deadlocks may ensue // as the threads try to access parent state if (mRequestThread != NULL && mStatus != STATUS_ERROR) { // HAL may be in a bad state, so waiting for request thread // (which may be stuck in the HAL processCaptureRequest call) // could be dangerous. mRequestThread->join(); } if (mStatusTracker != NULL) { mStatusTracker->join(); } HalInterface* interface; { Mutex::Autolock l(mLock); mRequestThread.clear(); Mutex::Autolock stLock(mTrackerLock); mStatusTracker.clear(); interface = mInterface.get(); } // Call close without internal mutex held, as the HAL close may need to // wait on assorted callbacks,etc, to complete before it can return. interface->close(); flushInflightRequests(); { Mutex::Autolock l(mLock); mInterface->clear(); mOutputStreams.clear(); mInputStream.clear(); mDeletedStreams.clear(); mBufferManager.clear(); internalUpdateStatusLocked(STATUS_UNINITIALIZED); } for (auto& weakStream : streams) { sp stream = weakStream.promote(); if (stream != nullptr) { ALOGE("%s: Stream %d leaked! strong reference (%d)!", __FUNCTION__, stream->getId(), stream->getStrongCount() - 1); } } ALOGI("%s: X", __FUNCTION__); return res; } // For dumping/debugging only - // try to acquire a lock a few times, eventually give up to proceed with // debug/dump operations bool Camera3Device::tryLockSpinRightRound(Mutex& lock) { bool gotLock = false; for (size_t i = 0; i < kDumpLockAttempts; ++i) { if (lock.tryLock() == NO_ERROR) { gotLock = true; break; } else { usleep(kDumpSleepDuration); } } return gotLock; } Camera3Device::Size Camera3Device::getMaxJpegResolution() const { int32_t maxJpegWidth = 0, maxJpegHeight = 0; const int STREAM_CONFIGURATION_SIZE = 4; const int STREAM_FORMAT_OFFSET = 0; const int STREAM_WIDTH_OFFSET = 1; const int STREAM_HEIGHT_OFFSET = 2; const int STREAM_IS_INPUT_OFFSET = 3; camera_metadata_ro_entry_t availableStreamConfigs = mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS); if (availableStreamConfigs.count == 0 || availableStreamConfigs.count % STREAM_CONFIGURATION_SIZE != 0) { return Size(0, 0); } // Get max jpeg size (area-wise). for (size_t i=0; i < availableStreamConfigs.count; i+= STREAM_CONFIGURATION_SIZE) { int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET]; int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET]; int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET]; int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET]; if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT && format == HAL_PIXEL_FORMAT_BLOB && (width * height > maxJpegWidth * maxJpegHeight)) { maxJpegWidth = width; maxJpegHeight = height; } } return Size(maxJpegWidth, maxJpegHeight); } nsecs_t Camera3Device::getMonoToBoottimeOffset() { // try three times to get the clock offset, choose the one // with the minimum gap in measurements. const int tries = 3; nsecs_t bestGap, measured; for (int i = 0; i < tries; ++i) { const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC); const nsecs_t tbase = systemTime(SYSTEM_TIME_BOOTTIME); const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC); const nsecs_t gap = tmono2 - tmono; if (i == 0 || gap < bestGap) { bestGap = gap; measured = tbase - ((tmono + tmono2) >> 1); } } return measured; } hardware::graphics::common::V1_0::PixelFormat Camera3Device::mapToPixelFormat( int frameworkFormat) { return (hardware::graphics::common::V1_0::PixelFormat) frameworkFormat; } DataspaceFlags Camera3Device::mapToHidlDataspace( android_dataspace dataSpace) { return dataSpace; } BufferUsageFlags Camera3Device::mapToConsumerUsage( uint64_t usage) { return usage; } StreamRotation Camera3Device::mapToStreamRotation(camera3_stream_rotation_t rotation) { switch (rotation) { case CAMERA3_STREAM_ROTATION_0: return StreamRotation::ROTATION_0; case CAMERA3_STREAM_ROTATION_90: return StreamRotation::ROTATION_90; case CAMERA3_STREAM_ROTATION_180: return StreamRotation::ROTATION_180; case CAMERA3_STREAM_ROTATION_270: return StreamRotation::ROTATION_270; } ALOGE("%s: Unknown stream rotation %d", __FUNCTION__, rotation); return StreamRotation::ROTATION_0; } status_t Camera3Device::mapToStreamConfigurationMode( camera3_stream_configuration_mode_t operationMode, StreamConfigurationMode *mode) { if (mode == nullptr) return BAD_VALUE; if (operationMode < CAMERA3_VENDOR_STREAM_CONFIGURATION_MODE_START) { switch(operationMode) { case CAMERA3_STREAM_CONFIGURATION_NORMAL_MODE: *mode = StreamConfigurationMode::NORMAL_MODE; break; case CAMERA3_STREAM_CONFIGURATION_CONSTRAINED_HIGH_SPEED_MODE: *mode = StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE; break; default: ALOGE("%s: Unknown stream configuration mode %d", __FUNCTION__, operationMode); return BAD_VALUE; } } else { *mode = static_cast(operationMode); } return OK; } camera3_buffer_status_t Camera3Device::mapHidlBufferStatus(BufferStatus status) { switch (status) { case BufferStatus::OK: return CAMERA3_BUFFER_STATUS_OK; case BufferStatus::ERROR: return CAMERA3_BUFFER_STATUS_ERROR; } return CAMERA3_BUFFER_STATUS_ERROR; } int Camera3Device::mapToFrameworkFormat( hardware::graphics::common::V1_0::PixelFormat pixelFormat) { return static_cast(pixelFormat); } android_dataspace Camera3Device::mapToFrameworkDataspace( DataspaceFlags dataSpace) { return static_cast(dataSpace); } uint64_t Camera3Device::mapConsumerToFrameworkUsage( BufferUsageFlags usage) { return usage; } uint64_t Camera3Device::mapProducerToFrameworkUsage( BufferUsageFlags usage) { return usage; } ssize_t Camera3Device::getJpegBufferSize(uint32_t width, uint32_t height) const { // Get max jpeg size (area-wise). Size maxJpegResolution = getMaxJpegResolution(); if (maxJpegResolution.width == 0) { ALOGE("%s: Camera %s: Can't find valid available jpeg sizes in static metadata!", __FUNCTION__, mId.string()); return BAD_VALUE; } // Get max jpeg buffer size ssize_t maxJpegBufferSize = 0; camera_metadata_ro_entry jpegBufMaxSize = mDeviceInfo.find(ANDROID_JPEG_MAX_SIZE); if (jpegBufMaxSize.count == 0) { ALOGE("%s: Camera %s: Can't find maximum JPEG size in static metadata!", __FUNCTION__, mId.string()); return BAD_VALUE; } maxJpegBufferSize = jpegBufMaxSize.data.i32[0]; assert(kMinJpegBufferSize < maxJpegBufferSize); // Calculate final jpeg buffer size for the given resolution. float scaleFactor = ((float) (width * height)) / (maxJpegResolution.width * maxJpegResolution.height); ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) + kMinJpegBufferSize; if (jpegBufferSize > maxJpegBufferSize) { jpegBufferSize = maxJpegBufferSize; } return jpegBufferSize; } ssize_t Camera3Device::getPointCloudBufferSize() const { const int FLOATS_PER_POINT=4; camera_metadata_ro_entry maxPointCount = mDeviceInfo.find(ANDROID_DEPTH_MAX_DEPTH_SAMPLES); if (maxPointCount.count == 0) { ALOGE("%s: Camera %s: Can't find maximum depth point cloud size in static metadata!", __FUNCTION__, mId.string()); return BAD_VALUE; } ssize_t maxBytesForPointCloud = sizeof(android_depth_points) + maxPointCount.data.i32[0] * sizeof(float) * FLOATS_PER_POINT; return maxBytesForPointCloud; } ssize_t Camera3Device::getRawOpaqueBufferSize(int32_t width, int32_t height) const { const int PER_CONFIGURATION_SIZE = 3; const int WIDTH_OFFSET = 0; const int HEIGHT_OFFSET = 1; const int SIZE_OFFSET = 2; camera_metadata_ro_entry rawOpaqueSizes = mDeviceInfo.find(ANDROID_SENSOR_OPAQUE_RAW_SIZE); size_t count = rawOpaqueSizes.count; if (count == 0 || (count % PER_CONFIGURATION_SIZE)) { ALOGE("%s: Camera %s: bad opaque RAW size static metadata length(%zu)!", __FUNCTION__, mId.string(), count); return BAD_VALUE; } for (size_t i = 0; i < count; i += PER_CONFIGURATION_SIZE) { if (width == rawOpaqueSizes.data.i32[i + WIDTH_OFFSET] && height == rawOpaqueSizes.data.i32[i + HEIGHT_OFFSET]) { return rawOpaqueSizes.data.i32[i + SIZE_OFFSET]; } } ALOGE("%s: Camera %s: cannot find size for %dx%d opaque RAW image!", __FUNCTION__, mId.string(), width, height); return BAD_VALUE; } status_t Camera3Device::dump(int fd, const Vector &args) { ATRACE_CALL(); (void)args; // Try to lock, but continue in case of failure (to avoid blocking in // deadlocks) bool gotInterfaceLock = tryLockSpinRightRound(mInterfaceLock); bool gotLock = tryLockSpinRightRound(mLock); ALOGW_IF(!gotInterfaceLock, "Camera %s: %s: Unable to lock interface lock, proceeding anyway", mId.string(), __FUNCTION__); ALOGW_IF(!gotLock, "Camera %s: %s: Unable to lock main lock, proceeding anyway", mId.string(), __FUNCTION__); bool dumpTemplates = false; String16 templatesOption("-t"); int n = args.size(); for (int i = 0; i < n; i++) { if (args[i] == templatesOption) { dumpTemplates = true; } if (args[i] == TagMonitor::kMonitorOption) { if (i + 1 < n) { String8 monitorTags = String8(args[i + 1]); if (monitorTags == "off") { mTagMonitor.disableMonitoring(); } else { mTagMonitor.parseTagsToMonitor(monitorTags); } } else { mTagMonitor.disableMonitoring(); } } } String8 lines; const char *status = mStatus == STATUS_ERROR ? "ERROR" : mStatus == STATUS_UNINITIALIZED ? "UNINITIALIZED" : mStatus == STATUS_UNCONFIGURED ? "UNCONFIGURED" : mStatus == STATUS_CONFIGURED ? "CONFIGURED" : mStatus == STATUS_ACTIVE ? "ACTIVE" : "Unknown"; lines.appendFormat(" Device status: %s\n", status); if (mStatus == STATUS_ERROR) { lines.appendFormat(" Error cause: %s\n", mErrorCause.string()); } lines.appendFormat(" Stream configuration:\n"); const char *mode = mOperatingMode == static_cast(StreamConfigurationMode::NORMAL_MODE) ? "NORMAL" : mOperatingMode == static_cast( StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE) ? "CONSTRAINED_HIGH_SPEED" : "CUSTOM"; lines.appendFormat(" Operation mode: %s (%d) \n", mode, mOperatingMode); if (mInputStream != NULL) { write(fd, lines.string(), lines.size()); mInputStream->dump(fd, args); } else { lines.appendFormat(" No input stream.\n"); write(fd, lines.string(), lines.size()); } for (size_t i = 0; i < mOutputStreams.size(); i++) { mOutputStreams[i]->dump(fd,args); } if (mBufferManager != NULL) { lines = String8(" Camera3 Buffer Manager:\n"); write(fd, lines.string(), lines.size()); mBufferManager->dump(fd, args); } lines = String8(" In-flight requests:\n"); if (mInFlightMap.size() == 0) { lines.append(" None\n"); } else { for (size_t i = 0; i < mInFlightMap.size(); i++) { InFlightRequest r = mInFlightMap.valueAt(i); lines.appendFormat(" Frame %d | Timestamp: %" PRId64 ", metadata" " arrived: %s, buffers left: %d\n", mInFlightMap.keyAt(i), r.shutterTimestamp, r.haveResultMetadata ? "true" : "false", r.numBuffersLeft); } } write(fd, lines.string(), lines.size()); if (mRequestThread != NULL) { mRequestThread->dumpCaptureRequestLatency(fd, " ProcessCaptureRequest latency histogram:"); } { lines = String8(" Last request sent:\n"); write(fd, lines.string(), lines.size()); CameraMetadata lastRequest = getLatestRequestLocked(); lastRequest.dump(fd, /*verbosity*/2, /*indentation*/6); } if (dumpTemplates) { const char *templateNames[CAMERA3_TEMPLATE_COUNT] = { "TEMPLATE_PREVIEW", "TEMPLATE_STILL_CAPTURE", "TEMPLATE_VIDEO_RECORD", "TEMPLATE_VIDEO_SNAPSHOT", "TEMPLATE_ZERO_SHUTTER_LAG", "TEMPLATE_MANUAL", }; for (int i = 1; i < CAMERA3_TEMPLATE_COUNT; i++) { camera_metadata_t *templateRequest = nullptr; mInterface->constructDefaultRequestSettings( (camera3_request_template_t) i, &templateRequest); lines = String8::format(" HAL Request %s:\n", templateNames[i-1]); if (templateRequest == nullptr) { lines.append(" Not supported\n"); write(fd, lines.string(), lines.size()); } else { write(fd, lines.string(), lines.size()); dump_indented_camera_metadata(templateRequest, fd, /*verbosity*/2, /*indentation*/8); } free_camera_metadata(templateRequest); } } mTagMonitor.dumpMonitoredMetadata(fd); if (mInterface->valid()) { lines = String8(" HAL device dump:\n"); write(fd, lines.string(), lines.size()); mInterface->dump(fd); } if (gotLock) mLock.unlock(); if (gotInterfaceLock) mInterfaceLock.unlock(); return OK; } const CameraMetadata& Camera3Device::info(const String8& physicalId) const { ALOGVV("%s: E", __FUNCTION__); if (CC_UNLIKELY(mStatus == STATUS_UNINITIALIZED || mStatus == STATUS_ERROR)) { ALOGW("%s: Access to static info %s!", __FUNCTION__, mStatus == STATUS_ERROR ? "when in error state" : "before init"); } if (physicalId.isEmpty()) { return mDeviceInfo; } else { std::string id(physicalId.c_str()); if (mPhysicalDeviceInfoMap.find(id) != mPhysicalDeviceInfoMap.end()) { return mPhysicalDeviceInfoMap.at(id); } else { ALOGE("%s: Invalid physical camera id %s", __FUNCTION__, physicalId.c_str()); return mDeviceInfo; } } } const CameraMetadata& Camera3Device::info() const { String8 emptyId; return info(emptyId); } status_t Camera3Device::checkStatusOkToCaptureLocked() { switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: case STATUS_ACTIVE: // OK break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } return OK; } status_t Camera3Device::convertMetadataListToRequestListLocked( const List &metadataList, const std::list &surfaceMaps, bool repeating, RequestList *requestList) { if (requestList == NULL) { CLOGE("requestList cannot be NULL."); return BAD_VALUE; } int32_t burstId = 0; List::const_iterator metadataIt = metadataList.begin(); std::list::const_iterator surfaceMapIt = surfaceMaps.begin(); for (; metadataIt != metadataList.end() && surfaceMapIt != surfaceMaps.end(); ++metadataIt, ++surfaceMapIt) { sp newRequest = setUpRequestLocked(*metadataIt, *surfaceMapIt); if (newRequest == 0) { CLOGE("Can't create capture request"); return BAD_VALUE; } newRequest->mRepeating = repeating; // Setup burst Id and request Id newRequest->mResultExtras.burstId = burstId++; if (metadataIt->begin()->metadata.exists(ANDROID_REQUEST_ID)) { if (metadataIt->begin()->metadata.find(ANDROID_REQUEST_ID).count == 0) { CLOGE("RequestID entry exists; but must not be empty in metadata"); return BAD_VALUE; } newRequest->mResultExtras.requestId = metadataIt->begin()->metadata.find( ANDROID_REQUEST_ID).data.i32[0]; } else { CLOGE("RequestID does not exist in metadata"); return BAD_VALUE; } requestList->push_back(newRequest); ALOGV("%s: requestId = %" PRId32, __FUNCTION__, newRequest->mResultExtras.requestId); } if (metadataIt != metadataList.end() || surfaceMapIt != surfaceMaps.end()) { ALOGE("%s: metadataList and surfaceMaps are not the same size!", __FUNCTION__); return BAD_VALUE; } // Setup batch size if this is a high speed video recording request. if (mIsConstrainedHighSpeedConfiguration && requestList->size() > 0) { auto firstRequest = requestList->begin(); for (auto& outputStream : (*firstRequest)->mOutputStreams) { if (outputStream->isVideoStream()) { (*firstRequest)->mBatchSize = requestList->size(); break; } } } return OK; } status_t Camera3Device::capture(CameraMetadata &request, int64_t* lastFrameNumber) { ATRACE_CALL(); List requestsList; std::list surfaceMaps; convertToRequestList(requestsList, surfaceMaps, request); return captureList(requestsList, surfaceMaps, lastFrameNumber); } void Camera3Device::convertToRequestList(List& requestsList, std::list& surfaceMaps, const CameraMetadata& request) { PhysicalCameraSettingsList requestList; requestList.push_back({std::string(getId().string()), request}); requestsList.push_back(requestList); SurfaceMap surfaceMap; camera_metadata_ro_entry streams = request.find(ANDROID_REQUEST_OUTPUT_STREAMS); // With no surface list passed in, stream and surface will have 1-to-1 // mapping. So the surface index is 0 for each stream in the surfaceMap. for (size_t i = 0; i < streams.count; i++) { surfaceMap[streams.data.i32[i]].push_back(0); } surfaceMaps.push_back(surfaceMap); } status_t Camera3Device::submitRequestsHelper( const List &requests, const std::list &surfaceMaps, bool repeating, /*out*/ int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); status_t res = checkStatusOkToCaptureLocked(); if (res != OK) { // error logged by previous call return res; } RequestList requestList; res = convertMetadataListToRequestListLocked(requests, surfaceMaps, repeating, /*out*/&requestList); if (res != OK) { // error logged by previous call return res; } if (repeating) { res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber); } else { res = mRequestThread->queueRequestList(requestList, lastFrameNumber); } if (res == OK) { waitUntilStateThenRelock(/*active*/true, kActiveTimeout); if (res != OK) { SET_ERR_L("Can't transition to active in %f seconds!", kActiveTimeout/1e9); } ALOGV("Camera %s: Capture request %" PRId32 " enqueued", mId.string(), (*(requestList.begin()))->mResultExtras.requestId); } else { CLOGE("Cannot queue request. Impossible."); return BAD_VALUE; } return res; } hardware::Return Camera3Device::requestStreamBuffers( const hardware::hidl_vec& bufReqs, requestStreamBuffers_cb _hidl_cb) { using hardware::camera::device::V3_5::BufferRequestStatus; using hardware::camera::device::V3_5::StreamBufferRet; using hardware::camera::device::V3_5::StreamBufferRequestError; std::lock_guard lock(mRequestBufferInterfaceLock); hardware::hidl_vec bufRets; if (!mUseHalBufManager) { ALOGE("%s: Camera %s does not support HAL buffer management", __FUNCTION__, mId.string()); _hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets); return hardware::Void(); } SortedVector streamIds; ssize_t sz = streamIds.setCapacity(bufReqs.size()); if (sz < 0 || static_cast(sz) != bufReqs.size()) { ALOGE("%s: failed to allocate memory for %zu buffer requests", __FUNCTION__, bufReqs.size()); _hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets); return hardware::Void(); } if (bufReqs.size() > mOutputStreams.size()) { ALOGE("%s: too many buffer requests (%zu > # of output streams %zu)", __FUNCTION__, bufReqs.size(), mOutputStreams.size()); _hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets); return hardware::Void(); } // Check for repeated streamId for (const auto& bufReq : bufReqs) { if (streamIds.indexOf(bufReq.streamId) != NAME_NOT_FOUND) { ALOGE("%s: Stream %d appear multiple times in buffer requests", __FUNCTION__, bufReq.streamId); _hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets); return hardware::Void(); } streamIds.add(bufReq.streamId); } if (!mRequestBufferSM.startRequestBuffer()) { ALOGE("%s: request buffer disallowed while camera service is configuring", __FUNCTION__); _hidl_cb(BufferRequestStatus::FAILED_CONFIGURING, bufRets); return hardware::Void(); } bufRets.resize(bufReqs.size()); bool allReqsSucceeds = true; bool oneReqSucceeds = false; for (size_t i = 0; i < bufReqs.size(); i++) { const auto& bufReq = bufReqs[i]; auto& bufRet = bufRets[i]; int32_t streamId = bufReq.streamId; sp outputStream = mOutputStreams.get(streamId); if (outputStream == nullptr) { ALOGE("%s: Output stream id %d not found!", __FUNCTION__, streamId); hardware::hidl_vec emptyBufRets; _hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, emptyBufRets); mRequestBufferSM.endRequestBuffer(); return hardware::Void(); } if (outputStream->isAbandoned()) { bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED); allReqsSucceeds = false; continue; } bufRet.streamId = streamId; size_t handOutBufferCount = outputStream->getOutstandingBuffersCount(); uint32_t numBuffersRequested = bufReq.numBuffersRequested; size_t totalHandout = handOutBufferCount + numBuffersRequested; uint32_t maxBuffers = outputStream->asHalStream()->max_buffers; if (totalHandout > maxBuffers) { // Not able to allocate enough buffer. Exit early for this stream ALOGE("%s: request too much buffers for stream %d: at HAL: %zu + requesting: %d" " > max: %d", __FUNCTION__, streamId, handOutBufferCount, numBuffersRequested, maxBuffers); bufRet.val.error(StreamBufferRequestError::MAX_BUFFER_EXCEEDED); allReqsSucceeds = false; continue; } hardware::hidl_vec tmpRetBuffers(numBuffersRequested); bool currentReqSucceeds = true; std::vector streamBuffers(numBuffersRequested); size_t numAllocatedBuffers = 0; size_t numPushedInflightBuffers = 0; for (size_t b = 0; b < numBuffersRequested; b++) { camera3_stream_buffer_t& sb = streamBuffers[b]; // Since this method can run concurrently with request thread // We need to update the wait duration everytime we call getbuffer nsecs_t waitDuration = kBaseGetBufferWait + getExpectedInFlightDuration(); status_t res = outputStream->getBuffer(&sb, waitDuration); if (res != OK) { if (res == NO_INIT || res == DEAD_OBJECT) { ALOGV("%s: Can't get output buffer for stream %d: %s (%d)", __FUNCTION__, streamId, strerror(-res), res); bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED); } else { ALOGE("%s: Can't get output buffer for stream %d: %s (%d)", __FUNCTION__, streamId, strerror(-res), res); if (res == TIMED_OUT || res == NO_MEMORY) { bufRet.val.error(StreamBufferRequestError::NO_BUFFER_AVAILABLE); } else { bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR); } } currentReqSucceeds = false; break; } numAllocatedBuffers++; buffer_handle_t *buffer = sb.buffer; auto pair = mInterface->getBufferId(*buffer, streamId); bool isNewBuffer = pair.first; uint64_t bufferId = pair.second; StreamBuffer& hBuf = tmpRetBuffers[b]; hBuf.streamId = streamId; hBuf.bufferId = bufferId; hBuf.buffer = (isNewBuffer) ? *buffer : nullptr; hBuf.status = BufferStatus::OK; hBuf.releaseFence = nullptr; native_handle_t *acquireFence = nullptr; if (sb.acquire_fence != -1) { acquireFence = native_handle_create(1,0); acquireFence->data[0] = sb.acquire_fence; } hBuf.acquireFence.setTo(acquireFence, /*shouldOwn*/true); hBuf.releaseFence = nullptr; res = mInterface->pushInflightRequestBuffer(bufferId, buffer, streamId); if (res != OK) { ALOGE("%s: Can't get register request buffers for stream %d: %s (%d)", __FUNCTION__, streamId, strerror(-res), res); bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR); currentReqSucceeds = false; break; } numPushedInflightBuffers++; } if (currentReqSucceeds) { bufRet.val.buffers(std::move(tmpRetBuffers)); oneReqSucceeds = true; } else { allReqsSucceeds = false; for (size_t b = 0; b < numPushedInflightBuffers; b++) { StreamBuffer& hBuf = tmpRetBuffers[b]; buffer_handle_t* buffer; status_t res = mInterface->popInflightRequestBuffer(hBuf.bufferId, &buffer); if (res != OK) { SET_ERR("%s: popInflightRequestBuffer failed for stream %d: %s (%d)", __FUNCTION__, streamId, strerror(-res), res); } } for (size_t b = 0; b < numAllocatedBuffers; b++) { camera3_stream_buffer_t& sb = streamBuffers[b]; sb.acquire_fence = -1; sb.status = CAMERA3_BUFFER_STATUS_ERROR; } returnOutputBuffers(streamBuffers.data(), numAllocatedBuffers, 0); } } _hidl_cb(allReqsSucceeds ? BufferRequestStatus::OK : oneReqSucceeds ? BufferRequestStatus::FAILED_PARTIAL : BufferRequestStatus::FAILED_UNKNOWN, bufRets); mRequestBufferSM.endRequestBuffer(); return hardware::Void(); } hardware::Return Camera3Device::returnStreamBuffers( const hardware::hidl_vec& buffers) { if (!mUseHalBufManager) { ALOGE("%s: Camera %s does not support HAL buffer managerment", __FUNCTION__, mId.string()); return hardware::Void(); } for (const auto& buf : buffers) { if (buf.bufferId == HalInterface::BUFFER_ID_NO_BUFFER) { ALOGE("%s: cannot return a buffer without bufferId", __FUNCTION__); continue; } buffer_handle_t* buffer; status_t res = mInterface->popInflightRequestBuffer(buf.bufferId, &buffer); if (res != OK) { ALOGE("%s: cannot find in-flight buffer %" PRIu64 " for stream %d", __FUNCTION__, buf.bufferId, buf.streamId); continue; } camera3_stream_buffer_t streamBuffer; streamBuffer.buffer = buffer; streamBuffer.status = CAMERA3_BUFFER_STATUS_ERROR; streamBuffer.acquire_fence = -1; streamBuffer.release_fence = -1; if (buf.releaseFence == nullptr) { streamBuffer.release_fence = -1; } else if (buf.releaseFence->numFds == 1) { streamBuffer.release_fence = dup(buf.releaseFence->data[0]); } else { ALOGE("%s: Invalid release fence, fd count is %d, not 1", __FUNCTION__, buf.releaseFence->numFds); continue; } sp stream = mOutputStreams.get(buf.streamId); if (stream == nullptr) { ALOGE("%s: Output stream id %d not found!", __FUNCTION__, buf.streamId); continue; } streamBuffer.stream = stream->asHalStream(); returnOutputBuffers(&streamBuffer, /*size*/1, /*timestamp*/ 0); } return hardware::Void(); } hardware::Return Camera3Device::processCaptureResult_3_4( const hardware::hidl_vec< hardware::camera::device::V3_4::CaptureResult>& results) { // Ideally we should grab mLock, but that can lead to deadlock, and // it's not super important to get up to date value of mStatus for this // warning print, hence skipping the lock here if (mStatus == STATUS_ERROR) { // Per API contract, HAL should act as closed after device error // But mStatus can be set to error by framework as well, so just log // a warning here. ALOGW("%s: received capture result in error state.", __FUNCTION__); } if (mProcessCaptureResultLock.tryLock() != OK) { // This should never happen; it indicates a wrong client implementation // that doesn't follow the contract. But, we can be tolerant here. ALOGE("%s: callback overlapped! waiting 1s...", __FUNCTION__); if (mProcessCaptureResultLock.timedLock(1000000000 /* 1s */) != OK) { ALOGE("%s: cannot acquire lock in 1s, dropping results", __FUNCTION__); // really don't know what to do, so bail out. return hardware::Void(); } } for (const auto& result : results) { processOneCaptureResultLocked(result.v3_2, result.physicalCameraMetadata); } mProcessCaptureResultLock.unlock(); return hardware::Void(); } // Only one processCaptureResult should be called at a time, so // the locks won't block. The locks are present here simply to enforce this. hardware::Return Camera3Device::processCaptureResult( const hardware::hidl_vec< hardware::camera::device::V3_2::CaptureResult>& results) { hardware::hidl_vec noPhysMetadata; // Ideally we should grab mLock, but that can lead to deadlock, and // it's not super important to get up to date value of mStatus for this // warning print, hence skipping the lock here if (mStatus == STATUS_ERROR) { // Per API contract, HAL should act as closed after device error // But mStatus can be set to error by framework as well, so just log // a warning here. ALOGW("%s: received capture result in error state.", __FUNCTION__); } if (mProcessCaptureResultLock.tryLock() != OK) { // This should never happen; it indicates a wrong client implementation // that doesn't follow the contract. But, we can be tolerant here. ALOGE("%s: callback overlapped! waiting 1s...", __FUNCTION__); if (mProcessCaptureResultLock.timedLock(1000000000 /* 1s */) != OK) { ALOGE("%s: cannot acquire lock in 1s, dropping results", __FUNCTION__); // really don't know what to do, so bail out. return hardware::Void(); } } for (const auto& result : results) { processOneCaptureResultLocked(result, noPhysMetadata); } mProcessCaptureResultLock.unlock(); return hardware::Void(); } status_t Camera3Device::readOneCameraMetadataLocked( uint64_t fmqResultSize, hardware::camera::device::V3_2::CameraMetadata& resultMetadata, const hardware::camera::device::V3_2::CameraMetadata& result) { if (fmqResultSize > 0) { resultMetadata.resize(fmqResultSize); if (mResultMetadataQueue == nullptr) { return NO_MEMORY; // logged in initialize() } if (!mResultMetadataQueue->read(resultMetadata.data(), fmqResultSize)) { ALOGE("%s: Cannot read camera metadata from fmq, size = %" PRIu64, __FUNCTION__, fmqResultSize); return INVALID_OPERATION; } } else { resultMetadata.setToExternal(const_cast(result.data()), result.size()); } if (resultMetadata.size() != 0) { status_t res; const camera_metadata_t* metadata = reinterpret_cast(resultMetadata.data()); size_t expected_metadata_size = resultMetadata.size(); if ((res = validate_camera_metadata_structure(metadata, &expected_metadata_size)) != OK) { ALOGE("%s: Invalid camera metadata received by camera service from HAL: %s (%d)", __FUNCTION__, strerror(-res), res); return INVALID_OPERATION; } } return OK; } void Camera3Device::processOneCaptureResultLocked( const hardware::camera::device::V3_2::CaptureResult& result, const hardware::hidl_vec< hardware::camera::device::V3_4::PhysicalCameraMetadata> physicalCameraMetadata) { camera3_capture_result r; status_t res; r.frame_number = result.frameNumber; // Read and validate the result metadata. hardware::camera::device::V3_2::CameraMetadata resultMetadata; res = readOneCameraMetadataLocked(result.fmqResultSize, resultMetadata, result.result); if (res != OK) { ALOGE("%s: Frame %d: Failed to read capture result metadata", __FUNCTION__, result.frameNumber); return; } r.result = reinterpret_cast(resultMetadata.data()); // Read and validate physical camera metadata size_t physResultCount = physicalCameraMetadata.size(); std::vector physCamIds(physResultCount); std::vector phyCamMetadatas(physResultCount); std::vector physResultMetadata; physResultMetadata.resize(physResultCount); for (size_t i = 0; i < physicalCameraMetadata.size(); i++) { res = readOneCameraMetadataLocked(physicalCameraMetadata[i].fmqMetadataSize, physResultMetadata[i], physicalCameraMetadata[i].metadata); if (res != OK) { ALOGE("%s: Frame %d: Failed to read capture result metadata for camera %s", __FUNCTION__, result.frameNumber, physicalCameraMetadata[i].physicalCameraId.c_str()); return; } physCamIds[i] = physicalCameraMetadata[i].physicalCameraId.c_str(); phyCamMetadatas[i] = reinterpret_cast( physResultMetadata[i].data()); } r.num_physcam_metadata = physResultCount; r.physcam_ids = physCamIds.data(); r.physcam_metadata = phyCamMetadatas.data(); std::vector outputBuffers(result.outputBuffers.size()); std::vector outputBufferHandles(result.outputBuffers.size()); for (size_t i = 0; i < result.outputBuffers.size(); i++) { auto& bDst = outputBuffers[i]; const StreamBuffer &bSrc = result.outputBuffers[i]; sp stream = mOutputStreams.get(bSrc.streamId); if (stream == nullptr) { ALOGE("%s: Frame %d: Buffer %zu: Invalid output stream id %d", __FUNCTION__, result.frameNumber, i, bSrc.streamId); return; } bDst.stream = stream->asHalStream(); bool noBufferReturned = false; buffer_handle_t *buffer = nullptr; if (mUseHalBufManager) { // This is suspicious most of the time but can be correct during flush where HAL // has to return capture result before a buffer is requested if (bSrc.bufferId == HalInterface::BUFFER_ID_NO_BUFFER) { if (bSrc.status == BufferStatus::OK) { ALOGE("%s: Frame %d: Buffer %zu: No bufferId for stream %d", __FUNCTION__, result.frameNumber, i, bSrc.streamId); // Still proceeds so other buffers can be returned } noBufferReturned = true; } if (noBufferReturned) { res = OK; } else { res = mInterface->popInflightRequestBuffer(bSrc.bufferId, &buffer); } } else { res = mInterface->popInflightBuffer(result.frameNumber, bSrc.streamId, &buffer); } if (res != OK) { ALOGE("%s: Frame %d: Buffer %zu: No in-flight buffer for stream %d", __FUNCTION__, result.frameNumber, i, bSrc.streamId); return; } bDst.buffer = buffer; bDst.status = mapHidlBufferStatus(bSrc.status); bDst.acquire_fence = -1; if (bSrc.releaseFence == nullptr) { bDst.release_fence = -1; } else if (bSrc.releaseFence->numFds == 1) { if (noBufferReturned) { ALOGE("%s: got releaseFence without output buffer!", __FUNCTION__); } bDst.release_fence = dup(bSrc.releaseFence->data[0]); } else { ALOGE("%s: Frame %d: Invalid release fence for buffer %zu, fd count is %d, not 1", __FUNCTION__, result.frameNumber, i, bSrc.releaseFence->numFds); return; } } r.num_output_buffers = outputBuffers.size(); r.output_buffers = outputBuffers.data(); camera3_stream_buffer_t inputBuffer; if (result.inputBuffer.streamId == -1) { r.input_buffer = nullptr; } else { if (mInputStream->getId() != result.inputBuffer.streamId) { ALOGE("%s: Frame %d: Invalid input stream id %d", __FUNCTION__, result.frameNumber, result.inputBuffer.streamId); return; } inputBuffer.stream = mInputStream->asHalStream(); buffer_handle_t *buffer; res = mInterface->popInflightBuffer(result.frameNumber, result.inputBuffer.streamId, &buffer); if (res != OK) { ALOGE("%s: Frame %d: Input buffer: No in-flight buffer for stream %d", __FUNCTION__, result.frameNumber, result.inputBuffer.streamId); return; } inputBuffer.buffer = buffer; inputBuffer.status = mapHidlBufferStatus(result.inputBuffer.status); inputBuffer.acquire_fence = -1; if (result.inputBuffer.releaseFence == nullptr) { inputBuffer.release_fence = -1; } else if (result.inputBuffer.releaseFence->numFds == 1) { inputBuffer.release_fence = dup(result.inputBuffer.releaseFence->data[0]); } else { ALOGE("%s: Frame %d: Invalid release fence for input buffer, fd count is %d, not 1", __FUNCTION__, result.frameNumber, result.inputBuffer.releaseFence->numFds); return; } r.input_buffer = &inputBuffer; } r.partial_result = result.partialResult; processCaptureResult(&r); } hardware::Return Camera3Device::notify( const hardware::hidl_vec& msgs) { // Ideally we should grab mLock, but that can lead to deadlock, and // it's not super important to get up to date value of mStatus for this // warning print, hence skipping the lock here if (mStatus == STATUS_ERROR) { // Per API contract, HAL should act as closed after device error // But mStatus can be set to error by framework as well, so just log // a warning here. ALOGW("%s: received notify message in error state.", __FUNCTION__); } for (const auto& msg : msgs) { notify(msg); } return hardware::Void(); } void Camera3Device::notify( const hardware::camera::device::V3_2::NotifyMsg& msg) { camera3_notify_msg m; switch (msg.type) { case MsgType::ERROR: m.type = CAMERA3_MSG_ERROR; m.message.error.frame_number = msg.msg.error.frameNumber; if (msg.msg.error.errorStreamId >= 0) { sp stream = mOutputStreams.get(msg.msg.error.errorStreamId); if (stream == nullptr) { ALOGE("%s: Frame %d: Invalid error stream id %d", __FUNCTION__, m.message.error.frame_number, msg.msg.error.errorStreamId); return; } m.message.error.error_stream = stream->asHalStream(); } else { m.message.error.error_stream = nullptr; } switch (msg.msg.error.errorCode) { case ErrorCode::ERROR_DEVICE: m.message.error.error_code = CAMERA3_MSG_ERROR_DEVICE; break; case ErrorCode::ERROR_REQUEST: m.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST; break; case ErrorCode::ERROR_RESULT: m.message.error.error_code = CAMERA3_MSG_ERROR_RESULT; break; case ErrorCode::ERROR_BUFFER: m.message.error.error_code = CAMERA3_MSG_ERROR_BUFFER; break; } break; case MsgType::SHUTTER: m.type = CAMERA3_MSG_SHUTTER; m.message.shutter.frame_number = msg.msg.shutter.frameNumber; m.message.shutter.timestamp = msg.msg.shutter.timestamp; break; } notify(&m); } status_t Camera3Device::captureList(const List &requestsList, const std::list &surfaceMaps, int64_t *lastFrameNumber) { ATRACE_CALL(); return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/false, lastFrameNumber); } status_t Camera3Device::setStreamingRequest(const CameraMetadata &request, int64_t* /*lastFrameNumber*/) { ATRACE_CALL(); List requestsList; std::list surfaceMaps; convertToRequestList(requestsList, surfaceMaps, request); return setStreamingRequestList(requestsList, /*surfaceMap*/surfaceMaps, /*lastFrameNumber*/NULL); } status_t Camera3Device::setStreamingRequestList( const List &requestsList, const std::list &surfaceMaps, int64_t *lastFrameNumber) { ATRACE_CALL(); return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/true, lastFrameNumber); } sp Camera3Device::setUpRequestLocked( const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) { status_t res; if (mStatus == STATUS_UNCONFIGURED || mNeedConfig) { // This point should only be reached via API1 (API2 must explicitly call configureStreams) // so unilaterally select normal operating mode. res = filterParamsAndConfigureLocked(request.begin()->metadata, CAMERA3_STREAM_CONFIGURATION_NORMAL_MODE); // Stream configuration failed. Client might try other configuraitons. if (res != OK) { CLOGE("Can't set up streams: %s (%d)", strerror(-res), res); return NULL; } else if (mStatus == STATUS_UNCONFIGURED) { // Stream configuration successfully configure to empty stream configuration. CLOGE("No streams configured"); return NULL; } } sp newRequest = createCaptureRequest(request, surfaceMap); return newRequest; } status_t Camera3Device::clearStreamingRequest(int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: case STATUS_ACTIVE: // OK break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } ALOGV("Camera %s: Clearing repeating request", mId.string()); return mRequestThread->clearRepeatingRequests(lastFrameNumber); } status_t Camera3Device::waitUntilRequestReceived(int32_t requestId, nsecs_t timeout) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); return mRequestThread->waitUntilRequestProcessed(requestId, timeout); } status_t Camera3Device::createInputStream( uint32_t width, uint32_t height, int format, int *id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); nsecs_t maxExpectedDuration = getExpectedInFlightDuration(); Mutex::Autolock l(mLock); ALOGV("Camera %s: Creating new input stream %d: %d x %d, format %d", mId.string(), mNextStreamId, width, height, format); status_t res; bool wasActive = false; switch (mStatus) { case STATUS_ERROR: ALOGE("%s: Device has encountered a serious error", __FUNCTION__); return INVALID_OPERATION; case STATUS_UNINITIALIZED: ALOGE("%s: Device not initialized", __FUNCTION__); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: // OK break; case STATUS_ACTIVE: ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__); res = internalPauseAndWaitLocked(maxExpectedDuration); if (res != OK) { SET_ERR_L("Can't pause captures to reconfigure streams!"); return res; } wasActive = true; break; default: SET_ERR_L("%s: Unexpected status: %d", mStatus); return INVALID_OPERATION; } assert(mStatus != STATUS_ACTIVE); if (mInputStream != 0) { ALOGE("%s: Cannot create more than 1 input stream", __FUNCTION__); return INVALID_OPERATION; } sp newStream = new Camera3InputStream(mNextStreamId, width, height, format); newStream->setStatusTracker(mStatusTracker); mInputStream = newStream; *id = mNextStreamId++; // Continue captures if active at start if (wasActive) { ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__); // Reuse current operating mode and session parameters for new stream config res = configureStreamsLocked(mOperatingMode, mSessionParams); if (res != OK) { ALOGE("%s: Can't reconfigure device for new stream %d: %s (%d)", __FUNCTION__, mNextStreamId, strerror(-res), res); return res; } internalResumeLocked(); } ALOGV("Camera %s: Created input stream", mId.string()); return OK; } status_t Camera3Device::StreamSet::add( int streamId, sp stream) { if (stream == nullptr) { ALOGE("%s: cannot add null stream", __FUNCTION__); return BAD_VALUE; } std::lock_guard lock(mLock); return mData.add(streamId, stream); } ssize_t Camera3Device::StreamSet::remove(int streamId) { std::lock_guard lock(mLock); return mData.removeItem(streamId); } sp Camera3Device::StreamSet::get(int streamId) { std::lock_guard lock(mLock); ssize_t idx = mData.indexOfKey(streamId); if (idx == NAME_NOT_FOUND) { return nullptr; } return mData.editValueAt(idx); } sp Camera3Device::StreamSet::operator[] (size_t index) { std::lock_guard lock(mLock); return mData.editValueAt(index); } size_t Camera3Device::StreamSet::size() const { std::lock_guard lock(mLock); return mData.size(); } void Camera3Device::StreamSet::clear() { std::lock_guard lock(mLock); return mData.clear(); } std::vector Camera3Device::StreamSet::getStreamIds() { std::lock_guard lock(mLock); std::vector streamIds(mData.size()); for (size_t i = 0; i < mData.size(); i++) { streamIds[i] = mData.keyAt(i); } return streamIds; } status_t Camera3Device::createStream(sp consumer, uint32_t width, uint32_t height, int format, android_dataspace dataSpace, camera3_stream_rotation_t rotation, int *id, const String8& physicalCameraId, std::vector *surfaceIds, int streamSetId, bool isShared, uint64_t consumerUsage) { ATRACE_CALL(); if (consumer == nullptr) { ALOGE("%s: consumer must not be null", __FUNCTION__); return BAD_VALUE; } std::vector> consumers; consumers.push_back(consumer); return createStream(consumers, /*hasDeferredConsumer*/ false, width, height, format, dataSpace, rotation, id, physicalCameraId, surfaceIds, streamSetId, isShared, consumerUsage); } status_t Camera3Device::createStream(const std::vector>& consumers, bool hasDeferredConsumer, uint32_t width, uint32_t height, int format, android_dataspace dataSpace, camera3_stream_rotation_t rotation, int *id, const String8& physicalCameraId, std::vector *surfaceIds, int streamSetId, bool isShared, uint64_t consumerUsage) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); nsecs_t maxExpectedDuration = getExpectedInFlightDuration(); Mutex::Autolock l(mLock); ALOGV("Camera %s: Creating new stream %d: %d x %d, format %d, dataspace %d rotation %d" " consumer usage %" PRIu64 ", isShared %d, physicalCameraId %s", mId.string(), mNextStreamId, width, height, format, dataSpace, rotation, consumerUsage, isShared, physicalCameraId.string()); status_t res; bool wasActive = false; switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: // OK break; case STATUS_ACTIVE: ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__); res = internalPauseAndWaitLocked(maxExpectedDuration); if (res != OK) { SET_ERR_L("Can't pause captures to reconfigure streams!"); return res; } wasActive = true; break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } assert(mStatus != STATUS_ACTIVE); sp newStream; if (consumers.size() == 0 && !hasDeferredConsumer) { ALOGE("%s: Number of consumers cannot be smaller than 1", __FUNCTION__); return BAD_VALUE; } if (hasDeferredConsumer && format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) { ALOGE("Deferred consumer stream creation only support IMPLEMENTATION_DEFINED format"); return BAD_VALUE; } if (format == HAL_PIXEL_FORMAT_BLOB) { ssize_t blobBufferSize; if (dataSpace == HAL_DATASPACE_DEPTH) { blobBufferSize = getPointCloudBufferSize(); if (blobBufferSize <= 0) { SET_ERR_L("Invalid point cloud buffer size %zd", blobBufferSize); return BAD_VALUE; } } else if (dataSpace == static_cast(HAL_DATASPACE_JPEG_APP_SEGMENTS)) { blobBufferSize = width * height; } else { blobBufferSize = getJpegBufferSize(width, height); if (blobBufferSize <= 0) { SET_ERR_L("Invalid jpeg buffer size %zd", blobBufferSize); return BAD_VALUE; } } newStream = new Camera3OutputStream(mNextStreamId, consumers[0], width, height, blobBufferSize, format, dataSpace, rotation, mTimestampOffset, physicalCameraId, streamSetId); } else if (format == HAL_PIXEL_FORMAT_RAW_OPAQUE) { ssize_t rawOpaqueBufferSize = getRawOpaqueBufferSize(width, height); if (rawOpaqueBufferSize <= 0) { SET_ERR_L("Invalid RAW opaque buffer size %zd", rawOpaqueBufferSize); return BAD_VALUE; } newStream = new Camera3OutputStream(mNextStreamId, consumers[0], width, height, rawOpaqueBufferSize, format, dataSpace, rotation, mTimestampOffset, physicalCameraId, streamSetId); } else if (isShared) { newStream = new Camera3SharedOutputStream(mNextStreamId, consumers, width, height, format, consumerUsage, dataSpace, rotation, mTimestampOffset, physicalCameraId, streamSetId, mUseHalBufManager); } else if (consumers.size() == 0 && hasDeferredConsumer) { newStream = new Camera3OutputStream(mNextStreamId, width, height, format, consumerUsage, dataSpace, rotation, mTimestampOffset, physicalCameraId, streamSetId); } else { newStream = new Camera3OutputStream(mNextStreamId, consumers[0], width, height, format, dataSpace, rotation, mTimestampOffset, physicalCameraId, streamSetId); } size_t consumerCount = consumers.size(); for (size_t i = 0; i < consumerCount; i++) { int id = newStream->getSurfaceId(consumers[i]); if (id < 0) { SET_ERR_L("Invalid surface id"); return BAD_VALUE; } if (surfaceIds != nullptr) { surfaceIds->push_back(id); } } newStream->setStatusTracker(mStatusTracker); newStream->setBufferManager(mBufferManager); res = mOutputStreams.add(mNextStreamId, newStream); if (res < 0) { SET_ERR_L("Can't add new stream to set: %s (%d)", strerror(-res), res); return res; } *id = mNextStreamId++; mNeedConfig = true; // Continue captures if active at start if (wasActive) { ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__); // Reuse current operating mode and session parameters for new stream config res = configureStreamsLocked(mOperatingMode, mSessionParams); if (res != OK) { CLOGE("Can't reconfigure device for new stream %d: %s (%d)", mNextStreamId, strerror(-res), res); return res; } internalResumeLocked(); } ALOGV("Camera %s: Created new stream", mId.string()); return OK; } status_t Camera3Device::getStreamInfo(int id, StreamInfo *streamInfo) { ATRACE_CALL(); if (nullptr == streamInfo) { return BAD_VALUE; } Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized!"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: case STATUS_ACTIVE: // OK break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } sp stream = mOutputStreams.get(id); if (stream == nullptr) { CLOGE("Stream %d is unknown", id); return BAD_VALUE; } streamInfo->width = stream->getWidth(); streamInfo->height = stream->getHeight(); streamInfo->format = stream->getFormat(); streamInfo->dataSpace = stream->getDataSpace(); streamInfo->formatOverridden = stream->isFormatOverridden(); streamInfo->originalFormat = stream->getOriginalFormat(); streamInfo->dataSpaceOverridden = stream->isDataSpaceOverridden(); streamInfo->originalDataSpace = stream->getOriginalDataSpace(); return OK; } status_t Camera3Device::setStreamTransform(int id, int transform) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: case STATUS_ACTIVE: // OK break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } sp stream = mOutputStreams.get(id); if (stream == nullptr) { CLOGE("Stream %d does not exist", id); return BAD_VALUE; } return stream->setTransform(transform); } status_t Camera3Device::deleteStream(int id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); status_t res; ALOGV("%s: Camera %s: Deleting stream %d", __FUNCTION__, mId.string(), id); // CameraDevice semantics require device to already be idle before // deleteStream is called, unlike for createStream. if (mStatus == STATUS_ACTIVE) { ALOGW("%s: Camera %s: Device not idle", __FUNCTION__, mId.string()); return -EBUSY; } if (mStatus == STATUS_ERROR) { ALOGW("%s: Camera %s: deleteStream not allowed in ERROR state", __FUNCTION__, mId.string()); return -EBUSY; } sp deletedStream; sp stream = mOutputStreams.get(id); if (mInputStream != NULL && id == mInputStream->getId()) { deletedStream = mInputStream; mInputStream.clear(); } else { if (stream == nullptr) { CLOGE("Stream %d does not exist", id); return BAD_VALUE; } } // Delete output stream or the output part of a bi-directional stream. if (stream != nullptr) { deletedStream = stream; mOutputStreams.remove(id); } // Free up the stream endpoint so that it can be used by some other stream res = deletedStream->disconnect(); if (res != OK) { SET_ERR_L("Can't disconnect deleted stream %d", id); // fall through since we want to still list the stream as deleted. } mDeletedStreams.add(deletedStream); mNeedConfig = true; return res; } status_t Camera3Device::configureStreams(const CameraMetadata& sessionParams, int operatingMode) { ATRACE_CALL(); ALOGV("%s: E", __FUNCTION__); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); // In case the client doesn't include any session parameter, try a // speculative configuration using the values from the last cached // default request. if (sessionParams.isEmpty() && ((mLastTemplateId > 0) && (mLastTemplateId < CAMERA3_TEMPLATE_COUNT)) && (!mRequestTemplateCache[mLastTemplateId].isEmpty())) { ALOGV("%s: Speculative session param configuration with template id: %d", __func__, mLastTemplateId); return filterParamsAndConfigureLocked(mRequestTemplateCache[mLastTemplateId], operatingMode); } return filterParamsAndConfigureLocked(sessionParams, operatingMode); } status_t Camera3Device::filterParamsAndConfigureLocked(const CameraMetadata& sessionParams, int operatingMode) { //Filter out any incoming session parameters const CameraMetadata params(sessionParams); camera_metadata_entry_t availableSessionKeys = mDeviceInfo.find( ANDROID_REQUEST_AVAILABLE_SESSION_KEYS); CameraMetadata filteredParams(availableSessionKeys.count); camera_metadata_t *meta = const_cast( filteredParams.getAndLock()); set_camera_metadata_vendor_id(meta, mVendorTagId); filteredParams.unlock(meta); if (availableSessionKeys.count > 0) { for (size_t i = 0; i < availableSessionKeys.count; i++) { camera_metadata_ro_entry entry = params.find( availableSessionKeys.data.i32[i]); if (entry.count > 0) { filteredParams.update(entry); } } } return configureStreamsLocked(operatingMode, filteredParams); } status_t Camera3Device::getInputBufferProducer( sp *producer) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); if (producer == NULL) { return BAD_VALUE; } else if (mInputStream == NULL) { return INVALID_OPERATION; } return mInputStream->getInputBufferProducer(producer); } status_t Camera3Device::createDefaultRequest(int templateId, CameraMetadata *request) { ATRACE_CALL(); ALOGV("%s: for template %d", __FUNCTION__, templateId); if (templateId <= 0 || templateId >= CAMERA3_TEMPLATE_COUNT) { android_errorWriteWithInfoLog(CameraService::SN_EVENT_LOG_ID, "26866110", CameraThreadState::getCallingUid(), nullptr, 0); return BAD_VALUE; } Mutex::Autolock il(mInterfaceLock); { Mutex::Autolock l(mLock); switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device is not initialized!"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: case STATUS_ACTIVE: // OK break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } if (!mRequestTemplateCache[templateId].isEmpty()) { *request = mRequestTemplateCache[templateId]; mLastTemplateId = templateId; return OK; } } camera_metadata_t *rawRequest; status_t res = mInterface->constructDefaultRequestSettings( (camera3_request_template_t) templateId, &rawRequest); { Mutex::Autolock l(mLock); if (res == BAD_VALUE) { ALOGI("%s: template %d is not supported on this camera device", __FUNCTION__, templateId); return res; } else if (res != OK) { CLOGE("Unable to construct request template %d: %s (%d)", templateId, strerror(-res), res); return res; } set_camera_metadata_vendor_id(rawRequest, mVendorTagId); mRequestTemplateCache[templateId].acquire(rawRequest); *request = mRequestTemplateCache[templateId]; mLastTemplateId = templateId; } return OK; } status_t Camera3Device::waitUntilDrained() { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); nsecs_t maxExpectedDuration = getExpectedInFlightDuration(); Mutex::Autolock l(mLock); return waitUntilDrainedLocked(maxExpectedDuration); } status_t Camera3Device::waitUntilDrainedLocked(nsecs_t maxExpectedDuration) { switch (mStatus) { case STATUS_UNINITIALIZED: case STATUS_UNCONFIGURED: ALOGV("%s: Already idle", __FUNCTION__); return OK; case STATUS_CONFIGURED: // To avoid race conditions, check with tracker to be sure case STATUS_ERROR: case STATUS_ACTIVE: // Need to verify shut down break; default: SET_ERR_L("Unexpected status: %d",mStatus); return INVALID_OPERATION; } ALOGV("%s: Camera %s: Waiting until idle (%" PRIi64 "ns)", __FUNCTION__, mId.string(), maxExpectedDuration); status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration); if (res != OK) { SET_ERR_L("Error waiting for HAL to drain: %s (%d)", strerror(-res), res); } return res; } void Camera3Device::internalUpdateStatusLocked(Status status) { mStatus = status; mRecentStatusUpdates.add(mStatus); mStatusChanged.broadcast(); } void Camera3Device::pauseStateNotify(bool enable) { Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); mPauseStateNotify = enable; } // Pause to reconfigure status_t Camera3Device::internalPauseAndWaitLocked(nsecs_t maxExpectedDuration) { if (mRequestThread.get() != nullptr) { mRequestThread->setPaused(true); } else { return NO_INIT; } ALOGV("%s: Camera %s: Internal wait until idle (% " PRIi64 " ns)", __FUNCTION__, mId.string(), maxExpectedDuration); status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration); if (res != OK) { SET_ERR_L("Can't idle device in %f seconds!", maxExpectedDuration/1e9); } return res; } // Resume after internalPauseAndWaitLocked status_t Camera3Device::internalResumeLocked() { status_t res; mRequestThread->setPaused(false); ALOGV("%s: Camera %s: Internal wait until active (% " PRIi64 " ns)", __FUNCTION__, mId.string(), kActiveTimeout); res = waitUntilStateThenRelock(/*active*/ true, kActiveTimeout); if (res != OK) { SET_ERR_L("Can't transition to active in %f seconds!", kActiveTimeout/1e9); } mPauseStateNotify = false; return OK; } status_t Camera3Device::waitUntilStateThenRelock(bool active, nsecs_t timeout) { status_t res = OK; size_t startIndex = 0; if (mStatusWaiters == 0) { // Clear the list of recent statuses if there are no existing threads waiting on updates to // this status list mRecentStatusUpdates.clear(); } else { // If other threads are waiting on updates to this status list, set the position of the // first element that this list will check rather than clearing the list. startIndex = mRecentStatusUpdates.size(); } mStatusWaiters++; if (!active && mUseHalBufManager) { auto streamIds = mOutputStreams.getStreamIds(); if (mStatus == STATUS_ACTIVE) { mRequestThread->signalPipelineDrain(streamIds); } mRequestBufferSM.onWaitUntilIdle(); } bool stateSeen = false; do { if (active == (mStatus == STATUS_ACTIVE)) { // Desired state is current break; } res = mStatusChanged.waitRelative(mLock, timeout); if (res != OK) break; // This is impossible, but if not, could result in subtle deadlocks and invalid state // transitions. LOG_ALWAYS_FATAL_IF(startIndex > mRecentStatusUpdates.size(), "%s: Skipping status updates in Camera3Device, may result in deadlock.", __FUNCTION__); // Encountered desired state since we began waiting for (size_t i = startIndex; i < mRecentStatusUpdates.size(); i++) { if (active == (mRecentStatusUpdates[i] == STATUS_ACTIVE) ) { stateSeen = true; break; } } } while (!stateSeen); mStatusWaiters--; return res; } status_t Camera3Device::setNotifyCallback(wp listener) { ATRACE_CALL(); Mutex::Autolock l(mOutputLock); if (listener != NULL && mListener != NULL) { ALOGW("%s: Replacing old callback listener", __FUNCTION__); } mListener = listener; mRequestThread->setNotificationListener(listener); mPreparerThread->setNotificationListener(listener); return OK; } bool Camera3Device::willNotify3A() { return false; } status_t Camera3Device::waitForNextFrame(nsecs_t timeout) { ATRACE_CALL(); status_t res; Mutex::Autolock l(mOutputLock); while (mResultQueue.empty()) { res = mResultSignal.waitRelative(mOutputLock, timeout); if (res == TIMED_OUT) { return res; } else if (res != OK) { ALOGW("%s: Camera %s: No frame in %" PRId64 " ns: %s (%d)", __FUNCTION__, mId.string(), timeout, strerror(-res), res); return res; } } return OK; } status_t Camera3Device::getNextResult(CaptureResult *frame) { ATRACE_CALL(); Mutex::Autolock l(mOutputLock); if (mResultQueue.empty()) { return NOT_ENOUGH_DATA; } if (frame == NULL) { ALOGE("%s: argument cannot be NULL", __FUNCTION__); return BAD_VALUE; } CaptureResult &result = *(mResultQueue.begin()); frame->mResultExtras = result.mResultExtras; frame->mMetadata.acquire(result.mMetadata); frame->mPhysicalMetadatas = std::move(result.mPhysicalMetadatas); mResultQueue.erase(mResultQueue.begin()); return OK; } status_t Camera3Device::triggerAutofocus(uint32_t id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); ALOGV("%s: Triggering autofocus, id %d", __FUNCTION__, id); // Mix-in this trigger into the next request and only the next request. RequestTrigger trigger[] = { { ANDROID_CONTROL_AF_TRIGGER, ANDROID_CONTROL_AF_TRIGGER_START }, { ANDROID_CONTROL_AF_TRIGGER_ID, static_cast(id) } }; return mRequestThread->queueTrigger(trigger, sizeof(trigger)/sizeof(trigger[0])); } status_t Camera3Device::triggerCancelAutofocus(uint32_t id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); ALOGV("%s: Triggering cancel autofocus, id %d", __FUNCTION__, id); // Mix-in this trigger into the next request and only the next request. RequestTrigger trigger[] = { { ANDROID_CONTROL_AF_TRIGGER, ANDROID_CONTROL_AF_TRIGGER_CANCEL }, { ANDROID_CONTROL_AF_TRIGGER_ID, static_cast(id) } }; return mRequestThread->queueTrigger(trigger, sizeof(trigger)/sizeof(trigger[0])); } status_t Camera3Device::triggerPrecaptureMetering(uint32_t id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); ALOGV("%s: Triggering precapture metering, id %d", __FUNCTION__, id); // Mix-in this trigger into the next request and only the next request. RequestTrigger trigger[] = { { ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START }, { ANDROID_CONTROL_AE_PRECAPTURE_ID, static_cast(id) } }; return mRequestThread->queueTrigger(trigger, sizeof(trigger)/sizeof(trigger[0])); } status_t Camera3Device::flush(int64_t *frameNumber) { ATRACE_CALL(); ALOGV("%s: Camera %s: Flushing all requests", __FUNCTION__, mId.string()); Mutex::Autolock il(mInterfaceLock); { Mutex::Autolock l(mLock); // b/116514106 "disconnect()" can get called twice for the same device. The // camera device will not be initialized during the second run. if (mStatus == STATUS_UNINITIALIZED) { return OK; } mRequestThread->clear(/*out*/frameNumber); } return mRequestThread->flush(); } status_t Camera3Device::prepare(int streamId) { return prepare(camera3::Camera3StreamInterface::ALLOCATE_PIPELINE_MAX, streamId); } status_t Camera3Device::prepare(int maxCount, int streamId) { ATRACE_CALL(); ALOGV("%s: Camera %s: Preparing stream %d", __FUNCTION__, mId.string(), streamId); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { CLOGE("Stream %d does not exist", streamId); return BAD_VALUE; } if (stream->isUnpreparable() || stream->hasOutstandingBuffers() ) { CLOGE("Stream %d has already been a request target", streamId); return BAD_VALUE; } if (mRequestThread->isStreamPending(stream)) { CLOGE("Stream %d is already a target in a pending request", streamId); return BAD_VALUE; } return mPreparerThread->prepare(maxCount, stream); } status_t Camera3Device::tearDown(int streamId) { ATRACE_CALL(); ALOGV("%s: Camera %s: Tearing down stream %d", __FUNCTION__, mId.string(), streamId); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { CLOGE("Stream %d does not exist", streamId); return BAD_VALUE; } if (stream->hasOutstandingBuffers() || mRequestThread->isStreamPending(stream)) { CLOGE("Stream %d is a target of a in-progress request", streamId); return BAD_VALUE; } return stream->tearDown(); } status_t Camera3Device::addBufferListenerForStream(int streamId, wp listener) { ATRACE_CALL(); ALOGV("%s: Camera %s: Adding buffer listener for stream %d", __FUNCTION__, mId.string(), streamId); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { CLOGE("Stream %d does not exist", streamId); return BAD_VALUE; } stream->addBufferListener(listener); return OK; } /** * Methods called by subclasses */ void Camera3Device::notifyStatus(bool idle) { ATRACE_CALL(); { // Need mLock to safely update state and synchronize to current // state of methods in flight. Mutex::Autolock l(mLock); // We can get various system-idle notices from the status tracker // while starting up. Only care about them if we've actually sent // in some requests recently. if (mStatus != STATUS_ACTIVE && mStatus != STATUS_CONFIGURED) { return; } ALOGV("%s: Camera %s: Now %s, pauseState: %s", __FUNCTION__, mId.string(), idle ? "idle" : "active", mPauseStateNotify ? "true" : "false"); internalUpdateStatusLocked(idle ? STATUS_CONFIGURED : STATUS_ACTIVE); // Skip notifying listener if we're doing some user-transparent // state changes if (mPauseStateNotify) return; } sp listener; { Mutex::Autolock l(mOutputLock); listener = mListener.promote(); } if (idle && listener != NULL) { listener->notifyIdle(); } } status_t Camera3Device::setConsumerSurfaces(int streamId, const std::vector>& consumers, std::vector *surfaceIds) { ATRACE_CALL(); ALOGV("%s: Camera %s: set consumer surface for stream %d", __FUNCTION__, mId.string(), streamId); if (surfaceIds == nullptr) { return BAD_VALUE; } Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); if (consumers.size() == 0) { CLOGE("No consumer is passed!"); return BAD_VALUE; } sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { CLOGE("Stream %d is unknown", streamId); return BAD_VALUE; } // isConsumerConfigurationDeferred will be off after setConsumers bool isDeferred = stream->isConsumerConfigurationDeferred(); status_t res = stream->setConsumers(consumers); if (res != OK) { CLOGE("Stream %d set consumer failed (error %d %s) ", streamId, res, strerror(-res)); return res; } for (auto &consumer : consumers) { int id = stream->getSurfaceId(consumer); if (id < 0) { CLOGE("Invalid surface id!"); return BAD_VALUE; } surfaceIds->push_back(id); } if (isDeferred) { if (!stream->isConfiguring()) { CLOGE("Stream %d was already fully configured.", streamId); return INVALID_OPERATION; } res = stream->finishConfiguration(); if (res != OK) { // If finishConfiguration fails due to abandoned surface, do not set // device to error state. bool isSurfaceAbandoned = (res == NO_INIT || res == DEAD_OBJECT) && stream->isAbandoned(); if (!isSurfaceAbandoned) { SET_ERR_L("Can't finish configuring output stream %d: %s (%d)", stream->getId(), strerror(-res), res); } return res; } } return OK; } status_t Camera3Device::updateStream(int streamId, const std::vector> &newSurfaces, const std::vector &outputInfo, const std::vector &removedSurfaceIds, KeyedVector, size_t> *outputMap) { Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { CLOGE("Stream %d is unknown", streamId); return BAD_VALUE; } for (const auto &it : removedSurfaceIds) { if (mRequestThread->isOutputSurfacePending(streamId, it)) { CLOGE("Shared surface still part of a pending request!"); return -EBUSY; } } status_t res = stream->updateStream(newSurfaces, outputInfo, removedSurfaceIds, outputMap); if (res != OK) { CLOGE("Stream %d failed to update stream (error %d %s) ", streamId, res, strerror(-res)); if (res == UNKNOWN_ERROR) { SET_ERR_L("%s: Stream update failed to revert to previous output configuration!", __FUNCTION__); } return res; } return res; } status_t Camera3Device::dropStreamBuffers(bool dropping, int streamId) { Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { ALOGE("%s: Stream %d is not found.", __FUNCTION__, streamId); return BAD_VALUE; } return stream->dropBuffers(dropping); } /** * Camera3Device private methods */ sp Camera3Device::createCaptureRequest( const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) { ATRACE_CALL(); sp newRequest = new CaptureRequest; newRequest->mSettingsList = request; camera_metadata_entry_t inputStreams = newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_INPUT_STREAMS); if (inputStreams.count > 0) { if (mInputStream == NULL || mInputStream->getId() != inputStreams.data.i32[0]) { CLOGE("Request references unknown input stream %d", inputStreams.data.u8[0]); return NULL; } if (mInputStream->isConfiguring()) { SET_ERR_L("%s: input stream %d is not configured!", __FUNCTION__, mInputStream->getId()); return NULL; } // Check if stream prepare is blocking requests. if (mInputStream->isBlockedByPrepare()) { CLOGE("Request references an input stream that's being prepared!"); return NULL; } newRequest->mInputStream = mInputStream; newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_INPUT_STREAMS); } camera_metadata_entry_t streams = newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_OUTPUT_STREAMS); if (streams.count == 0) { CLOGE("Zero output streams specified!"); return NULL; } for (size_t i = 0; i < streams.count; i++) { sp stream = mOutputStreams.get(streams.data.i32[i]); if (stream == nullptr) { CLOGE("Request references unknown stream %d", streams.data.i32[i]); return NULL; } // It is illegal to include a deferred consumer output stream into a request auto iter = surfaceMap.find(streams.data.i32[i]); if (iter != surfaceMap.end()) { const std::vector& surfaces = iter->second; for (const auto& surface : surfaces) { if (stream->isConsumerConfigurationDeferred(surface)) { CLOGE("Stream %d surface %zu hasn't finished configuration yet " "due to deferred consumer", stream->getId(), surface); return NULL; } } newRequest->mOutputSurfaces[streams.data.i32[i]] = surfaces; } if (stream->isConfiguring()) { SET_ERR_L("%s: stream %d is not configured!", __FUNCTION__, stream->getId()); return NULL; } // Check if stream prepare is blocking requests. if (stream->isBlockedByPrepare()) { CLOGE("Request references an output stream that's being prepared!"); return NULL; } newRequest->mOutputStreams.push(stream); } newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_OUTPUT_STREAMS); newRequest->mBatchSize = 1; return newRequest; } bool Camera3Device::isOpaqueInputSizeSupported(uint32_t width, uint32_t height) { for (uint32_t i = 0; i < mSupportedOpaqueInputSizes.size(); i++) { Size size = mSupportedOpaqueInputSizes[i]; if (size.width == width && size.height == height) { return true; } } return false; } void Camera3Device::cancelStreamsConfigurationLocked() { int res = OK; if (mInputStream != NULL && mInputStream->isConfiguring()) { res = mInputStream->cancelConfiguration(); if (res != OK) { CLOGE("Can't cancel configuring input stream %d: %s (%d)", mInputStream->getId(), strerror(-res), res); } } for (size_t i = 0; i < mOutputStreams.size(); i++) { sp outputStream = mOutputStreams[i]; if (outputStream->isConfiguring()) { res = outputStream->cancelConfiguration(); if (res != OK) { CLOGE("Can't cancel configuring output stream %d: %s (%d)", outputStream->getId(), strerror(-res), res); } } } // Return state to that at start of call, so that future configures // properly clean things up internalUpdateStatusLocked(STATUS_UNCONFIGURED); mNeedConfig = true; res = mPreparerThread->resume(); if (res != OK) { ALOGE("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.string()); } } bool Camera3Device::reconfigureCamera(const CameraMetadata& sessionParams) { ATRACE_CALL(); bool ret = false; Mutex::Autolock il(mInterfaceLock); nsecs_t maxExpectedDuration = getExpectedInFlightDuration(); Mutex::Autolock l(mLock); auto rc = internalPauseAndWaitLocked(maxExpectedDuration); if (rc == NO_ERROR) { mNeedConfig = true; rc = configureStreamsLocked(mOperatingMode, sessionParams, /*notifyRequestThread*/ false); if (rc == NO_ERROR) { ret = true; mPauseStateNotify = false; //Moving to active state while holding 'mLock' is important. //There could be pending calls to 'create-/deleteStream' which //will trigger another stream configuration while the already //present streams end up with outstanding buffers that will //not get drained. internalUpdateStatusLocked(STATUS_ACTIVE); } else if (rc == DEAD_OBJECT) { // DEAD_OBJECT can be returned if either the consumer surface is // abandoned, or the HAL has died. // - If the HAL has died, configureStreamsLocked call will set // device to error state, // - If surface is abandoned, we should not set device to error // state. ALOGE("Failed to re-configure camera due to abandoned surface"); } else { SET_ERR_L("Failed to re-configure camera: %d", rc); } } else { ALOGE("%s: Failed to pause streaming: %d", __FUNCTION__, rc); } return ret; } status_t Camera3Device::configureStreamsLocked(int operatingMode, const CameraMetadata& sessionParams, bool notifyRequestThread) { ATRACE_CALL(); status_t res; if (mStatus != STATUS_UNCONFIGURED && mStatus != STATUS_CONFIGURED) { CLOGE("Not idle"); return INVALID_OPERATION; } if (operatingMode < 0) { CLOGE("Invalid operating mode: %d", operatingMode); return BAD_VALUE; } bool isConstrainedHighSpeed = static_cast(StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE) == operatingMode; if (mOperatingMode != operatingMode) { mNeedConfig = true; mIsConstrainedHighSpeedConfiguration = isConstrainedHighSpeed; mOperatingMode = operatingMode; } if (!mNeedConfig) { ALOGV("%s: Skipping config, no stream changes", __FUNCTION__); return OK; } // Workaround for device HALv3.2 or older spec bug - zero streams requires // adding a dummy stream instead. // TODO: Bug: 17321404 for fixing the HAL spec and removing this workaround. if (mOutputStreams.size() == 0) { addDummyStreamLocked(); } else { tryRemoveDummyStreamLocked(); } // Start configuring the streams ALOGV("%s: Camera %s: Starting stream configuration", __FUNCTION__, mId.string()); mPreparerThread->pause(); camera3_stream_configuration config; config.operation_mode = mOperatingMode; config.num_streams = (mInputStream != NULL) + mOutputStreams.size(); Vector streams; streams.setCapacity(config.num_streams); std::vector bufferSizes(config.num_streams, 0); if (mInputStream != NULL) { camera3_stream_t *inputStream; inputStream = mInputStream->startConfiguration(); if (inputStream == NULL) { CLOGE("Can't start input stream configuration"); cancelStreamsConfigurationLocked(); return INVALID_OPERATION; } streams.add(inputStream); } for (size_t i = 0; i < mOutputStreams.size(); i++) { // Don't configure bidi streams twice, nor add them twice to the list if (mOutputStreams[i].get() == static_cast(mInputStream.get())) { config.num_streams--; continue; } camera3_stream_t *outputStream; outputStream = mOutputStreams[i]->startConfiguration(); if (outputStream == NULL) { CLOGE("Can't start output stream configuration"); cancelStreamsConfigurationLocked(); return INVALID_OPERATION; } streams.add(outputStream); if (outputStream->format == HAL_PIXEL_FORMAT_BLOB) { size_t k = i + ((mInputStream != nullptr) ? 1 : 0); // Input stream if present should // always occupy the initial entry. if (outputStream->data_space == HAL_DATASPACE_V0_JFIF) { bufferSizes[k] = static_cast( getJpegBufferSize(outputStream->width, outputStream->height)); } else if (outputStream->data_space == static_cast(HAL_DATASPACE_JPEG_APP_SEGMENTS)) { bufferSizes[k] = outputStream->width * outputStream->height; } else { ALOGW("%s: Blob dataSpace %d not supported", __FUNCTION__, outputStream->data_space); } } } config.streams = streams.editArray(); // Do the HAL configuration; will potentially touch stream // max_buffers, usage, and priv fields, as well as data_space and format // fields for IMPLEMENTATION_DEFINED formats. const camera_metadata_t *sessionBuffer = sessionParams.getAndLock(); res = mInterface->configureStreams(sessionBuffer, &config, bufferSizes); sessionParams.unlock(sessionBuffer); if (res == BAD_VALUE) { // HAL rejected this set of streams as unsupported, clean up config // attempt and return to unconfigured state CLOGE("Set of requested inputs/outputs not supported by HAL"); cancelStreamsConfigurationLocked(); return BAD_VALUE; } else if (res != OK) { // Some other kind of error from configure_streams - this is not // expected SET_ERR_L("Unable to configure streams with HAL: %s (%d)", strerror(-res), res); return res; } // Finish all stream configuration immediately. // TODO: Try to relax this later back to lazy completion, which should be // faster if (mInputStream != NULL && mInputStream->isConfiguring()) { bool streamReConfigured = false; res = mInputStream->finishConfiguration(&streamReConfigured); if (res != OK) { CLOGE("Can't finish configuring input stream %d: %s (%d)", mInputStream->getId(), strerror(-res), res); cancelStreamsConfigurationLocked(); if ((res == NO_INIT || res == DEAD_OBJECT) && mInputStream->isAbandoned()) { return DEAD_OBJECT; } return BAD_VALUE; } if (streamReConfigured) { mInterface->onStreamReConfigured(mInputStream->getId()); } } for (size_t i = 0; i < mOutputStreams.size(); i++) { sp outputStream = mOutputStreams[i]; if (outputStream->isConfiguring() && !outputStream->isConsumerConfigurationDeferred()) { bool streamReConfigured = false; res = outputStream->finishConfiguration(&streamReConfigured); if (res != OK) { CLOGE("Can't finish configuring output stream %d: %s (%d)", outputStream->getId(), strerror(-res), res); cancelStreamsConfigurationLocked(); if ((res == NO_INIT || res == DEAD_OBJECT) && outputStream->isAbandoned()) { return DEAD_OBJECT; } return BAD_VALUE; } if (streamReConfigured) { mInterface->onStreamReConfigured(outputStream->getId()); } } } // Request thread needs to know to avoid using repeat-last-settings protocol // across configure_streams() calls if (notifyRequestThread) { mRequestThread->configurationComplete(mIsConstrainedHighSpeedConfiguration, sessionParams); } char value[PROPERTY_VALUE_MAX]; property_get("camera.fifo.disable", value, "0"); int32_t disableFifo = atoi(value); if (disableFifo != 1) { // Boost priority of request thread to SCHED_FIFO. pid_t requestThreadTid = mRequestThread->getTid(); res = requestPriority(getpid(), requestThreadTid, kRequestThreadPriority, /*isForApp*/ false, /*asynchronous*/ false); if (res != OK) { ALOGW("Can't set realtime priority for request processing thread: %s (%d)", strerror(-res), res); } else { ALOGD("Set real time priority for request queue thread (tid %d)", requestThreadTid); } } // Update device state const camera_metadata_t *newSessionParams = sessionParams.getAndLock(); const camera_metadata_t *currentSessionParams = mSessionParams.getAndLock(); bool updateSessionParams = (newSessionParams != currentSessionParams) ? true : false; sessionParams.unlock(newSessionParams); mSessionParams.unlock(currentSessionParams); if (updateSessionParams) { mSessionParams = sessionParams; } mNeedConfig = false; internalUpdateStatusLocked((mDummyStreamId == NO_STREAM) ? STATUS_CONFIGURED : STATUS_UNCONFIGURED); ALOGV("%s: Camera %s: Stream configuration complete", __FUNCTION__, mId.string()); // tear down the deleted streams after configure streams. mDeletedStreams.clear(); auto rc = mPreparerThread->resume(); if (rc != OK) { SET_ERR_L("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.string()); return rc; } if (mDummyStreamId == NO_STREAM) { mRequestBufferSM.onStreamsConfigured(); } return OK; } status_t Camera3Device::addDummyStreamLocked() { ATRACE_CALL(); status_t res; if (mDummyStreamId != NO_STREAM) { // Should never be adding a second dummy stream when one is already // active SET_ERR_L("%s: Camera %s: A dummy stream already exists!", __FUNCTION__, mId.string()); return INVALID_OPERATION; } ALOGV("%s: Camera %s: Adding a dummy stream", __FUNCTION__, mId.string()); sp dummyStream = new Camera3DummyStream(mNextStreamId); res = mOutputStreams.add(mNextStreamId, dummyStream); if (res < 0) { SET_ERR_L("Can't add dummy stream to set: %s (%d)", strerror(-res), res); return res; } mDummyStreamId = mNextStreamId; mNextStreamId++; return OK; } status_t Camera3Device::tryRemoveDummyStreamLocked() { ATRACE_CALL(); status_t res; if (mDummyStreamId == NO_STREAM) return OK; if (mOutputStreams.size() == 1) return OK; ALOGV("%s: Camera %s: Removing the dummy stream", __FUNCTION__, mId.string()); // Ok, have a dummy stream and there's at least one other output stream, // so remove the dummy sp deletedStream = mOutputStreams.get(mDummyStreamId); if (deletedStream == nullptr) { SET_ERR_L("Dummy stream %d does not appear to exist", mDummyStreamId); return INVALID_OPERATION; } mOutputStreams.remove(mDummyStreamId); // Free up the stream endpoint so that it can be used by some other stream res = deletedStream->disconnect(); if (res != OK) { SET_ERR_L("Can't disconnect deleted dummy stream %d", mDummyStreamId); // fall through since we want to still list the stream as deleted. } mDeletedStreams.add(deletedStream); mDummyStreamId = NO_STREAM; return res; } void Camera3Device::setErrorState(const char *fmt, ...) { ATRACE_CALL(); Mutex::Autolock l(mLock); va_list args; va_start(args, fmt); setErrorStateLockedV(fmt, args); va_end(args); } void Camera3Device::setErrorStateV(const char *fmt, va_list args) { ATRACE_CALL(); Mutex::Autolock l(mLock); setErrorStateLockedV(fmt, args); } void Camera3Device::setErrorStateLocked(const char *fmt, ...) { va_list args; va_start(args, fmt); setErrorStateLockedV(fmt, args); va_end(args); } void Camera3Device::setErrorStateLockedV(const char *fmt, va_list args) { // Print out all error messages to log String8 errorCause = String8::formatV(fmt, args); ALOGE("Camera %s: %s", mId.string(), errorCause.string()); // But only do error state transition steps for the first error if (mStatus == STATUS_ERROR || mStatus == STATUS_UNINITIALIZED) return; mErrorCause = errorCause; if (mRequestThread != nullptr) { mRequestThread->setPaused(true); } internalUpdateStatusLocked(STATUS_ERROR); // Notify upstream about a device error sp listener = mListener.promote(); if (listener != NULL) { listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE, CaptureResultExtras()); } // Save stack trace. View by dumping it later. CameraTraces::saveTrace(); // TODO: consider adding errorCause and client pid/procname } /** * In-flight request management */ status_t Camera3Device::registerInFlight(uint32_t frameNumber, int32_t numBuffers, CaptureResultExtras resultExtras, bool hasInput, bool hasAppCallback, nsecs_t maxExpectedDuration, std::set& physicalCameraIds, bool isStillCapture, bool isZslCapture, const SurfaceMap& outputSurfaces) { ATRACE_CALL(); Mutex::Autolock l(mInFlightLock); ssize_t res; res = mInFlightMap.add(frameNumber, InFlightRequest(numBuffers, resultExtras, hasInput, hasAppCallback, maxExpectedDuration, physicalCameraIds, isStillCapture, isZslCapture, outputSurfaces)); if (res < 0) return res; if (mInFlightMap.size() == 1) { // Hold a separate dedicated tracker lock to prevent race with disconnect and also // avoid a deadlock during reprocess requests. Mutex::Autolock l(mTrackerLock); if (mStatusTracker != nullptr) { mStatusTracker->markComponentActive(mInFlightStatusId); } } mExpectedInflightDuration += maxExpectedDuration; return OK; } void Camera3Device::returnOutputBuffers( const camera3_stream_buffer_t *outputBuffers, size_t numBuffers, nsecs_t timestamp, bool timestampIncreasing, const SurfaceMap& outputSurfaces, const CaptureResultExtras &inResultExtras) { for (size_t i = 0; i < numBuffers; i++) { if (outputBuffers[i].buffer == nullptr) { if (!mUseHalBufManager) { // With HAL buffer management API, HAL sometimes will have to return buffers that // has not got a output buffer handle filled yet. This is though illegal if HAL // buffer management API is not being used. ALOGE("%s: cannot return a null buffer!", __FUNCTION__); } continue; } Camera3StreamInterface *stream = Camera3Stream::cast(outputBuffers[i].stream); int streamId = stream->getId(); const auto& it = outputSurfaces.find(streamId); status_t res = OK; if (it != outputSurfaces.end()) { res = stream->returnBuffer( outputBuffers[i], timestamp, timestampIncreasing, it->second, inResultExtras.frameNumber); } else { res = stream->returnBuffer( outputBuffers[i], timestamp, timestampIncreasing, std::vector (), inResultExtras.frameNumber); } // Note: stream may be deallocated at this point, if this buffer was // the last reference to it. if (res == NO_INIT || res == DEAD_OBJECT) { ALOGV("Can't return buffer to its stream: %s (%d)", strerror(-res), res); } else if (res != OK) { ALOGE("Can't return buffer to its stream: %s (%d)", strerror(-res), res); } // Long processing consumers can cause returnBuffer timeout for shared stream // If that happens, cancel the buffer and send a buffer error to client if (it != outputSurfaces.end() && res == TIMED_OUT && outputBuffers[i].status == CAMERA3_BUFFER_STATUS_OK) { // cancel the buffer camera3_stream_buffer_t sb = outputBuffers[i]; sb.status = CAMERA3_BUFFER_STATUS_ERROR; stream->returnBuffer(sb, /*timestamp*/0, timestampIncreasing, std::vector (), inResultExtras.frameNumber); // notify client buffer error sp listener; { Mutex::Autolock l(mOutputLock); listener = mListener.promote(); } if (listener != nullptr) { CaptureResultExtras extras = inResultExtras; extras.errorStreamId = streamId; listener->notifyError( hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER, extras); } } } } void Camera3Device::removeInFlightMapEntryLocked(int idx) { ATRACE_CALL(); nsecs_t duration = mInFlightMap.valueAt(idx).maxExpectedDuration; mInFlightMap.removeItemsAt(idx, 1); // Indicate idle inFlightMap to the status tracker if (mInFlightMap.size() == 0) { mRequestBufferSM.onInflightMapEmpty(); // Hold a separate dedicated tracker lock to prevent race with disconnect and also // avoid a deadlock during reprocess requests. Mutex::Autolock l(mTrackerLock); if (mStatusTracker != nullptr) { mStatusTracker->markComponentIdle(mInFlightStatusId, Fence::NO_FENCE); } } mExpectedInflightDuration -= duration; } void Camera3Device::removeInFlightRequestIfReadyLocked(int idx) { const InFlightRequest &request = mInFlightMap.valueAt(idx); const uint32_t frameNumber = mInFlightMap.keyAt(idx); nsecs_t sensorTimestamp = request.sensorTimestamp; nsecs_t shutterTimestamp = request.shutterTimestamp; // Check if it's okay to remove the request from InFlightMap: // In the case of a successful request: // all input and output buffers, all result metadata, shutter callback // arrived. // In the case of a unsuccessful request: // all input and output buffers arrived. if (request.numBuffersLeft == 0 && (request.skipResultMetadata || (request.haveResultMetadata && shutterTimestamp != 0))) { if (request.stillCapture) { ATRACE_ASYNC_END("still capture", frameNumber); } ATRACE_ASYNC_END("frame capture", frameNumber); // Sanity check - if sensor timestamp matches shutter timestamp in the // case of request having callback. if (request.hasCallback && request.requestStatus == OK && sensorTimestamp != shutterTimestamp) { SET_ERR("sensor timestamp (%" PRId64 ") for frame %d doesn't match shutter timestamp (%" PRId64 ")", sensorTimestamp, frameNumber, shutterTimestamp); } // for an unsuccessful request, it may have pending output buffers to // return. assert(request.requestStatus != OK || request.pendingOutputBuffers.size() == 0); returnOutputBuffers(request.pendingOutputBuffers.array(), request.pendingOutputBuffers.size(), 0, /*timestampIncreasing*/true, request.outputSurfaces, request.resultExtras); removeInFlightMapEntryLocked(idx); ALOGVV("%s: removed frame %d from InFlightMap", __FUNCTION__, frameNumber); } // Sanity check - if we have too many in-flight frames, something has // likely gone wrong if (!mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() > kInFlightWarnLimit) { CLOGE("In-flight list too large: %zu", mInFlightMap.size()); } else if (mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() > kInFlightWarnLimitHighSpeed) { CLOGE("In-flight list too large for high speed configuration: %zu", mInFlightMap.size()); } } void Camera3Device::flushInflightRequests() { ATRACE_CALL(); { // First return buffers cached in mInFlightMap Mutex::Autolock l(mInFlightLock); for (size_t idx = 0; idx < mInFlightMap.size(); idx++) { const InFlightRequest &request = mInFlightMap.valueAt(idx); returnOutputBuffers(request.pendingOutputBuffers.array(), request.pendingOutputBuffers.size(), 0, /*timestampIncreasing*/true, request.outputSurfaces, request.resultExtras); } mInFlightMap.clear(); mExpectedInflightDuration = 0; } // Then return all inflight buffers not returned by HAL std::vector> inflightKeys; mInterface->getInflightBufferKeys(&inflightKeys); // Inflight buffers for HAL buffer manager std::vector inflightRequestBufferKeys; mInterface->getInflightRequestBufferKeys(&inflightRequestBufferKeys); // (streamId, frameNumber, buffer_handle_t*) tuple for all inflight buffers. // frameNumber will be -1 for buffers from HAL buffer manager std::vector> inflightBuffers; inflightBuffers.reserve(inflightKeys.size() + inflightRequestBufferKeys.size()); for (auto& pair : inflightKeys) { int32_t frameNumber = pair.first; int32_t streamId = pair.second; buffer_handle_t* buffer; status_t res = mInterface->popInflightBuffer(frameNumber, streamId, &buffer); if (res != OK) { ALOGE("%s: Frame %d: No in-flight buffer for stream %d", __FUNCTION__, frameNumber, streamId); continue; } inflightBuffers.push_back(std::make_tuple(streamId, frameNumber, buffer)); } for (auto& bufferId : inflightRequestBufferKeys) { int32_t streamId = -1; buffer_handle_t* buffer = nullptr; status_t res = mInterface->popInflightRequestBuffer(bufferId, &buffer, &streamId); if (res != OK) { ALOGE("%s: cannot find in-flight buffer %" PRIu64, __FUNCTION__, bufferId); continue; } inflightBuffers.push_back(std::make_tuple(streamId, /*frameNumber*/-1, buffer)); } int32_t inputStreamId = (mInputStream != nullptr) ? mInputStream->getId() : -1; for (auto& tuple : inflightBuffers) { status_t res = OK; int32_t streamId = std::get<0>(tuple); int32_t frameNumber = std::get<1>(tuple); buffer_handle_t* buffer = std::get<2>(tuple); camera3_stream_buffer_t streamBuffer; streamBuffer.buffer = buffer; streamBuffer.status = CAMERA3_BUFFER_STATUS_ERROR; streamBuffer.acquire_fence = -1; streamBuffer.release_fence = -1; // First check if the buffer belongs to deleted stream bool streamDeleted = false; for (auto& stream : mDeletedStreams) { if (streamId == stream->getId()) { streamDeleted = true; // Return buffer to deleted stream camera3_stream* halStream = stream->asHalStream(); streamBuffer.stream = halStream; switch (halStream->stream_type) { case CAMERA3_STREAM_OUTPUT: res = stream->returnBuffer(streamBuffer, /*timestamp*/ 0, /*timestampIncreasing*/true, std::vector (), frameNumber); if (res != OK) { ALOGE("%s: Can't return output buffer for frame %d to" " stream %d: %s (%d)", __FUNCTION__, frameNumber, streamId, strerror(-res), res); } break; case CAMERA3_STREAM_INPUT: res = stream->returnInputBuffer(streamBuffer); if (res != OK) { ALOGE("%s: Can't return input buffer for frame %d to" " stream %d: %s (%d)", __FUNCTION__, frameNumber, streamId, strerror(-res), res); } break; default: // Bi-direcitonal stream is deprecated ALOGE("%s: stream %d has unknown stream type %d", __FUNCTION__, streamId, halStream->stream_type); break; } break; } } if (streamDeleted) { continue; } // Then check against configured streams if (streamId == inputStreamId) { streamBuffer.stream = mInputStream->asHalStream(); res = mInputStream->returnInputBuffer(streamBuffer); if (res != OK) { ALOGE("%s: Can't return input buffer for frame %d to" " stream %d: %s (%d)", __FUNCTION__, frameNumber, streamId, strerror(-res), res); } } else { sp stream = mOutputStreams.get(streamId); if (stream == nullptr) { ALOGE("%s: Output stream id %d not found!", __FUNCTION__, streamId); continue; } streamBuffer.stream = stream->asHalStream(); returnOutputBuffers(&streamBuffer, /*size*/1, /*timestamp*/ 0); } } } void Camera3Device::insertResultLocked(CaptureResult *result, uint32_t frameNumber) { if (result == nullptr) return; camera_metadata_t *meta = const_cast( result->mMetadata.getAndLock()); set_camera_metadata_vendor_id(meta, mVendorTagId); result->mMetadata.unlock(meta); if (result->mMetadata.update(ANDROID_REQUEST_FRAME_COUNT, (int32_t*)&frameNumber, 1) != OK) { SET_ERR("Failed to set frame number %d in metadata", frameNumber); return; } if (result->mMetadata.update(ANDROID_REQUEST_ID, &result->mResultExtras.requestId, 1) != OK) { SET_ERR("Failed to set request ID in metadata for frame %d", frameNumber); return; } // Update vendor tag id for physical metadata for (auto& physicalMetadata : result->mPhysicalMetadatas) { camera_metadata_t *pmeta = const_cast( physicalMetadata.mPhysicalCameraMetadata.getAndLock()); set_camera_metadata_vendor_id(pmeta, mVendorTagId); physicalMetadata.mPhysicalCameraMetadata.unlock(pmeta); } // Valid result, insert into queue List::iterator queuedResult = mResultQueue.insert(mResultQueue.end(), CaptureResult(*result)); ALOGVV("%s: result requestId = %" PRId32 ", frameNumber = %" PRId64 ", burstId = %" PRId32, __FUNCTION__, queuedResult->mResultExtras.requestId, queuedResult->mResultExtras.frameNumber, queuedResult->mResultExtras.burstId); mResultSignal.signal(); } void Camera3Device::sendPartialCaptureResult(const camera_metadata_t * partialResult, const CaptureResultExtras &resultExtras, uint32_t frameNumber) { ATRACE_CALL(); Mutex::Autolock l(mOutputLock); CaptureResult captureResult; captureResult.mResultExtras = resultExtras; captureResult.mMetadata = partialResult; // Fix up result metadata for monochrome camera. status_t res = fixupMonochromeTags(mDeviceInfo, captureResult.mMetadata); if (res != OK) { SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res); return; } insertResultLocked(&captureResult, frameNumber); } void Camera3Device::sendCaptureResult(CameraMetadata &pendingMetadata, CaptureResultExtras &resultExtras, CameraMetadata &collectedPartialResult, uint32_t frameNumber, bool reprocess, bool zslStillCapture, const std::vector& physicalMetadatas) { ATRACE_CALL(); if (pendingMetadata.isEmpty()) return; Mutex::Autolock l(mOutputLock); // TODO: need to track errors for tighter bounds on expected frame number if (reprocess) { if (frameNumber < mNextReprocessResultFrameNumber) { SET_ERR("Out-of-order reprocess capture result metadata submitted! " "(got frame number %d, expecting %d)", frameNumber, mNextReprocessResultFrameNumber); return; } mNextReprocessResultFrameNumber = frameNumber + 1; } else if (zslStillCapture) { if (frameNumber < mNextZslStillResultFrameNumber) { SET_ERR("Out-of-order ZSL still capture result metadata submitted! " "(got frame number %d, expecting %d)", frameNumber, mNextZslStillResultFrameNumber); return; } mNextZslStillResultFrameNumber = frameNumber + 1; } else { if (frameNumber < mNextResultFrameNumber) { SET_ERR("Out-of-order capture result metadata submitted! " "(got frame number %d, expecting %d)", frameNumber, mNextResultFrameNumber); return; } mNextResultFrameNumber = frameNumber + 1; } CaptureResult captureResult; captureResult.mResultExtras = resultExtras; captureResult.mMetadata = pendingMetadata; captureResult.mPhysicalMetadatas = physicalMetadatas; // Append any previous partials to form a complete result if (mUsePartialResult && !collectedPartialResult.isEmpty()) { captureResult.mMetadata.append(collectedPartialResult); } captureResult.mMetadata.sort(); // Check that there's a timestamp in the result metadata camera_metadata_entry timestamp = captureResult.mMetadata.find(ANDROID_SENSOR_TIMESTAMP); if (timestamp.count == 0) { SET_ERR("No timestamp provided by HAL for frame %d!", frameNumber); return; } for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) { camera_metadata_entry timestamp = physicalMetadata.mPhysicalCameraMetadata.find(ANDROID_SENSOR_TIMESTAMP); if (timestamp.count == 0) { SET_ERR("No timestamp provided by HAL for physical camera %s frame %d!", String8(physicalMetadata.mPhysicalCameraId).c_str(), frameNumber); return; } } // Fix up some result metadata to account for HAL-level distortion correction status_t res = mDistortionMappers[mId.c_str()].correctCaptureResult(&captureResult.mMetadata); if (res != OK) { SET_ERR("Unable to correct capture result metadata for frame %d: %s (%d)", frameNumber, strerror(res), res); return; } for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) { String8 cameraId8(physicalMetadata.mPhysicalCameraId); if (mDistortionMappers.find(cameraId8.c_str()) == mDistortionMappers.end()) { continue; } res = mDistortionMappers[cameraId8.c_str()].correctCaptureResult( &physicalMetadata.mPhysicalCameraMetadata); if (res != OK) { SET_ERR("Unable to correct physical capture result metadata for frame %d: %s (%d)", frameNumber, strerror(res), res); return; } } // Fix up result metadata for monochrome camera. res = fixupMonochromeTags(mDeviceInfo, captureResult.mMetadata); if (res != OK) { SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res); return; } for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) { String8 cameraId8(physicalMetadata.mPhysicalCameraId); res = fixupMonochromeTags(mPhysicalDeviceInfoMap.at(cameraId8.c_str()), physicalMetadata.mPhysicalCameraMetadata); if (res != OK) { SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res); return; } } std::unordered_map monitoredPhysicalMetadata; for (auto& m : physicalMetadatas) { monitoredPhysicalMetadata.emplace(String8(m.mPhysicalCameraId).string(), CameraMetadata(m.mPhysicalCameraMetadata)); } mTagMonitor.monitorMetadata(TagMonitor::RESULT, frameNumber, timestamp.data.i64[0], captureResult.mMetadata, monitoredPhysicalMetadata); insertResultLocked(&captureResult, frameNumber); } /** * Camera HAL device callback methods */ void Camera3Device::processCaptureResult(const camera3_capture_result *result) { ATRACE_CALL(); status_t res; uint32_t frameNumber = result->frame_number; if (result->result == NULL && result->num_output_buffers == 0 && result->input_buffer == NULL) { SET_ERR("No result data provided by HAL for frame %d", frameNumber); return; } if (!mUsePartialResult && result->result != NULL && result->partial_result != 1) { SET_ERR("Result is malformed for frame %d: partial_result %u must be 1" " if partial result is not supported", frameNumber, result->partial_result); return; } bool isPartialResult = false; CameraMetadata collectedPartialResult; bool hasInputBufferInRequest = false; // Get shutter timestamp and resultExtras from list of in-flight requests, // where it was added by the shutter notification for this frame. If the // shutter timestamp isn't received yet, append the output buffers to the // in-flight request and they will be returned when the shutter timestamp // arrives. Update the in-flight status and remove the in-flight entry if // all result data and shutter timestamp have been received. nsecs_t shutterTimestamp = 0; { Mutex::Autolock l(mInFlightLock); ssize_t idx = mInFlightMap.indexOfKey(frameNumber); if (idx == NAME_NOT_FOUND) { SET_ERR("Unknown frame number for capture result: %d", frameNumber); return; } InFlightRequest &request = mInFlightMap.editValueAt(idx); ALOGVV("%s: got InFlightRequest requestId = %" PRId32 ", frameNumber = %" PRId64 ", burstId = %" PRId32 ", partialResultCount = %d, hasCallback = %d", __FUNCTION__, request.resultExtras.requestId, request.resultExtras.frameNumber, request.resultExtras.burstId, result->partial_result, request.hasCallback); // Always update the partial count to the latest one if it's not 0 // (buffers only). When framework aggregates adjacent partial results // into one, the latest partial count will be used. if (result->partial_result != 0) request.resultExtras.partialResultCount = result->partial_result; // Check if this result carries only partial metadata if (mUsePartialResult && result->result != NULL) { if (result->partial_result > mNumPartialResults || result->partial_result < 1) { SET_ERR("Result is malformed for frame %d: partial_result %u must be in" " the range of [1, %d] when metadata is included in the result", frameNumber, result->partial_result, mNumPartialResults); return; } isPartialResult = (result->partial_result < mNumPartialResults); if (isPartialResult && result->num_physcam_metadata) { SET_ERR("Result is malformed for frame %d: partial_result not allowed for" " physical camera result", frameNumber); return; } if (isPartialResult) { request.collectedPartialResult.append(result->result); } if (isPartialResult && request.hasCallback) { // Send partial capture result sendPartialCaptureResult(result->result, request.resultExtras, frameNumber); } } shutterTimestamp = request.shutterTimestamp; hasInputBufferInRequest = request.hasInputBuffer; // Did we get the (final) result metadata for this capture? if (result->result != NULL && !isPartialResult) { if (request.physicalCameraIds.size() != result->num_physcam_metadata) { SET_ERR("Requested physical Camera Ids %d not equal to number of metadata %d", request.physicalCameraIds.size(), result->num_physcam_metadata); return; } if (request.haveResultMetadata) { SET_ERR("Called multiple times with metadata for frame %d", frameNumber); return; } for (uint32_t i = 0; i < result->num_physcam_metadata; i++) { String8 physicalId(result->physcam_ids[i]); std::set::iterator cameraIdIter = request.physicalCameraIds.find(physicalId); if (cameraIdIter != request.physicalCameraIds.end()) { request.physicalCameraIds.erase(cameraIdIter); } else { SET_ERR("Total result for frame %d has already returned for camera %s", frameNumber, physicalId.c_str()); return; } } if (mUsePartialResult && !request.collectedPartialResult.isEmpty()) { collectedPartialResult.acquire( request.collectedPartialResult); } request.haveResultMetadata = true; } uint32_t numBuffersReturned = result->num_output_buffers; if (result->input_buffer != NULL) { if (hasInputBufferInRequest) { numBuffersReturned += 1; } else { ALOGW("%s: Input buffer should be NULL if there is no input" " buffer sent in the request", __FUNCTION__); } } request.numBuffersLeft -= numBuffersReturned; if (request.numBuffersLeft < 0) { SET_ERR("Too many buffers returned for frame %d", frameNumber); return; } camera_metadata_ro_entry_t entry; res = find_camera_metadata_ro_entry(result->result, ANDROID_SENSOR_TIMESTAMP, &entry); if (res == OK && entry.count == 1) { request.sensorTimestamp = entry.data.i64[0]; } // If shutter event isn't received yet, append the output buffers to // the in-flight request. Otherwise, return the output buffers to // streams. if (shutterTimestamp == 0) { request.pendingOutputBuffers.appendArray(result->output_buffers, result->num_output_buffers); } else { bool timestampIncreasing = !(request.zslCapture || request.hasInputBuffer); returnOutputBuffers(result->output_buffers, result->num_output_buffers, shutterTimestamp, timestampIncreasing, request.outputSurfaces, request.resultExtras); } if (result->result != NULL && !isPartialResult) { for (uint32_t i = 0; i < result->num_physcam_metadata; i++) { CameraMetadata physicalMetadata; physicalMetadata.append(result->physcam_metadata[i]); request.physicalMetadatas.push_back({String16(result->physcam_ids[i]), physicalMetadata}); } if (shutterTimestamp == 0) { request.pendingMetadata = result->result; request.collectedPartialResult = collectedPartialResult; } else if (request.hasCallback) { CameraMetadata metadata; metadata = result->result; sendCaptureResult(metadata, request.resultExtras, collectedPartialResult, frameNumber, hasInputBufferInRequest, request.zslCapture && request.stillCapture, request.physicalMetadatas); } } removeInFlightRequestIfReadyLocked(idx); } // scope for mInFlightLock if (result->input_buffer != NULL) { if (hasInputBufferInRequest) { Camera3Stream *stream = Camera3Stream::cast(result->input_buffer->stream); res = stream->returnInputBuffer(*(result->input_buffer)); // Note: stream may be deallocated at this point, if this buffer was the // last reference to it. if (res != OK) { ALOGE("%s: RequestThread: Can't return input buffer for frame %d to" " its stream:%s (%d)", __FUNCTION__, frameNumber, strerror(-res), res); } } else { ALOGW("%s: Input buffer should be NULL if there is no input" " buffer sent in the request, skipping input buffer return.", __FUNCTION__); } } } void Camera3Device::notify(const camera3_notify_msg *msg) { ATRACE_CALL(); sp listener; { Mutex::Autolock l(mOutputLock); listener = mListener.promote(); } if (msg == NULL) { SET_ERR("HAL sent NULL notify message!"); return; } switch (msg->type) { case CAMERA3_MSG_ERROR: { notifyError(msg->message.error, listener); break; } case CAMERA3_MSG_SHUTTER: { notifyShutter(msg->message.shutter, listener); break; } default: SET_ERR("Unknown notify message from HAL: %d", msg->type); } } void Camera3Device::notifyError(const camera3_error_msg_t &msg, sp listener) { ATRACE_CALL(); // Map camera HAL error codes to ICameraDeviceCallback error codes // Index into this with the HAL error code static const int32_t halErrorMap[CAMERA3_MSG_NUM_ERRORS] = { // 0 = Unused error code hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR, // 1 = CAMERA3_MSG_ERROR_DEVICE hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE, // 2 = CAMERA3_MSG_ERROR_REQUEST hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST, // 3 = CAMERA3_MSG_ERROR_RESULT hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT, // 4 = CAMERA3_MSG_ERROR_BUFFER hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER }; int32_t errorCode = ((msg.error_code >= 0) && (msg.error_code < CAMERA3_MSG_NUM_ERRORS)) ? halErrorMap[msg.error_code] : hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR; int streamId = 0; String16 physicalCameraId; if (msg.error_stream != NULL) { Camera3Stream *stream = Camera3Stream::cast(msg.error_stream); streamId = stream->getId(); physicalCameraId = String16(stream->physicalCameraId()); } ALOGV("Camera %s: %s: HAL error, frame %d, stream %d: %d", mId.string(), __FUNCTION__, msg.frame_number, streamId, msg.error_code); CaptureResultExtras resultExtras; switch (errorCode) { case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE: // SET_ERR calls notifyError SET_ERR("Camera HAL reported serious device error"); break; case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST: case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT: case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER: { Mutex::Autolock l(mInFlightLock); ssize_t idx = mInFlightMap.indexOfKey(msg.frame_number); if (idx >= 0) { InFlightRequest &r = mInFlightMap.editValueAt(idx); r.requestStatus = msg.error_code; resultExtras = r.resultExtras; bool logicalDeviceResultError = false; if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT == errorCode) { if (physicalCameraId.size() > 0) { String8 cameraId(physicalCameraId); if (r.physicalCameraIds.find(cameraId) == r.physicalCameraIds.end()) { ALOGE("%s: Reported result failure for physical camera device: %s " " which is not part of the respective request!", __FUNCTION__, cameraId.string()); break; } resultExtras.errorPhysicalCameraId = physicalCameraId; } else { logicalDeviceResultError = true; } } if (logicalDeviceResultError || hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST == errorCode) { r.skipResultMetadata = true; } if (logicalDeviceResultError) { // In case of missing result check whether the buffers // returned. If they returned, then remove inflight // request. // TODO: should we call this for ERROR_CAMERA_REQUEST as well? // otherwise we are depending on HAL to send the buffers back after // calling notifyError. Not sure if that's in the spec. removeInFlightRequestIfReadyLocked(idx); } } else { resultExtras.frameNumber = msg.frame_number; ALOGE("Camera %s: %s: cannot find in-flight request on " "frame %" PRId64 " error", mId.string(), __FUNCTION__, resultExtras.frameNumber); } } resultExtras.errorStreamId = streamId; if (listener != NULL) { listener->notifyError(errorCode, resultExtras); } else { ALOGE("Camera %s: %s: no listener available", mId.string(), __FUNCTION__); } break; default: // SET_ERR calls notifyError SET_ERR("Unknown error message from HAL: %d", msg.error_code); break; } } void Camera3Device::notifyShutter(const camera3_shutter_msg_t &msg, sp listener) { ATRACE_CALL(); ssize_t idx; // Set timestamp for the request in the in-flight tracking // and get the request ID to send upstream { Mutex::Autolock l(mInFlightLock); idx = mInFlightMap.indexOfKey(msg.frame_number); if (idx >= 0) { InFlightRequest &r = mInFlightMap.editValueAt(idx); // Verify ordering of shutter notifications { Mutex::Autolock l(mOutputLock); // TODO: need to track errors for tighter bounds on expected frame number. if (r.hasInputBuffer) { if (msg.frame_number < mNextReprocessShutterFrameNumber) { SET_ERR("Reprocess shutter notification out-of-order. Expected " "notification for frame %d, got frame %d", mNextReprocessShutterFrameNumber, msg.frame_number); return; } mNextReprocessShutterFrameNumber = msg.frame_number + 1; } else if (r.zslCapture && r.stillCapture) { if (msg.frame_number < mNextZslStillShutterFrameNumber) { SET_ERR("ZSL still capture shutter notification out-of-order. Expected " "notification for frame %d, got frame %d", mNextZslStillShutterFrameNumber, msg.frame_number); return; } mNextZslStillShutterFrameNumber = msg.frame_number + 1; } else { if (msg.frame_number < mNextShutterFrameNumber) { SET_ERR("Shutter notification out-of-order. Expected " "notification for frame %d, got frame %d", mNextShutterFrameNumber, msg.frame_number); return; } mNextShutterFrameNumber = msg.frame_number + 1; } } r.shutterTimestamp = msg.timestamp; if (r.hasCallback) { ALOGVV("Camera %s: %s: Shutter fired for frame %d (id %d) at %" PRId64, mId.string(), __FUNCTION__, msg.frame_number, r.resultExtras.requestId, msg.timestamp); // Call listener, if any if (listener != NULL) { listener->notifyShutter(r.resultExtras, msg.timestamp); } // send pending result and buffers sendCaptureResult(r.pendingMetadata, r.resultExtras, r.collectedPartialResult, msg.frame_number, r.hasInputBuffer, r.zslCapture && r.stillCapture, r.physicalMetadatas); } bool timestampIncreasing = !(r.zslCapture || r.hasInputBuffer); returnOutputBuffers(r.pendingOutputBuffers.array(), r.pendingOutputBuffers.size(), r.shutterTimestamp, timestampIncreasing, r.outputSurfaces, r.resultExtras); r.pendingOutputBuffers.clear(); removeInFlightRequestIfReadyLocked(idx); } } if (idx < 0) { SET_ERR("Shutter notification for non-existent frame number %d", msg.frame_number); } } CameraMetadata Camera3Device::getLatestRequestLocked() { ALOGV("%s", __FUNCTION__); CameraMetadata retVal; if (mRequestThread != NULL) { retVal = mRequestThread->getLatestRequest(); } return retVal; } void Camera3Device::monitorMetadata(TagMonitor::eventSource source, int64_t frameNumber, nsecs_t timestamp, const CameraMetadata& metadata, const std::unordered_map& physicalMetadata) { mTagMonitor.monitorMetadata(source, frameNumber, timestamp, metadata, physicalMetadata); } /** * HalInterface inner class methods */ Camera3Device::HalInterface::HalInterface( sp &session, std::shared_ptr queue, bool useHalBufManager) : mHidlSession(session), mRequestMetadataQueue(queue), mUseHalBufManager(useHalBufManager), mIsReconfigurationQuerySupported(true) { // Check with hardware service manager if we can downcast these interfaces // Somewhat expensive, so cache the results at startup auto castResult_3_5 = device::V3_5::ICameraDeviceSession::castFrom(mHidlSession); if (castResult_3_5.isOk()) { mHidlSession_3_5 = castResult_3_5; } auto castResult_3_4 = device::V3_4::ICameraDeviceSession::castFrom(mHidlSession); if (castResult_3_4.isOk()) { mHidlSession_3_4 = castResult_3_4; } auto castResult_3_3 = device::V3_3::ICameraDeviceSession::castFrom(mHidlSession); if (castResult_3_3.isOk()) { mHidlSession_3_3 = castResult_3_3; } } Camera3Device::HalInterface::HalInterface() : mUseHalBufManager(false) {} Camera3Device::HalInterface::HalInterface(const HalInterface& other) : mHidlSession(other.mHidlSession), mRequestMetadataQueue(other.mRequestMetadataQueue), mUseHalBufManager(other.mUseHalBufManager) {} bool Camera3Device::HalInterface::valid() { return (mHidlSession != nullptr); } void Camera3Device::HalInterface::clear() { mHidlSession_3_5.clear(); mHidlSession_3_4.clear(); mHidlSession_3_3.clear(); mHidlSession.clear(); } status_t Camera3Device::HalInterface::constructDefaultRequestSettings( camera3_request_template_t templateId, /*out*/ camera_metadata_t **requestTemplate) { ATRACE_NAME("CameraHal::constructDefaultRequestSettings"); if (!valid()) return INVALID_OPERATION; status_t res = OK; common::V1_0::Status status; auto requestCallback = [&status, &requestTemplate] (common::V1_0::Status s, const device::V3_2::CameraMetadata& request) { status = s; if (status == common::V1_0::Status::OK) { const camera_metadata *r = reinterpret_cast(request.data()); size_t expectedSize = request.size(); int ret = validate_camera_metadata_structure(r, &expectedSize); if (ret == OK || ret == CAMERA_METADATA_VALIDATION_SHIFTED) { *requestTemplate = clone_camera_metadata(r); if (*requestTemplate == nullptr) { ALOGE("%s: Unable to clone camera metadata received from HAL", __FUNCTION__); status = common::V1_0::Status::INTERNAL_ERROR; } } else { ALOGE("%s: Malformed camera metadata received from HAL", __FUNCTION__); status = common::V1_0::Status::INTERNAL_ERROR; } } }; hardware::Return err; RequestTemplate id; switch (templateId) { case CAMERA3_TEMPLATE_PREVIEW: id = RequestTemplate::PREVIEW; break; case CAMERA3_TEMPLATE_STILL_CAPTURE: id = RequestTemplate::STILL_CAPTURE; break; case CAMERA3_TEMPLATE_VIDEO_RECORD: id = RequestTemplate::VIDEO_RECORD; break; case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT: id = RequestTemplate::VIDEO_SNAPSHOT; break; case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG: id = RequestTemplate::ZERO_SHUTTER_LAG; break; case CAMERA3_TEMPLATE_MANUAL: id = RequestTemplate::MANUAL; break; default: // Unknown template ID, or this HAL is too old to support it return BAD_VALUE; } err = mHidlSession->constructDefaultRequestSettings(id, requestCallback); if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); res = DEAD_OBJECT; } else { res = CameraProviderManager::mapToStatusT(status); } return res; } bool Camera3Device::HalInterface::isReconfigurationRequired(CameraMetadata& oldSessionParams, CameraMetadata& newSessionParams) { // We do reconfiguration by default; bool ret = true; if ((mHidlSession_3_5 != nullptr) && mIsReconfigurationQuerySupported) { android::hardware::hidl_vec oldParams, newParams; camera_metadata_t* oldSessioMeta = const_cast( oldSessionParams.getAndLock()); camera_metadata_t* newSessioMeta = const_cast( newSessionParams.getAndLock()); oldParams.setToExternal(reinterpret_cast(oldSessioMeta), get_camera_metadata_size(oldSessioMeta)); newParams.setToExternal(reinterpret_cast(newSessioMeta), get_camera_metadata_size(newSessioMeta)); hardware::camera::common::V1_0::Status callStatus; bool required; auto hidlCb = [&callStatus, &required] (hardware::camera::common::V1_0::Status s, bool requiredFlag) { callStatus = s; required = requiredFlag; }; auto err = mHidlSession_3_5->isReconfigurationRequired(oldParams, newParams, hidlCb); oldSessionParams.unlock(oldSessioMeta); newSessionParams.unlock(newSessioMeta); if (err.isOk()) { switch (callStatus) { case hardware::camera::common::V1_0::Status::OK: ret = required; break; case hardware::camera::common::V1_0::Status::METHOD_NOT_SUPPORTED: mIsReconfigurationQuerySupported = false; ret = true; break; default: ALOGV("%s: Reconfiguration query failed: %d", __FUNCTION__, callStatus); ret = true; } } else { ALOGE("%s: Unexpected binder error: %s", __FUNCTION__, err.description().c_str()); ret = true; } } return ret; } status_t Camera3Device::HalInterface::configureStreams(const camera_metadata_t *sessionParams, camera3_stream_configuration *config, const std::vector& bufferSizes) { ATRACE_NAME("CameraHal::configureStreams"); if (!valid()) return INVALID_OPERATION; status_t res = OK; // Convert stream config to HIDL std::set activeStreams; device::V3_2::StreamConfiguration requestedConfiguration3_2; device::V3_4::StreamConfiguration requestedConfiguration3_4; requestedConfiguration3_2.streams.resize(config->num_streams); requestedConfiguration3_4.streams.resize(config->num_streams); for (size_t i = 0; i < config->num_streams; i++) { device::V3_2::Stream &dst3_2 = requestedConfiguration3_2.streams[i]; device::V3_4::Stream &dst3_4 = requestedConfiguration3_4.streams[i]; camera3_stream_t *src = config->streams[i]; Camera3Stream* cam3stream = Camera3Stream::cast(src); cam3stream->setBufferFreedListener(this); int streamId = cam3stream->getId(); StreamType streamType; switch (src->stream_type) { case CAMERA3_STREAM_OUTPUT: streamType = StreamType::OUTPUT; break; case CAMERA3_STREAM_INPUT: streamType = StreamType::INPUT; break; default: ALOGE("%s: Stream %d: Unsupported stream type %d", __FUNCTION__, streamId, config->streams[i]->stream_type); return BAD_VALUE; } dst3_2.id = streamId; dst3_2.streamType = streamType; dst3_2.width = src->width; dst3_2.height = src->height; dst3_2.usage = mapToConsumerUsage(cam3stream->getUsage()); dst3_2.rotation = mapToStreamRotation((camera3_stream_rotation_t) src->rotation); // For HidlSession version 3.5 or newer, the format and dataSpace sent // to HAL are original, not the overriden ones. if (mHidlSession_3_5 != nullptr) { dst3_2.format = mapToPixelFormat(cam3stream->isFormatOverridden() ? cam3stream->getOriginalFormat() : src->format); dst3_2.dataSpace = mapToHidlDataspace(cam3stream->isDataSpaceOverridden() ? cam3stream->getOriginalDataSpace() : src->data_space); } else { dst3_2.format = mapToPixelFormat(src->format); dst3_2.dataSpace = mapToHidlDataspace(src->data_space); } dst3_4.v3_2 = dst3_2; dst3_4.bufferSize = bufferSizes[i]; if (src->physical_camera_id != nullptr) { dst3_4.physicalCameraId = src->physical_camera_id; } activeStreams.insert(streamId); // Create Buffer ID map if necessary if (mBufferIdMaps.count(streamId) == 0) { mBufferIdMaps.emplace(streamId, BufferIdMap{}); } } // remove BufferIdMap for deleted streams for(auto it = mBufferIdMaps.begin(); it != mBufferIdMaps.end();) { int streamId = it->first; bool active = activeStreams.count(streamId) > 0; if (!active) { it = mBufferIdMaps.erase(it); } else { ++it; } } StreamConfigurationMode operationMode; res = mapToStreamConfigurationMode( (camera3_stream_configuration_mode_t) config->operation_mode, /*out*/ &operationMode); if (res != OK) { return res; } requestedConfiguration3_2.operationMode = operationMode; requestedConfiguration3_4.operationMode = operationMode; requestedConfiguration3_4.sessionParams.setToExternal( reinterpret_cast(const_cast(sessionParams)), get_camera_metadata_size(sessionParams)); // Invoke configureStreams device::V3_3::HalStreamConfiguration finalConfiguration; device::V3_4::HalStreamConfiguration finalConfiguration3_4; common::V1_0::Status status; auto configStream34Cb = [&status, &finalConfiguration3_4] (common::V1_0::Status s, const device::V3_4::HalStreamConfiguration& halConfiguration) { finalConfiguration3_4 = halConfiguration; status = s; }; auto postprocConfigStream34 = [&finalConfiguration, &finalConfiguration3_4] (hardware::Return& err) -> status_t { if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); return DEAD_OBJECT; } finalConfiguration.streams.resize(finalConfiguration3_4.streams.size()); for (size_t i = 0; i < finalConfiguration3_4.streams.size(); i++) { finalConfiguration.streams[i] = finalConfiguration3_4.streams[i].v3_3; } return OK; }; // See which version of HAL we have if (mHidlSession_3_5 != nullptr) { ALOGV("%s: v3.5 device found", __FUNCTION__); device::V3_5::StreamConfiguration requestedConfiguration3_5; requestedConfiguration3_5.v3_4 = requestedConfiguration3_4; requestedConfiguration3_5.streamConfigCounter = mNextStreamConfigCounter++; auto err = mHidlSession_3_5->configureStreams_3_5( requestedConfiguration3_5, configStream34Cb); res = postprocConfigStream34(err); if (res != OK) { return res; } } else if (mHidlSession_3_4 != nullptr) { // We do; use v3.4 for the call ALOGV("%s: v3.4 device found", __FUNCTION__); auto err = mHidlSession_3_4->configureStreams_3_4( requestedConfiguration3_4, configStream34Cb); res = postprocConfigStream34(err); if (res != OK) { return res; } } else if (mHidlSession_3_3 != nullptr) { // We do; use v3.3 for the call ALOGV("%s: v3.3 device found", __FUNCTION__); auto err = mHidlSession_3_3->configureStreams_3_3(requestedConfiguration3_2, [&status, &finalConfiguration] (common::V1_0::Status s, const device::V3_3::HalStreamConfiguration& halConfiguration) { finalConfiguration = halConfiguration; status = s; }); if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); return DEAD_OBJECT; } } else { // We don't; use v3.2 call and construct a v3.3 HalStreamConfiguration ALOGV("%s: v3.2 device found", __FUNCTION__); HalStreamConfiguration finalConfiguration_3_2; auto err = mHidlSession->configureStreams(requestedConfiguration3_2, [&status, &finalConfiguration_3_2] (common::V1_0::Status s, const HalStreamConfiguration& halConfiguration) { finalConfiguration_3_2 = halConfiguration; status = s; }); if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); return DEAD_OBJECT; } finalConfiguration.streams.resize(finalConfiguration_3_2.streams.size()); for (size_t i = 0; i < finalConfiguration_3_2.streams.size(); i++) { finalConfiguration.streams[i].v3_2 = finalConfiguration_3_2.streams[i]; finalConfiguration.streams[i].overrideDataSpace = requestedConfiguration3_2.streams[i].dataSpace; } } if (status != common::V1_0::Status::OK ) { return CameraProviderManager::mapToStatusT(status); } // And convert output stream configuration from HIDL for (size_t i = 0; i < config->num_streams; i++) { camera3_stream_t *dst = config->streams[i]; int streamId = Camera3Stream::cast(dst)->getId(); // Start scan at i, with the assumption that the stream order matches size_t realIdx = i; bool found = false; size_t halStreamCount = finalConfiguration.streams.size(); for (size_t idx = 0; idx < halStreamCount; idx++) { if (finalConfiguration.streams[realIdx].v3_2.id == streamId) { found = true; break; } realIdx = (realIdx >= halStreamCount - 1) ? 0 : realIdx + 1; } if (!found) { ALOGE("%s: Stream %d not found in stream configuration response from HAL", __FUNCTION__, streamId); return INVALID_OPERATION; } device::V3_3::HalStream &src = finalConfiguration.streams[realIdx]; Camera3Stream* dstStream = Camera3Stream::cast(dst); int overrideFormat = mapToFrameworkFormat(src.v3_2.overrideFormat); android_dataspace overrideDataSpace = mapToFrameworkDataspace(src.overrideDataSpace); if (dstStream->getOriginalFormat() != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) { dstStream->setFormatOverride(false); dstStream->setDataSpaceOverride(false); if (dst->format != overrideFormat) { ALOGE("%s: Stream %d: Format override not allowed for format 0x%x", __FUNCTION__, streamId, dst->format); } if (dst->data_space != overrideDataSpace) { ALOGE("%s: Stream %d: DataSpace override not allowed for format 0x%x", __FUNCTION__, streamId, dst->format); } } else { bool needFormatOverride = requestedConfiguration3_2.streams[i].format != src.v3_2.overrideFormat; bool needDataspaceOverride = requestedConfiguration3_2.streams[i].dataSpace != src.overrideDataSpace; // Override allowed with IMPLEMENTATION_DEFINED dstStream->setFormatOverride(needFormatOverride); dstStream->setDataSpaceOverride(needDataspaceOverride); dst->format = overrideFormat; dst->data_space = overrideDataSpace; } if (dst->stream_type == CAMERA3_STREAM_INPUT) { if (src.v3_2.producerUsage != 0) { ALOGE("%s: Stream %d: INPUT streams must have 0 for producer usage", __FUNCTION__, streamId); return INVALID_OPERATION; } dstStream->setUsage( mapConsumerToFrameworkUsage(src.v3_2.consumerUsage)); } else { // OUTPUT if (src.v3_2.consumerUsage != 0) { ALOGE("%s: Stream %d: OUTPUT streams must have 0 for consumer usage", __FUNCTION__, streamId); return INVALID_OPERATION; } dstStream->setUsage( mapProducerToFrameworkUsage(src.v3_2.producerUsage)); } dst->max_buffers = src.v3_2.maxBuffers; } return res; } status_t Camera3Device::HalInterface::wrapAsHidlRequest(camera3_capture_request_t* request, /*out*/device::V3_2::CaptureRequest* captureRequest, /*out*/std::vector* handlesCreated, /*out*/std::vector>* inflightBuffers) { ATRACE_CALL(); if (captureRequest == nullptr || handlesCreated == nullptr || inflightBuffers == nullptr) { ALOGE("%s: captureRequest (%p), handlesCreated (%p), and inflightBuffers(%p) " "must not be null", __FUNCTION__, captureRequest, handlesCreated, inflightBuffers); return BAD_VALUE; } captureRequest->frameNumber = request->frame_number; captureRequest->fmqSettingsSize = 0; { std::lock_guard lock(mInflightLock); if (request->input_buffer != nullptr) { int32_t streamId = Camera3Stream::cast(request->input_buffer->stream)->getId(); buffer_handle_t buf = *(request->input_buffer->buffer); auto pair = getBufferId(buf, streamId); bool isNewBuffer = pair.first; uint64_t bufferId = pair.second; captureRequest->inputBuffer.streamId = streamId; captureRequest->inputBuffer.bufferId = bufferId; captureRequest->inputBuffer.buffer = (isNewBuffer) ? buf : nullptr; captureRequest->inputBuffer.status = BufferStatus::OK; native_handle_t *acquireFence = nullptr; if (request->input_buffer->acquire_fence != -1) { acquireFence = native_handle_create(1,0); acquireFence->data[0] = request->input_buffer->acquire_fence; handlesCreated->push_back(acquireFence); } captureRequest->inputBuffer.acquireFence = acquireFence; captureRequest->inputBuffer.releaseFence = nullptr; pushInflightBufferLocked(captureRequest->frameNumber, streamId, request->input_buffer->buffer); inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId)); } else { captureRequest->inputBuffer.streamId = -1; captureRequest->inputBuffer.bufferId = BUFFER_ID_NO_BUFFER; } captureRequest->outputBuffers.resize(request->num_output_buffers); for (size_t i = 0; i < request->num_output_buffers; i++) { const camera3_stream_buffer_t *src = request->output_buffers + i; StreamBuffer &dst = captureRequest->outputBuffers[i]; int32_t streamId = Camera3Stream::cast(src->stream)->getId(); if (src->buffer != nullptr) { buffer_handle_t buf = *(src->buffer); auto pair = getBufferId(buf, streamId); bool isNewBuffer = pair.first; dst.bufferId = pair.second; dst.buffer = isNewBuffer ? buf : nullptr; native_handle_t *acquireFence = nullptr; if (src->acquire_fence != -1) { acquireFence = native_handle_create(1,0); acquireFence->data[0] = src->acquire_fence; handlesCreated->push_back(acquireFence); } dst.acquireFence = acquireFence; } else if (mUseHalBufManager) { // HAL buffer management path dst.bufferId = BUFFER_ID_NO_BUFFER; dst.buffer = nullptr; dst.acquireFence = nullptr; } else { ALOGE("%s: cannot send a null buffer in capture request!", __FUNCTION__); return BAD_VALUE; } dst.streamId = streamId; dst.status = BufferStatus::OK; dst.releaseFence = nullptr; // Output buffers are empty when using HAL buffer manager if (!mUseHalBufManager) { pushInflightBufferLocked(captureRequest->frameNumber, streamId, src->buffer); inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId)); } } } return OK; } void Camera3Device::HalInterface::cleanupNativeHandles( std::vector *handles, bool closeFd) { if (handles == nullptr) { return; } if (closeFd) { for (auto& handle : *handles) { native_handle_close(handle); } } for (auto& handle : *handles) { native_handle_delete(handle); } handles->clear(); return; } status_t Camera3Device::HalInterface::processBatchCaptureRequests( std::vector& requests,/*out*/uint32_t* numRequestProcessed) { ATRACE_NAME("CameraHal::processBatchCaptureRequests"); if (!valid()) return INVALID_OPERATION; sp hidlSession_3_4; auto castResult_3_4 = device::V3_4::ICameraDeviceSession::castFrom(mHidlSession); if (castResult_3_4.isOk()) { hidlSession_3_4 = castResult_3_4; } hardware::hidl_vec captureRequests; hardware::hidl_vec captureRequests_3_4; size_t batchSize = requests.size(); if (hidlSession_3_4 != nullptr) { captureRequests_3_4.resize(batchSize); } else { captureRequests.resize(batchSize); } std::vector handlesCreated; std::vector> inflightBuffers; status_t res = OK; for (size_t i = 0; i < batchSize; i++) { if (hidlSession_3_4 != nullptr) { res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests_3_4[i].v3_2, /*out*/&handlesCreated, /*out*/&inflightBuffers); } else { res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests[i], /*out*/&handlesCreated, /*out*/&inflightBuffers); } if (res != OK) { popInflightBuffers(inflightBuffers); cleanupNativeHandles(&handlesCreated); return res; } } std::vector cachesToRemove; { std::lock_guard lock(mBufferIdMapLock); for (auto& pair : mFreedBuffers) { // The stream might have been removed since onBufferFreed if (mBufferIdMaps.find(pair.first) != mBufferIdMaps.end()) { cachesToRemove.push_back({pair.first, pair.second}); } } mFreedBuffers.clear(); } common::V1_0::Status status = common::V1_0::Status::INTERNAL_ERROR; *numRequestProcessed = 0; // Write metadata to FMQ. for (size_t i = 0; i < batchSize; i++) { camera3_capture_request_t* request = requests[i]; device::V3_2::CaptureRequest* captureRequest; if (hidlSession_3_4 != nullptr) { captureRequest = &captureRequests_3_4[i].v3_2; } else { captureRequest = &captureRequests[i]; } if (request->settings != nullptr) { size_t settingsSize = get_camera_metadata_size(request->settings); if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write( reinterpret_cast(request->settings), settingsSize)) { captureRequest->settings.resize(0); captureRequest->fmqSettingsSize = settingsSize; } else { if (mRequestMetadataQueue != nullptr) { ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__); } captureRequest->settings.setToExternal( reinterpret_cast(const_cast(request->settings)), get_camera_metadata_size(request->settings)); captureRequest->fmqSettingsSize = 0u; } } else { // A null request settings maps to a size-0 CameraMetadata captureRequest->settings.resize(0); captureRequest->fmqSettingsSize = 0u; } if (hidlSession_3_4 != nullptr) { captureRequests_3_4[i].physicalCameraSettings.resize(request->num_physcam_settings); for (size_t j = 0; j < request->num_physcam_settings; j++) { if (request->physcam_settings != nullptr) { size_t settingsSize = get_camera_metadata_size(request->physcam_settings[j]); if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write( reinterpret_cast(request->physcam_settings[j]), settingsSize)) { captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0); captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = settingsSize; } else { if (mRequestMetadataQueue != nullptr) { ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__); } captureRequests_3_4[i].physicalCameraSettings[j].settings.setToExternal( reinterpret_cast(const_cast( request->physcam_settings[j])), get_camera_metadata_size(request->physcam_settings[j])); captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u; } } else { captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u; captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0); } captureRequests_3_4[i].physicalCameraSettings[j].physicalCameraId = request->physcam_id[j]; } } } hardware::details::return_status err; auto resultCallback = [&status, &numRequestProcessed] (auto s, uint32_t n) { status = s; *numRequestProcessed = n; }; if (hidlSession_3_4 != nullptr) { err = hidlSession_3_4->processCaptureRequest_3_4(captureRequests_3_4, cachesToRemove, resultCallback); } else { err = mHidlSession->processCaptureRequest(captureRequests, cachesToRemove, resultCallback); } if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); status = common::V1_0::Status::CAMERA_DISCONNECTED; } if (status == common::V1_0::Status::OK && *numRequestProcessed != batchSize) { ALOGE("%s: processCaptureRequest returns OK but processed %d/%zu requests", __FUNCTION__, *numRequestProcessed, batchSize); status = common::V1_0::Status::INTERNAL_ERROR; } res = CameraProviderManager::mapToStatusT(status); if (res == OK) { if (mHidlSession->isRemote()) { // Only close acquire fence FDs when the HIDL transaction succeeds (so the FDs have been // sent to camera HAL processes) cleanupNativeHandles(&handlesCreated, /*closeFd*/true); } else { // In passthrough mode the FDs are now owned by HAL cleanupNativeHandles(&handlesCreated); } } else { popInflightBuffers(inflightBuffers); cleanupNativeHandles(&handlesCreated); } return res; } status_t Camera3Device::HalInterface::flush() { ATRACE_NAME("CameraHal::flush"); if (!valid()) return INVALID_OPERATION; status_t res = OK; auto err = mHidlSession->flush(); if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); res = DEAD_OBJECT; } else { res = CameraProviderManager::mapToStatusT(err); } return res; } status_t Camera3Device::HalInterface::dump(int /*fd*/) { ATRACE_NAME("CameraHal::dump"); if (!valid()) return INVALID_OPERATION; // Handled by CameraProviderManager::dump return OK; } status_t Camera3Device::HalInterface::close() { ATRACE_NAME("CameraHal::close()"); if (!valid()) return INVALID_OPERATION; status_t res = OK; auto err = mHidlSession->close(); // Interface will be dead shortly anyway, so don't log errors if (!err.isOk()) { res = DEAD_OBJECT; } return res; } void Camera3Device::HalInterface::signalPipelineDrain(const std::vector& streamIds) { ATRACE_NAME("CameraHal::signalPipelineDrain"); if (!valid() || mHidlSession_3_5 == nullptr) { ALOGE("%s called on invalid camera!", __FUNCTION__); return; } auto err = mHidlSession_3_5->signalStreamFlush(streamIds, mNextStreamConfigCounter - 1); if (!err.isOk()) { ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str()); return; } } void Camera3Device::HalInterface::getInflightBufferKeys( std::vector>* out) { std::lock_guard lock(mInflightLock); out->clear(); out->reserve(mInflightBufferMap.size()); for (auto& pair : mInflightBufferMap) { uint64_t key = pair.first; int32_t streamId = key & 0xFFFFFFFF; int32_t frameNumber = (key >> 32) & 0xFFFFFFFF; out->push_back(std::make_pair(frameNumber, streamId)); } return; } void Camera3Device::HalInterface::getInflightRequestBufferKeys( std::vector* out) { std::lock_guard lock(mRequestedBuffersLock); out->clear(); out->reserve(mRequestedBuffers.size()); for (auto& pair : mRequestedBuffers) { out->push_back(pair.first); } return; } status_t Camera3Device::HalInterface::pushInflightBufferLocked( int32_t frameNumber, int32_t streamId, buffer_handle_t *buffer) { uint64_t key = static_cast(frameNumber) << 32 | static_cast(streamId); mInflightBufferMap[key] = buffer; return OK; } status_t Camera3Device::HalInterface::popInflightBuffer( int32_t frameNumber, int32_t streamId, /*out*/ buffer_handle_t **buffer) { std::lock_guard lock(mInflightLock); uint64_t key = static_cast(frameNumber) << 32 | static_cast(streamId); auto it = mInflightBufferMap.find(key); if (it == mInflightBufferMap.end()) return NAME_NOT_FOUND; if (buffer != nullptr) { *buffer = it->second; } mInflightBufferMap.erase(it); return OK; } void Camera3Device::HalInterface::popInflightBuffers( const std::vector>& buffers) { for (const auto& pair : buffers) { int32_t frameNumber = pair.first; int32_t streamId = pair.second; popInflightBuffer(frameNumber, streamId, nullptr); } } status_t Camera3Device::HalInterface::pushInflightRequestBuffer( uint64_t bufferId, buffer_handle_t* buf, int32_t streamId) { std::lock_guard lock(mRequestedBuffersLock); auto pair = mRequestedBuffers.insert({bufferId, {streamId, buf}}); if (!pair.second) { ALOGE("%s: bufId %" PRIu64 " is already inflight!", __FUNCTION__, bufferId); return BAD_VALUE; } return OK; } // Find and pop a buffer_handle_t based on bufferId status_t Camera3Device::HalInterface::popInflightRequestBuffer( uint64_t bufferId, /*out*/ buffer_handle_t** buffer, /*optional out*/ int32_t* streamId) { if (buffer == nullptr) { ALOGE("%s: buffer (%p) must not be null", __FUNCTION__, buffer); return BAD_VALUE; } std::lock_guard lock(mRequestedBuffersLock); auto it = mRequestedBuffers.find(bufferId); if (it == mRequestedBuffers.end()) { ALOGE("%s: bufId %" PRIu64 " is not inflight!", __FUNCTION__, bufferId); return BAD_VALUE; } *buffer = it->second.second; if (streamId != nullptr) { *streamId = it->second.first; } mRequestedBuffers.erase(it); return OK; } std::pair Camera3Device::HalInterface::getBufferId( const buffer_handle_t& buf, int streamId) { std::lock_guard lock(mBufferIdMapLock); BufferIdMap& bIdMap = mBufferIdMaps.at(streamId); auto it = bIdMap.find(buf); if (it == bIdMap.end()) { bIdMap[buf] = mNextBufferId++; ALOGV("stream %d now have %zu buffer caches, buf %p", streamId, bIdMap.size(), buf); return std::make_pair(true, mNextBufferId - 1); } else { return std::make_pair(false, it->second); } } void Camera3Device::HalInterface::onBufferFreed( int streamId, const native_handle_t* handle) { std::lock_guard lock(mBufferIdMapLock); uint64_t bufferId = BUFFER_ID_NO_BUFFER; auto mapIt = mBufferIdMaps.find(streamId); if (mapIt == mBufferIdMaps.end()) { // streamId might be from a deleted stream here ALOGI("%s: stream %d has been removed", __FUNCTION__, streamId); return; } BufferIdMap& bIdMap = mapIt->second; auto it = bIdMap.find(handle); if (it == bIdMap.end()) { ALOGW("%s: cannot find buffer %p in stream %d", __FUNCTION__, handle, streamId); return; } else { bufferId = it->second; bIdMap.erase(it); ALOGV("%s: stream %d now have %zu buffer caches after removing buf %p", __FUNCTION__, streamId, bIdMap.size(), handle); } mFreedBuffers.push_back(std::make_pair(streamId, bufferId)); } void Camera3Device::HalInterface::onStreamReConfigured(int streamId) { std::lock_guard lock(mBufferIdMapLock); auto mapIt = mBufferIdMaps.find(streamId); if (mapIt == mBufferIdMaps.end()) { ALOGE("%s: streamId %d not found!", __FUNCTION__, streamId); return; } BufferIdMap& bIdMap = mapIt->second; for (const auto& it : bIdMap) { uint64_t bufferId = it.second; mFreedBuffers.push_back(std::make_pair(streamId, bufferId)); } bIdMap.clear(); } /** * RequestThread inner class methods */ Camera3Device::RequestThread::RequestThread(wp parent, sp statusTracker, sp interface, const Vector& sessionParamKeys, bool useHalBufManager) : Thread(/*canCallJava*/false), mParent(parent), mStatusTracker(statusTracker), mInterface(interface), mListener(nullptr), mId(getId(parent)), mReconfigured(false), mDoPause(false), mPaused(true), mNotifyPipelineDrain(false), mFrameNumber(0), mLatestRequestId(NAME_NOT_FOUND), mCurrentAfTriggerId(0), mCurrentPreCaptureTriggerId(0), mRepeatingLastFrameNumber( hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES), mPrepareVideoStream(false), mConstrainedMode(false), mRequestLatency(kRequestLatencyBinSize), mSessionParamKeys(sessionParamKeys), mLatestSessionParams(sessionParamKeys.size()), mUseHalBufManager(useHalBufManager) { mStatusId = statusTracker->addComponent(); } Camera3Device::RequestThread::~RequestThread() {} void Camera3Device::RequestThread::setNotificationListener( wp listener) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); mListener = listener; } void Camera3Device::RequestThread::configurationComplete(bool isConstrainedHighSpeed, const CameraMetadata& sessionParams) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); mReconfigured = true; mLatestSessionParams = sessionParams; // Prepare video stream for high speed recording. mPrepareVideoStream = isConstrainedHighSpeed; mConstrainedMode = isConstrainedHighSpeed; } status_t Camera3Device::RequestThread::queueRequestList( List > &requests, /*out*/ int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); for (List >::iterator it = requests.begin(); it != requests.end(); ++it) { mRequestQueue.push_back(*it); } if (lastFrameNumber != NULL) { *lastFrameNumber = mFrameNumber + mRequestQueue.size() - 1; ALOGV("%s: requestId %d, mFrameNumber %" PRId32 ", lastFrameNumber %" PRId64 ".", __FUNCTION__, (*(requests.begin()))->mResultExtras.requestId, mFrameNumber, *lastFrameNumber); } unpauseForNewRequests(); return OK; } status_t Camera3Device::RequestThread::queueTrigger( RequestTrigger trigger[], size_t count) { ATRACE_CALL(); Mutex::Autolock l(mTriggerMutex); status_t ret; for (size_t i = 0; i < count; ++i) { ret = queueTriggerLocked(trigger[i]); if (ret != OK) { return ret; } } return OK; } const String8& Camera3Device::RequestThread::getId(const wp &device) { static String8 deadId(""); sp d = device.promote(); if (d != nullptr) return d->mId; return deadId; } status_t Camera3Device::RequestThread::queueTriggerLocked( RequestTrigger trigger) { uint32_t tag = trigger.metadataTag; ssize_t index = mTriggerMap.indexOfKey(tag); switch (trigger.getTagType()) { case TYPE_BYTE: // fall-through case TYPE_INT32: break; default: ALOGE("%s: Type not supported: 0x%x", __FUNCTION__, trigger.getTagType()); return INVALID_OPERATION; } /** * Collect only the latest trigger, since we only have 1 field * in the request settings per trigger tag, and can't send more than 1 * trigger per request. */ if (index != NAME_NOT_FOUND) { mTriggerMap.editValueAt(index) = trigger; } else { mTriggerMap.add(tag, trigger); } return OK; } status_t Camera3Device::RequestThread::setRepeatingRequests( const RequestList &requests, /*out*/ int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); if (lastFrameNumber != NULL) { *lastFrameNumber = mRepeatingLastFrameNumber; } mRepeatingRequests.clear(); mRepeatingRequests.insert(mRepeatingRequests.begin(), requests.begin(), requests.end()); unpauseForNewRequests(); mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES; return OK; } bool Camera3Device::RequestThread::isRepeatingRequestLocked(const sp& requestIn) { if (mRepeatingRequests.empty()) { return false; } int32_t requestId = requestIn->mResultExtras.requestId; const RequestList &repeatRequests = mRepeatingRequests; // All repeating requests are guaranteed to have same id so only check first quest const sp firstRequest = *repeatRequests.begin(); return (firstRequest->mResultExtras.requestId == requestId); } status_t Camera3Device::RequestThread::clearRepeatingRequests(/*out*/int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); return clearRepeatingRequestsLocked(lastFrameNumber); } status_t Camera3Device::RequestThread::clearRepeatingRequestsLocked(/*out*/int64_t *lastFrameNumber) { mRepeatingRequests.clear(); if (lastFrameNumber != NULL) { *lastFrameNumber = mRepeatingLastFrameNumber; } mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES; return OK; } status_t Camera3Device::RequestThread::clear( /*out*/int64_t *lastFrameNumber) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); ALOGV("RequestThread::%s:", __FUNCTION__); mRepeatingRequests.clear(); // Send errors for all requests pending in the request queue, including // pending repeating requests sp listener = mListener.promote(); if (listener != NULL) { for (RequestList::iterator it = mRequestQueue.begin(); it != mRequestQueue.end(); ++it) { // Abort the input buffers for reprocess requests. if ((*it)->mInputStream != NULL) { camera3_stream_buffer_t inputBuffer; status_t res = (*it)->mInputStream->getInputBuffer(&inputBuffer, /*respectHalLimit*/ false); if (res != OK) { ALOGW("%s: %d: couldn't get input buffer while clearing the request " "list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res); } else { res = (*it)->mInputStream->returnInputBuffer(inputBuffer); if (res != OK) { ALOGE("%s: %d: couldn't return input buffer while clearing the request " "list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res); } } } // Set the frame number this request would have had, if it // had been submitted; this frame number will not be reused. // The requestId and burstId fields were set when the request was // submitted originally (in convertMetadataListToRequestListLocked) (*it)->mResultExtras.frameNumber = mFrameNumber++; listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST, (*it)->mResultExtras); } } mRequestQueue.clear(); Mutex::Autolock al(mTriggerMutex); mTriggerMap.clear(); if (lastFrameNumber != NULL) { *lastFrameNumber = mRepeatingLastFrameNumber; } mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES; return OK; } status_t Camera3Device::RequestThread::flush() { ATRACE_CALL(); Mutex::Autolock l(mFlushLock); return mInterface->flush(); } void Camera3Device::RequestThread::setPaused(bool paused) { ATRACE_CALL(); Mutex::Autolock l(mPauseLock); mDoPause = paused; mDoPauseSignal.signal(); } status_t Camera3Device::RequestThread::waitUntilRequestProcessed( int32_t requestId, nsecs_t timeout) { ATRACE_CALL(); Mutex::Autolock l(mLatestRequestMutex); status_t res; while (mLatestRequestId != requestId) { nsecs_t startTime = systemTime(); res = mLatestRequestSignal.waitRelative(mLatestRequestMutex, timeout); if (res != OK) return res; timeout -= (systemTime() - startTime); } return OK; } void Camera3Device::RequestThread::requestExit() { // Call parent to set up shutdown Thread::requestExit(); // The exit from any possible waits mDoPauseSignal.signal(); mRequestSignal.signal(); mRequestLatency.log("ProcessCaptureRequest latency histogram"); mRequestLatency.reset(); } void Camera3Device::RequestThread::checkAndStopRepeatingRequest() { ATRACE_CALL(); bool surfaceAbandoned = false; int64_t lastFrameNumber = 0; sp listener; { Mutex::Autolock l(mRequestLock); // Check all streams needed by repeating requests are still valid. Otherwise, stop // repeating requests. for (const auto& request : mRepeatingRequests) { for (const auto& s : request->mOutputStreams) { if (s->isAbandoned()) { surfaceAbandoned = true; clearRepeatingRequestsLocked(&lastFrameNumber); break; } } if (surfaceAbandoned) { break; } } listener = mListener.promote(); } if (listener != NULL && surfaceAbandoned) { listener->notifyRepeatingRequestError(lastFrameNumber); } } bool Camera3Device::RequestThread::sendRequestsBatch() { ATRACE_CALL(); status_t res; size_t batchSize = mNextRequests.size(); std::vector requests(batchSize); uint32_t numRequestProcessed = 0; for (size_t i = 0; i < batchSize; i++) { requests[i] = &mNextRequests.editItemAt(i).halRequest; ATRACE_ASYNC_BEGIN("frame capture", mNextRequests[i].halRequest.frame_number); } res = mInterface->processBatchCaptureRequests(requests, &numRequestProcessed); bool triggerRemoveFailed = false; NextRequest& triggerFailedRequest = mNextRequests.editItemAt(0); for (size_t i = 0; i < numRequestProcessed; i++) { NextRequest& nextRequest = mNextRequests.editItemAt(i); nextRequest.submitted = true; updateNextRequest(nextRequest); if (!triggerRemoveFailed) { // Remove any previously queued triggers (after unlock) status_t removeTriggerRes = removeTriggers(mPrevRequest); if (removeTriggerRes != OK) { triggerRemoveFailed = true; triggerFailedRequest = nextRequest; } } } if (triggerRemoveFailed) { SET_ERR("RequestThread: Unable to remove triggers " "(capture request %d, HAL device: %s (%d)", triggerFailedRequest.halRequest.frame_number, strerror(-res), res); cleanUpFailedRequests(/*sendRequestError*/ false); return false; } if (res != OK) { // Should only get a failure here for malformed requests or device-level // errors, so consider all errors fatal. Bad metadata failures should // come through notify. SET_ERR("RequestThread: Unable to submit capture request %d to HAL device: %s (%d)", mNextRequests[numRequestProcessed].halRequest.frame_number, strerror(-res), res); cleanUpFailedRequests(/*sendRequestError*/ false); return false; } return true; } nsecs_t Camera3Device::RequestThread::calculateMaxExpectedDuration(const camera_metadata_t *request) { nsecs_t maxExpectedDuration = kDefaultExpectedDuration; camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t(); find_camera_metadata_ro_entry(request, ANDROID_CONTROL_AE_MODE, &e); if (e.count == 0) return maxExpectedDuration; switch (e.data.u8[0]) { case ANDROID_CONTROL_AE_MODE_OFF: find_camera_metadata_ro_entry(request, ANDROID_SENSOR_EXPOSURE_TIME, &e); if (e.count > 0) { maxExpectedDuration = e.data.i64[0]; } find_camera_metadata_ro_entry(request, ANDROID_SENSOR_FRAME_DURATION, &e); if (e.count > 0) { maxExpectedDuration = std::max(e.data.i64[0], maxExpectedDuration); } break; default: find_camera_metadata_ro_entry(request, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, &e); if (e.count > 1) { maxExpectedDuration = 1e9 / e.data.u8[0]; } break; } return maxExpectedDuration; } bool Camera3Device::RequestThread::skipHFRTargetFPSUpdate(int32_t tag, const camera_metadata_ro_entry_t& newEntry, const camera_metadata_entry_t& currentEntry) { if (mConstrainedMode && (ANDROID_CONTROL_AE_TARGET_FPS_RANGE == tag) && (newEntry.count == currentEntry.count) && (currentEntry.count == 2) && (currentEntry.data.i32[1] == newEntry.data.i32[1])) { return true; } return false; } void Camera3Device::RequestThread::updateNextRequest(NextRequest& nextRequest) { // Update the latest request sent to HAL if (nextRequest.halRequest.settings != NULL) { // Don't update if they were unchanged Mutex::Autolock al(mLatestRequestMutex); camera_metadata_t* cloned = clone_camera_metadata(nextRequest.halRequest.settings); mLatestRequest.acquire(cloned); mLatestPhysicalRequest.clear(); for (uint32_t i = 0; i < nextRequest.halRequest.num_physcam_settings; i++) { cloned = clone_camera_metadata(nextRequest.halRequest.physcam_settings[i]); mLatestPhysicalRequest.emplace(nextRequest.halRequest.physcam_id[i], CameraMetadata(cloned)); } sp parent = mParent.promote(); if (parent != NULL) { parent->monitorMetadata(TagMonitor::REQUEST, nextRequest.halRequest.frame_number, 0, mLatestRequest, mLatestPhysicalRequest); } } if (nextRequest.halRequest.settings != NULL) { nextRequest.captureRequest->mSettingsList.begin()->metadata.unlock( nextRequest.halRequest.settings); } cleanupPhysicalSettings(nextRequest.captureRequest, &nextRequest.halRequest); } bool Camera3Device::RequestThread::updateSessionParameters(const CameraMetadata& settings) { ATRACE_CALL(); bool updatesDetected = false; CameraMetadata updatedParams(mLatestSessionParams); for (auto tag : mSessionParamKeys) { camera_metadata_ro_entry entry = settings.find(tag); camera_metadata_entry lastEntry = updatedParams.find(tag); if (entry.count > 0) { bool isDifferent = false; if (lastEntry.count > 0) { // Have a last value, compare to see if changed if (lastEntry.type == entry.type && lastEntry.count == entry.count) { // Same type and count, compare values size_t bytesPerValue = camera_metadata_type_size[lastEntry.type]; size_t entryBytes = bytesPerValue * lastEntry.count; int cmp = memcmp(entry.data.u8, lastEntry.data.u8, entryBytes); if (cmp != 0) { isDifferent = true; } } else { // Count or type has changed isDifferent = true; } } else { // No last entry, so always consider to be different isDifferent = true; } if (isDifferent) { ALOGV("%s: Session parameter tag id %d changed", __FUNCTION__, tag); if (!skipHFRTargetFPSUpdate(tag, entry, lastEntry)) { updatesDetected = true; } updatedParams.update(entry); } } else if (lastEntry.count > 0) { // Value has been removed ALOGV("%s: Session parameter tag id %d removed", __FUNCTION__, tag); updatedParams.erase(tag); updatesDetected = true; } } bool reconfigureRequired; if (updatesDetected) { reconfigureRequired = mInterface->isReconfigurationRequired(mLatestSessionParams, updatedParams); mLatestSessionParams = updatedParams; } else { reconfigureRequired = false; } return reconfigureRequired; } bool Camera3Device::RequestThread::threadLoop() { ATRACE_CALL(); status_t res; // Handle paused state. if (waitIfPaused()) { return true; } // Wait for the next batch of requests. waitForNextRequestBatch(); if (mNextRequests.size() == 0) { return true; } // Get the latest request ID, if any int latestRequestId; camera_metadata_entry_t requestIdEntry = mNextRequests[mNextRequests.size() - 1]. captureRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_ID); if (requestIdEntry.count > 0) { latestRequestId = requestIdEntry.data.i32[0]; } else { ALOGW("%s: Did not have android.request.id set in the request.", __FUNCTION__); latestRequestId = NAME_NOT_FOUND; } // 'mNextRequests' will at this point contain either a set of HFR batched requests // or a single request from streaming or burst. In either case the first element // should contain the latest camera settings that we need to check for any session // parameter updates. if (updateSessionParameters(mNextRequests[0].captureRequest->mSettingsList.begin()->metadata)) { res = OK; //Input stream buffers are already acquired at this point so an input stream //will not be able to move to idle state unless we force it. if (mNextRequests[0].captureRequest->mInputStream != nullptr) { res = mNextRequests[0].captureRequest->mInputStream->forceToIdle(); if (res != OK) { ALOGE("%s: Failed to force idle input stream: %d", __FUNCTION__, res); cleanUpFailedRequests(/*sendRequestError*/ false); return false; } } if (res == OK) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { sp parent = mParent.promote(); if (parent != nullptr) { parent->pauseStateNotify(true); } statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); if (parent != nullptr) { mReconfigured |= parent->reconfigureCamera(mLatestSessionParams); } statusTracker->markComponentActive(mStatusId); setPaused(false); } if (mNextRequests[0].captureRequest->mInputStream != nullptr) { mNextRequests[0].captureRequest->mInputStream->restoreConfiguredState(); if (res != OK) { ALOGE("%s: Failed to restore configured input stream: %d", __FUNCTION__, res); cleanUpFailedRequests(/*sendRequestError*/ false); return false; } } } } // Prepare a batch of HAL requests and output buffers. res = prepareHalRequests(); if (res == TIMED_OUT) { // Not a fatal error if getting output buffers time out. cleanUpFailedRequests(/*sendRequestError*/ true); // Check if any stream is abandoned. checkAndStopRepeatingRequest(); return true; } else if (res != OK) { cleanUpFailedRequests(/*sendRequestError*/ false); return false; } // Inform waitUntilRequestProcessed thread of a new request ID { Mutex::Autolock al(mLatestRequestMutex); mLatestRequestId = latestRequestId; mLatestRequestSignal.signal(); } // Submit a batch of requests to HAL. // Use flush lock only when submitting multilple requests in a batch. // TODO: The problem with flush lock is flush() will be blocked by process_capture_request() // which may take a long time to finish so synchronizing flush() and // process_capture_request() defeats the purpose of cancelling requests ASAP with flush(). // For now, only synchronize for high speed recording and we should figure something out for // removing the synchronization. bool useFlushLock = mNextRequests.size() > 1; if (useFlushLock) { mFlushLock.lock(); } ALOGVV("%s: %d: submitting %zu requests in a batch.", __FUNCTION__, __LINE__, mNextRequests.size()); sp parent = mParent.promote(); if (parent != nullptr) { parent->mRequestBufferSM.onSubmittingRequest(); } bool submitRequestSuccess = false; nsecs_t tRequestStart = systemTime(SYSTEM_TIME_MONOTONIC); submitRequestSuccess = sendRequestsBatch(); nsecs_t tRequestEnd = systemTime(SYSTEM_TIME_MONOTONIC); mRequestLatency.add(tRequestStart, tRequestEnd); if (useFlushLock) { mFlushLock.unlock(); } // Unset as current request { Mutex::Autolock l(mRequestLock); mNextRequests.clear(); } return submitRequestSuccess; } status_t Camera3Device::RequestThread::prepareHalRequests() { ATRACE_CALL(); bool batchedRequest = mNextRequests[0].captureRequest->mBatchSize > 1; for (size_t i = 0; i < mNextRequests.size(); i++) { auto& nextRequest = mNextRequests.editItemAt(i); sp captureRequest = nextRequest.captureRequest; camera3_capture_request_t* halRequest = &nextRequest.halRequest; Vector* outputBuffers = &nextRequest.outputBuffers; // Prepare a request to HAL halRequest->frame_number = captureRequest->mResultExtras.frameNumber; // Insert any queued triggers (before metadata is locked) status_t res = insertTriggers(captureRequest); if (res < 0) { SET_ERR("RequestThread: Unable to insert triggers " "(capture request %d, HAL device: %s (%d)", halRequest->frame_number, strerror(-res), res); return INVALID_OPERATION; } int triggerCount = res; bool triggersMixedIn = (triggerCount > 0 || mPrevTriggers > 0); mPrevTriggers = triggerCount; // If the request is the same as last, or we had triggers last time bool newRequest = (mPrevRequest != captureRequest || triggersMixedIn) && // Request settings are all the same within one batch, so only treat the first // request in a batch as new !(batchedRequest && i > 0); if (newRequest) { /** * HAL workaround: * Insert a dummy trigger ID if a trigger is set but no trigger ID is */ res = addDummyTriggerIds(captureRequest); if (res != OK) { SET_ERR("RequestThread: Unable to insert dummy trigger IDs " "(capture request %d, HAL device: %s (%d)", halRequest->frame_number, strerror(-res), res); return INVALID_OPERATION; } { // Correct metadata regions for distortion correction if enabled sp parent = mParent.promote(); if (parent != nullptr) { List::iterator it; for (it = captureRequest->mSettingsList.begin(); it != captureRequest->mSettingsList.end(); it++) { if (parent->mDistortionMappers.find(it->cameraId) == parent->mDistortionMappers.end()) { continue; } res = parent->mDistortionMappers[it->cameraId].correctCaptureRequest( &(it->metadata)); if (res != OK) { SET_ERR("RequestThread: Unable to correct capture requests " "for lens distortion for request %d: %s (%d)", halRequest->frame_number, strerror(-res), res); return INVALID_OPERATION; } } } } /** * The request should be presorted so accesses in HAL * are O(logn). Sidenote, sorting a sorted metadata is nop. */ captureRequest->mSettingsList.begin()->metadata.sort(); halRequest->settings = captureRequest->mSettingsList.begin()->metadata.getAndLock(); mPrevRequest = captureRequest; ALOGVV("%s: Request settings are NEW", __FUNCTION__); IF_ALOGV() { camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t(); find_camera_metadata_ro_entry( halRequest->settings, ANDROID_CONTROL_AF_TRIGGER, &e ); if (e.count > 0) { ALOGV("%s: Request (frame num %d) had AF trigger 0x%x", __FUNCTION__, halRequest->frame_number, e.data.u8[0]); } } } else { // leave request.settings NULL to indicate 'reuse latest given' ALOGVV("%s: Request settings are REUSED", __FUNCTION__); } if (captureRequest->mSettingsList.size() > 1) { halRequest->num_physcam_settings = captureRequest->mSettingsList.size() - 1; halRequest->physcam_id = new const char* [halRequest->num_physcam_settings]; if (newRequest) { halRequest->physcam_settings = new const camera_metadata* [halRequest->num_physcam_settings]; } else { halRequest->physcam_settings = nullptr; } auto it = ++captureRequest->mSettingsList.begin(); size_t i = 0; for (; it != captureRequest->mSettingsList.end(); it++, i++) { halRequest->physcam_id[i] = it->cameraId.c_str(); if (newRequest) { it->metadata.sort(); halRequest->physcam_settings[i] = it->metadata.getAndLock(); } } } uint32_t totalNumBuffers = 0; // Fill in buffers if (captureRequest->mInputStream != NULL) { halRequest->input_buffer = &captureRequest->mInputBuffer; totalNumBuffers += 1; } else { halRequest->input_buffer = NULL; } outputBuffers->insertAt(camera3_stream_buffer_t(), 0, captureRequest->mOutputStreams.size()); halRequest->output_buffers = outputBuffers->array(); std::set requestedPhysicalCameras; sp parent = mParent.promote(); if (parent == NULL) { // Should not happen, and nowhere to send errors to, so just log it CLOGE("RequestThread: Parent is gone"); return INVALID_OPERATION; } nsecs_t waitDuration = kBaseGetBufferWait + parent->getExpectedInFlightDuration(); SurfaceMap uniqueSurfaceIdMap; for (size_t j = 0; j < captureRequest->mOutputStreams.size(); j++) { sp outputStream = captureRequest->mOutputStreams.editItemAt(j); int streamId = outputStream->getId(); // Prepare video buffers for high speed recording on the first video request. if (mPrepareVideoStream && outputStream->isVideoStream()) { // Only try to prepare video stream on the first video request. mPrepareVideoStream = false; res = outputStream->startPrepare(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX, false /*blockRequest*/); while (res == NOT_ENOUGH_DATA) { res = outputStream->prepareNextBuffer(); } if (res != OK) { ALOGW("%s: Preparing video buffers for high speed failed: %s (%d)", __FUNCTION__, strerror(-res), res); outputStream->cancelPrepare(); } } std::vector uniqueSurfaceIds; res = outputStream->getUniqueSurfaceIds( captureRequest->mOutputSurfaces[streamId], &uniqueSurfaceIds); // INVALID_OPERATION is normal output for streams not supporting surfaceIds if (res != OK && res != INVALID_OPERATION) { ALOGE("%s: failed to query stream %d unique surface IDs", __FUNCTION__, streamId); return res; } if (res == OK) { uniqueSurfaceIdMap.insert({streamId, std::move(uniqueSurfaceIds)}); } if (mUseHalBufManager) { if (outputStream->isAbandoned()) { ALOGV("%s: stream %d is abandoned, skipping request", __FUNCTION__, streamId); return TIMED_OUT; } // HAL will request buffer through requestStreamBuffer API camera3_stream_buffer_t& buffer = outputBuffers->editItemAt(j); buffer.stream = outputStream->asHalStream(); buffer.buffer = nullptr; buffer.status = CAMERA3_BUFFER_STATUS_OK; buffer.acquire_fence = -1; buffer.release_fence = -1; } else { res = outputStream->getBuffer(&outputBuffers->editItemAt(j), waitDuration, captureRequest->mOutputSurfaces[streamId]); if (res != OK) { // Can't get output buffer from gralloc queue - this could be due to // abandoned queue or other consumer misbehavior, so not a fatal // error ALOGV("RequestThread: Can't get output buffer, skipping request:" " %s (%d)", strerror(-res), res); return TIMED_OUT; } } { sp parent = mParent.promote(); if (parent != nullptr) { const String8& streamCameraId = outputStream->getPhysicalCameraId(); for (const auto& settings : captureRequest->mSettingsList) { if ((streamCameraId.isEmpty() && parent->getId() == settings.cameraId.c_str()) || streamCameraId == settings.cameraId.c_str()) { outputStream->fireBufferRequestForFrameNumber( captureRequest->mResultExtras.frameNumber, settings.metadata); } } } } String8 physicalCameraId = outputStream->getPhysicalCameraId(); if (!physicalCameraId.isEmpty()) { // Physical stream isn't supported for input request. if (halRequest->input_buffer) { CLOGE("Physical stream is not supported for input request"); return INVALID_OPERATION; } requestedPhysicalCameras.insert(physicalCameraId); } halRequest->num_output_buffers++; } totalNumBuffers += halRequest->num_output_buffers; // Log request in the in-flight queue // If this request list is for constrained high speed recording (not // preview), and the current request is not the last one in the batch, // do not send callback to the app. bool hasCallback = true; if (batchedRequest && i != mNextRequests.size()-1) { hasCallback = false; } bool isStillCapture = false; bool isZslCapture = false; if (!mNextRequests[0].captureRequest->mSettingsList.begin()->metadata.isEmpty()) { camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t(); find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_CAPTURE_INTENT, &e); if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE)) { isStillCapture = true; ATRACE_ASYNC_BEGIN("still capture", mNextRequests[i].halRequest.frame_number); } find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_ENABLE_ZSL, &e); if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_ENABLE_ZSL_TRUE)) { isZslCapture = true; } } res = parent->registerInFlight(halRequest->frame_number, totalNumBuffers, captureRequest->mResultExtras, /*hasInput*/halRequest->input_buffer != NULL, hasCallback, calculateMaxExpectedDuration(halRequest->settings), requestedPhysicalCameras, isStillCapture, isZslCapture, (mUseHalBufManager) ? uniqueSurfaceIdMap : SurfaceMap{}); ALOGVV("%s: registered in flight requestId = %" PRId32 ", frameNumber = %" PRId64 ", burstId = %" PRId32 ".", __FUNCTION__, captureRequest->mResultExtras.requestId, captureRequest->mResultExtras.frameNumber, captureRequest->mResultExtras.burstId); if (res != OK) { SET_ERR("RequestThread: Unable to register new in-flight request:" " %s (%d)", strerror(-res), res); return INVALID_OPERATION; } } return OK; } CameraMetadata Camera3Device::RequestThread::getLatestRequest() const { ATRACE_CALL(); Mutex::Autolock al(mLatestRequestMutex); ALOGV("RequestThread::%s", __FUNCTION__); return mLatestRequest; } bool Camera3Device::RequestThread::isStreamPending( sp& stream) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); for (const auto& nextRequest : mNextRequests) { if (!nextRequest.submitted) { for (const auto& s : nextRequest.captureRequest->mOutputStreams) { if (stream == s) return true; } if (stream == nextRequest.captureRequest->mInputStream) return true; } } for (const auto& request : mRequestQueue) { for (const auto& s : request->mOutputStreams) { if (stream == s) return true; } if (stream == request->mInputStream) return true; } for (const auto& request : mRepeatingRequests) { for (const auto& s : request->mOutputStreams) { if (stream == s) return true; } if (stream == request->mInputStream) return true; } return false; } bool Camera3Device::RequestThread::isOutputSurfacePending(int streamId, size_t surfaceId) { ATRACE_CALL(); Mutex::Autolock l(mRequestLock); for (const auto& nextRequest : mNextRequests) { for (const auto& s : nextRequest.captureRequest->mOutputSurfaces) { if (s.first == streamId) { const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId); if (it != s.second.end()) { return true; } } } } for (const auto& request : mRequestQueue) { for (const auto& s : request->mOutputSurfaces) { if (s.first == streamId) { const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId); if (it != s.second.end()) { return true; } } } } for (const auto& request : mRepeatingRequests) { for (const auto& s : request->mOutputSurfaces) { if (s.first == streamId) { const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId); if (it != s.second.end()) { return true; } } } } return false; } void Camera3Device::RequestThread::signalPipelineDrain(const std::vector& streamIds) { if (!mUseHalBufManager) { ALOGE("%s called for camera device not supporting HAL buffer management", __FUNCTION__); return; } Mutex::Autolock pl(mPauseLock); if (mPaused) { mInterface->signalPipelineDrain(streamIds); return; } // If request thread is still busy, wait until paused then notify HAL mNotifyPipelineDrain = true; mStreamIdsToBeDrained = streamIds; } nsecs_t Camera3Device::getExpectedInFlightDuration() { ATRACE_CALL(); Mutex::Autolock al(mInFlightLock); return mExpectedInflightDuration > kMinInflightDuration ? mExpectedInflightDuration : kMinInflightDuration; } void Camera3Device::RequestThread::cleanupPhysicalSettings(sp request, camera3_capture_request_t *halRequest) { if ((request == nullptr) || (halRequest == nullptr)) { ALOGE("%s: Invalid request!", __FUNCTION__); return; } if (halRequest->num_physcam_settings > 0) { if (halRequest->physcam_id != nullptr) { delete [] halRequest->physcam_id; halRequest->physcam_id = nullptr; } if (halRequest->physcam_settings != nullptr) { auto it = ++(request->mSettingsList.begin()); size_t i = 0; for (; it != request->mSettingsList.end(); it++, i++) { it->metadata.unlock(halRequest->physcam_settings[i]); } delete [] halRequest->physcam_settings; halRequest->physcam_settings = nullptr; } } } void Camera3Device::RequestThread::cleanUpFailedRequests(bool sendRequestError) { if (mNextRequests.empty()) { return; } for (auto& nextRequest : mNextRequests) { // Skip the ones that have been submitted successfully. if (nextRequest.submitted) { continue; } sp captureRequest = nextRequest.captureRequest; camera3_capture_request_t* halRequest = &nextRequest.halRequest; Vector* outputBuffers = &nextRequest.outputBuffers; if (halRequest->settings != NULL) { captureRequest->mSettingsList.begin()->metadata.unlock(halRequest->settings); } cleanupPhysicalSettings(captureRequest, halRequest); if (captureRequest->mInputStream != NULL) { captureRequest->mInputBuffer.status = CAMERA3_BUFFER_STATUS_ERROR; captureRequest->mInputStream->returnInputBuffer(captureRequest->mInputBuffer); } // No output buffer can be returned when using HAL buffer manager if (!mUseHalBufManager) { for (size_t i = 0; i < halRequest->num_output_buffers; i++) { //Buffers that failed processing could still have //valid acquire fence. int acquireFence = (*outputBuffers)[i].acquire_fence; if (0 <= acquireFence) { close(acquireFence); outputBuffers->editItemAt(i).acquire_fence = -1; } outputBuffers->editItemAt(i).status = CAMERA3_BUFFER_STATUS_ERROR; captureRequest->mOutputStreams.editItemAt(i)->returnBuffer((*outputBuffers)[i], 0, /*timestampIncreasing*/true, std::vector (), captureRequest->mResultExtras.frameNumber); } } if (sendRequestError) { Mutex::Autolock l(mRequestLock); sp listener = mListener.promote(); if (listener != NULL) { listener->notifyError( hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST, captureRequest->mResultExtras); } } // Remove yet-to-be submitted inflight request from inflightMap { sp parent = mParent.promote(); if (parent != NULL) { Mutex::Autolock l(parent->mInFlightLock); ssize_t idx = parent->mInFlightMap.indexOfKey(captureRequest->mResultExtras.frameNumber); if (idx >= 0) { ALOGV("%s: Remove inflight request from queue: frameNumber %" PRId64, __FUNCTION__, captureRequest->mResultExtras.frameNumber); parent->removeInFlightMapEntryLocked(idx); } } } } Mutex::Autolock l(mRequestLock); mNextRequests.clear(); } void Camera3Device::RequestThread::waitForNextRequestBatch() { ATRACE_CALL(); // Optimized a bit for the simple steady-state case (single repeating // request), to avoid putting that request in the queue temporarily. Mutex::Autolock l(mRequestLock); assert(mNextRequests.empty()); NextRequest nextRequest; nextRequest.captureRequest = waitForNextRequestLocked(); if (nextRequest.captureRequest == nullptr) { return; } nextRequest.halRequest = camera3_capture_request_t(); nextRequest.submitted = false; mNextRequests.add(nextRequest); // Wait for additional requests const size_t batchSize = nextRequest.captureRequest->mBatchSize; for (size_t i = 1; i < batchSize; i++) { NextRequest additionalRequest; additionalRequest.captureRequest = waitForNextRequestLocked(); if (additionalRequest.captureRequest == nullptr) { break; } additionalRequest.halRequest = camera3_capture_request_t(); additionalRequest.submitted = false; mNextRequests.add(additionalRequest); } if (mNextRequests.size() < batchSize) { ALOGE("RequestThread: only get %zu out of %zu requests. Skipping requests.", mNextRequests.size(), batchSize); cleanUpFailedRequests(/*sendRequestError*/true); } return; } sp Camera3Device::RequestThread::waitForNextRequestLocked() { status_t res; sp nextRequest; while (mRequestQueue.empty()) { if (!mRepeatingRequests.empty()) { // Always atomically enqueue all requests in a repeating request // list. Guarantees a complete in-sequence set of captures to // application. const RequestList &requests = mRepeatingRequests; RequestList::const_iterator firstRequest = requests.begin(); nextRequest = *firstRequest; mRequestQueue.insert(mRequestQueue.end(), ++firstRequest, requests.end()); // No need to wait any longer mRepeatingLastFrameNumber = mFrameNumber + requests.size() - 1; break; } res = mRequestSignal.waitRelative(mRequestLock, kRequestTimeout); if ((mRequestQueue.empty() && mRepeatingRequests.empty()) || exitPending()) { Mutex::Autolock pl(mPauseLock); if (mPaused == false) { ALOGV("%s: RequestThread: Going idle", __FUNCTION__); mPaused = true; if (mNotifyPipelineDrain) { mInterface->signalPipelineDrain(mStreamIdsToBeDrained); mNotifyPipelineDrain = false; mStreamIdsToBeDrained.clear(); } // Let the tracker know sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); } sp parent = mParent.promote(); if (parent != nullptr) { parent->mRequestBufferSM.onRequestThreadPaused(); } } // Stop waiting for now and let thread management happen return NULL; } } if (nextRequest == NULL) { // Don't have a repeating request already in hand, so queue // must have an entry now. RequestList::iterator firstRequest = mRequestQueue.begin(); nextRequest = *firstRequest; mRequestQueue.erase(firstRequest); if (mRequestQueue.empty() && !nextRequest->mRepeating) { sp listener = mListener.promote(); if (listener != NULL) { listener->notifyRequestQueueEmpty(); } } } // In case we've been unpaused by setPaused clearing mDoPause, need to // update internal pause state (capture/setRepeatingRequest unpause // directly). Mutex::Autolock pl(mPauseLock); if (mPaused) { ALOGV("%s: RequestThread: Unpaused", __FUNCTION__); sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentActive(mStatusId); } } mPaused = false; // Check if we've reconfigured since last time, and reset the preview // request if so. Can't use 'NULL request == repeat' across configure calls. if (mReconfigured) { mPrevRequest.clear(); mReconfigured = false; } if (nextRequest != NULL) { nextRequest->mResultExtras.frameNumber = mFrameNumber++; nextRequest->mResultExtras.afTriggerId = mCurrentAfTriggerId; nextRequest->mResultExtras.precaptureTriggerId = mCurrentPreCaptureTriggerId; // Since RequestThread::clear() removes buffers from the input stream, // get the right buffer here before unlocking mRequestLock if (nextRequest->mInputStream != NULL) { res = nextRequest->mInputStream->getInputBuffer(&nextRequest->mInputBuffer); if (res != OK) { // Can't get input buffer from gralloc queue - this could be due to // disconnected queue or other producer misbehavior, so not a fatal // error ALOGE("%s: Can't get input buffer, skipping request:" " %s (%d)", __FUNCTION__, strerror(-res), res); sp listener = mListener.promote(); if (listener != NULL) { listener->notifyError( hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST, nextRequest->mResultExtras); } return NULL; } } } return nextRequest; } bool Camera3Device::RequestThread::waitIfPaused() { ATRACE_CALL(); status_t res; Mutex::Autolock l(mPauseLock); while (mDoPause) { if (mPaused == false) { mPaused = true; ALOGV("%s: RequestThread: Paused", __FUNCTION__); if (mNotifyPipelineDrain) { mInterface->signalPipelineDrain(mStreamIdsToBeDrained); mNotifyPipelineDrain = false; mStreamIdsToBeDrained.clear(); } // Let the tracker know sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); } sp parent = mParent.promote(); if (parent != nullptr) { parent->mRequestBufferSM.onRequestThreadPaused(); } } res = mDoPauseSignal.waitRelative(mPauseLock, kRequestTimeout); if (res == TIMED_OUT || exitPending()) { return true; } } // We don't set mPaused to false here, because waitForNextRequest needs // to further manage the paused state in case of starvation. return false; } void Camera3Device::RequestThread::unpauseForNewRequests() { ATRACE_CALL(); // With work to do, mark thread as unpaused. // If paused by request (setPaused), don't resume, to avoid // extra signaling/waiting overhead to waitUntilPaused mRequestSignal.signal(); Mutex::Autolock p(mPauseLock); if (!mDoPause) { ALOGV("%s: RequestThread: Going active", __FUNCTION__); if (mPaused) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentActive(mStatusId); } } mPaused = false; } } void Camera3Device::RequestThread::setErrorState(const char *fmt, ...) { sp parent = mParent.promote(); if (parent != NULL) { va_list args; va_start(args, fmt); parent->setErrorStateV(fmt, args); va_end(args); } } status_t Camera3Device::RequestThread::insertTriggers( const sp &request) { ATRACE_CALL(); Mutex::Autolock al(mTriggerMutex); sp parent = mParent.promote(); if (parent == NULL) { CLOGE("RequestThread: Parent is gone"); return DEAD_OBJECT; } CameraMetadata &metadata = request->mSettingsList.begin()->metadata; size_t count = mTriggerMap.size(); for (size_t i = 0; i < count; ++i) { RequestTrigger trigger = mTriggerMap.valueAt(i); uint32_t tag = trigger.metadataTag; if (tag == ANDROID_CONTROL_AF_TRIGGER_ID || tag == ANDROID_CONTROL_AE_PRECAPTURE_ID) { bool isAeTrigger = (trigger.metadataTag == ANDROID_CONTROL_AE_PRECAPTURE_ID); uint32_t triggerId = static_cast(trigger.entryValue); if (isAeTrigger) { request->mResultExtras.precaptureTriggerId = triggerId; mCurrentPreCaptureTriggerId = triggerId; } else { request->mResultExtras.afTriggerId = triggerId; mCurrentAfTriggerId = triggerId; } continue; } camera_metadata_entry entry = metadata.find(tag); if (entry.count > 0) { /** * Already has an entry for this trigger in the request. * Rewrite it with our requested trigger value. */ RequestTrigger oldTrigger = trigger; oldTrigger.entryValue = entry.data.u8[0]; mTriggerReplacedMap.add(tag, oldTrigger); } else { /** * More typical, no trigger entry, so we just add it */ mTriggerRemovedMap.add(tag, trigger); } status_t res; switch (trigger.getTagType()) { case TYPE_BYTE: { uint8_t entryValue = static_cast(trigger.entryValue); res = metadata.update(tag, &entryValue, /*count*/1); break; } case TYPE_INT32: res = metadata.update(tag, &trigger.entryValue, /*count*/1); break; default: ALOGE("%s: Type not supported: 0x%x", __FUNCTION__, trigger.getTagType()); return INVALID_OPERATION; } if (res != OK) { ALOGE("%s: Failed to update request metadata with trigger tag %s" ", value %d", __FUNCTION__, trigger.getTagName(), trigger.entryValue); return res; } ALOGV("%s: Mixed in trigger %s, value %d", __FUNCTION__, trigger.getTagName(), trigger.entryValue); } mTriggerMap.clear(); return count; } status_t Camera3Device::RequestThread::removeTriggers( const sp &request) { ATRACE_CALL(); Mutex::Autolock al(mTriggerMutex); CameraMetadata &metadata = request->mSettingsList.begin()->metadata; /** * Replace all old entries with their old values. */ for (size_t i = 0; i < mTriggerReplacedMap.size(); ++i) { RequestTrigger trigger = mTriggerReplacedMap.valueAt(i); status_t res; uint32_t tag = trigger.metadataTag; switch (trigger.getTagType()) { case TYPE_BYTE: { uint8_t entryValue = static_cast(trigger.entryValue); res = metadata.update(tag, &entryValue, /*count*/1); break; } case TYPE_INT32: res = metadata.update(tag, &trigger.entryValue, /*count*/1); break; default: ALOGE("%s: Type not supported: 0x%x", __FUNCTION__, trigger.getTagType()); return INVALID_OPERATION; } if (res != OK) { ALOGE("%s: Failed to restore request metadata with trigger tag %s" ", trigger value %d", __FUNCTION__, trigger.getTagName(), trigger.entryValue); return res; } } mTriggerReplacedMap.clear(); /** * Remove all new entries. */ for (size_t i = 0; i < mTriggerRemovedMap.size(); ++i) { RequestTrigger trigger = mTriggerRemovedMap.valueAt(i); status_t res = metadata.erase(trigger.metadataTag); if (res != OK) { ALOGE("%s: Failed to erase metadata with trigger tag %s" ", trigger value %d", __FUNCTION__, trigger.getTagName(), trigger.entryValue); return res; } } mTriggerRemovedMap.clear(); return OK; } status_t Camera3Device::RequestThread::addDummyTriggerIds( const sp &request) { // Trigger ID 0 had special meaning in the HAL2 spec, so avoid it here static const int32_t dummyTriggerId = 1; status_t res; CameraMetadata &metadata = request->mSettingsList.begin()->metadata; // If AF trigger is active, insert a dummy AF trigger ID if none already // exists camera_metadata_entry afTrigger = metadata.find(ANDROID_CONTROL_AF_TRIGGER); camera_metadata_entry afId = metadata.find(ANDROID_CONTROL_AF_TRIGGER_ID); if (afTrigger.count > 0 && afTrigger.data.u8[0] != ANDROID_CONTROL_AF_TRIGGER_IDLE && afId.count == 0) { res = metadata.update(ANDROID_CONTROL_AF_TRIGGER_ID, &dummyTriggerId, 1); if (res != OK) return res; } // If AE precapture trigger is active, insert a dummy precapture trigger ID // if none already exists camera_metadata_entry pcTrigger = metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER); camera_metadata_entry pcId = metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_ID); if (pcTrigger.count > 0 && pcTrigger.data.u8[0] != ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE && pcId.count == 0) { res = metadata.update(ANDROID_CONTROL_AE_PRECAPTURE_ID, &dummyTriggerId, 1); if (res != OK) return res; } return OK; } /** * PreparerThread inner class methods */ Camera3Device::PreparerThread::PreparerThread() : Thread(/*canCallJava*/false), mListener(nullptr), mActive(false), mCancelNow(false), mCurrentMaxCount(0), mCurrentPrepareComplete(false) { } Camera3Device::PreparerThread::~PreparerThread() { Thread::requestExitAndWait(); if (mCurrentStream != nullptr) { mCurrentStream->cancelPrepare(); ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId()); mCurrentStream.clear(); } clear(); } status_t Camera3Device::PreparerThread::prepare(int maxCount, sp& stream) { ATRACE_CALL(); status_t res; Mutex::Autolock l(mLock); sp listener = mListener.promote(); res = stream->startPrepare(maxCount, true /*blockRequest*/); if (res == OK) { // No preparation needed, fire listener right off ALOGV("%s: Stream %d already prepared", __FUNCTION__, stream->getId()); if (listener != NULL) { listener->notifyPrepared(stream->getId()); } return OK; } else if (res != NOT_ENOUGH_DATA) { return res; } // Need to prepare, start up thread if necessary if (!mActive) { // mRunning will change to false before the thread fully shuts down, so wait to be sure it // isn't running Thread::requestExitAndWait(); res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND); if (res != OK) { ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__, res, strerror(-res)); if (listener != NULL) { listener->notifyPrepared(stream->getId()); } return res; } mCancelNow = false; mActive = true; ALOGV("%s: Preparer stream started", __FUNCTION__); } // queue up the work mPendingStreams.emplace(maxCount, stream); ALOGV("%s: Stream %d queued for preparing", __FUNCTION__, stream->getId()); return OK; } void Camera3Device::PreparerThread::pause() { ATRACE_CALL(); Mutex::Autolock l(mLock); std::unordered_map > pendingStreams; pendingStreams.insert(mPendingStreams.begin(), mPendingStreams.end()); sp currentStream = mCurrentStream; int currentMaxCount = mCurrentMaxCount; mPendingStreams.clear(); mCancelNow = true; while (mActive) { auto res = mThreadActiveSignal.waitRelative(mLock, kActiveTimeout); if (res == TIMED_OUT) { ALOGE("%s: Timed out waiting on prepare thread!", __FUNCTION__); return; } else if (res != OK) { ALOGE("%s: Encountered an error: %d waiting on prepare thread!", __FUNCTION__, res); return; } } //Check whether the prepare thread was able to complete the current //stream. In case work is still pending emplace it along with the rest //of the streams in the pending list. if (currentStream != nullptr) { if (!mCurrentPrepareComplete) { pendingStreams.emplace(currentMaxCount, currentStream); } } mPendingStreams.insert(pendingStreams.begin(), pendingStreams.end()); for (const auto& it : mPendingStreams) { it.second->cancelPrepare(); } } status_t Camera3Device::PreparerThread::resume() { ATRACE_CALL(); status_t res; Mutex::Autolock l(mLock); sp listener = mListener.promote(); if (mActive) { ALOGE("%s: Trying to resume an already active prepare thread!", __FUNCTION__); return NO_INIT; } auto it = mPendingStreams.begin(); for (; it != mPendingStreams.end();) { res = it->second->startPrepare(it->first, true /*blockRequest*/); if (res == OK) { if (listener != NULL) { listener->notifyPrepared(it->second->getId()); } it = mPendingStreams.erase(it); } else if (res != NOT_ENOUGH_DATA) { ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__, res, strerror(-res)); it = mPendingStreams.erase(it); } else { it++; } } if (mPendingStreams.empty()) { return OK; } res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND); if (res != OK) { ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__, res, strerror(-res)); return res; } mCancelNow = false; mActive = true; ALOGV("%s: Preparer stream started", __FUNCTION__); return OK; } status_t Camera3Device::PreparerThread::clear() { ATRACE_CALL(); Mutex::Autolock l(mLock); for (const auto& it : mPendingStreams) { it.second->cancelPrepare(); } mPendingStreams.clear(); mCancelNow = true; return OK; } void Camera3Device::PreparerThread::setNotificationListener(wp listener) { ATRACE_CALL(); Mutex::Autolock l(mLock); mListener = listener; } bool Camera3Device::PreparerThread::threadLoop() { status_t res; { Mutex::Autolock l(mLock); if (mCurrentStream == nullptr) { // End thread if done with work if (mPendingStreams.empty()) { ALOGV("%s: Preparer stream out of work", __FUNCTION__); // threadLoop _must not_ re-acquire mLock after it sets mActive to false; would // cause deadlock with prepare()'s requestExitAndWait triggered by !mActive. mActive = false; mThreadActiveSignal.signal(); return false; } // Get next stream to prepare auto it = mPendingStreams.begin(); mCurrentStream = it->second; mCurrentMaxCount = it->first; mCurrentPrepareComplete = false; mPendingStreams.erase(it); ATRACE_ASYNC_BEGIN("stream prepare", mCurrentStream->getId()); ALOGV("%s: Preparing stream %d", __FUNCTION__, mCurrentStream->getId()); } else if (mCancelNow) { mCurrentStream->cancelPrepare(); ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId()); ALOGV("%s: Cancelling stream %d prepare", __FUNCTION__, mCurrentStream->getId()); mCurrentStream.clear(); mCancelNow = false; return true; } } res = mCurrentStream->prepareNextBuffer(); if (res == NOT_ENOUGH_DATA) return true; if (res != OK) { // Something bad happened; try to recover by cancelling prepare and // signalling listener anyway ALOGE("%s: Stream %d returned error %d (%s) during prepare", __FUNCTION__, mCurrentStream->getId(), res, strerror(-res)); mCurrentStream->cancelPrepare(); } // This stream has finished, notify listener Mutex::Autolock l(mLock); sp listener = mListener.promote(); if (listener != NULL) { ALOGV("%s: Stream %d prepare done, signaling listener", __FUNCTION__, mCurrentStream->getId()); listener->notifyPrepared(mCurrentStream->getId()); } ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId()); mCurrentStream.clear(); mCurrentPrepareComplete = true; return true; } status_t Camera3Device::RequestBufferStateMachine::initialize( sp statusTracker) { if (statusTracker == nullptr) { ALOGE("%s: statusTracker is null", __FUNCTION__); return BAD_VALUE; } std::lock_guard lock(mLock); mStatusTracker = statusTracker; mRequestBufferStatusId = statusTracker->addComponent(); return OK; } bool Camera3Device::RequestBufferStateMachine::startRequestBuffer() { std::lock_guard lock(mLock); if (mStatus == RB_STATUS_READY || mStatus == RB_STATUS_PENDING_STOP) { mRequestBufferOngoing = true; notifyTrackerLocked(/*active*/true); return true; } return false; } void Camera3Device::RequestBufferStateMachine::endRequestBuffer() { std::lock_guard lock(mLock); if (!mRequestBufferOngoing) { ALOGE("%s called without a successful startRequestBuffer call first!", __FUNCTION__); return; } mRequestBufferOngoing = false; if (mStatus == RB_STATUS_PENDING_STOP) { checkSwitchToStopLocked(); } notifyTrackerLocked(/*active*/false); } void Camera3Device::RequestBufferStateMachine::onStreamsConfigured() { std::lock_guard lock(mLock); mStatus = RB_STATUS_READY; return; } void Camera3Device::RequestBufferStateMachine::onSubmittingRequest() { std::lock_guard lock(mLock); mRequestThreadPaused = false; // inflight map register actually happens in prepareHalRequest now, but it is close enough // approximation. mInflightMapEmpty = false; if (mStatus == RB_STATUS_STOPPED) { mStatus = RB_STATUS_READY; } return; } void Camera3Device::RequestBufferStateMachine::onRequestThreadPaused() { std::lock_guard lock(mLock); mRequestThreadPaused = true; if (mStatus == RB_STATUS_PENDING_STOP) { checkSwitchToStopLocked(); } return; } void Camera3Device::RequestBufferStateMachine::onInflightMapEmpty() { std::lock_guard lock(mLock); mInflightMapEmpty = true; if (mStatus == RB_STATUS_PENDING_STOP) { checkSwitchToStopLocked(); } return; } void Camera3Device::RequestBufferStateMachine::onWaitUntilIdle() { std::lock_guard lock(mLock); if (!checkSwitchToStopLocked()) { mStatus = RB_STATUS_PENDING_STOP; } return; } void Camera3Device::RequestBufferStateMachine::notifyTrackerLocked(bool active) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != nullptr) { if (active) { statusTracker->markComponentActive(mRequestBufferStatusId); } else { statusTracker->markComponentIdle(mRequestBufferStatusId, Fence::NO_FENCE); } } } bool Camera3Device::RequestBufferStateMachine::checkSwitchToStopLocked() { if (mInflightMapEmpty && mRequestThreadPaused && !mRequestBufferOngoing) { mStatus = RB_STATUS_STOPPED; return true; } return false; } status_t Camera3Device::fixupMonochromeTags(const CameraMetadata& deviceInfo, CameraMetadata& resultMetadata) { status_t res = OK; if (!mNeedFixupMonochromeTags) { return res; } // Remove tags that are not applicable to monochrome camera. int32_t tagsToRemove[] = { ANDROID_SENSOR_GREEN_SPLIT, ANDROID_SENSOR_NEUTRAL_COLOR_POINT, ANDROID_COLOR_CORRECTION_MODE, ANDROID_COLOR_CORRECTION_TRANSFORM, ANDROID_COLOR_CORRECTION_GAINS, }; for (auto tag : tagsToRemove) { res = resultMetadata.erase(tag); if (res != OK) { ALOGE("%s: Failed to remove tag %d for monochrome camera", __FUNCTION__, tag); return res; } } // ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL camera_metadata_entry blEntry = resultMetadata.find(ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL); for (size_t i = 1; i < blEntry.count; i++) { blEntry.data.f[i] = blEntry.data.f[0]; } // ANDROID_SENSOR_NOISE_PROFILE camera_metadata_entry npEntry = resultMetadata.find(ANDROID_SENSOR_NOISE_PROFILE); if (npEntry.count > 0 && npEntry.count % 2 == 0) { double np[] = {npEntry.data.d[0], npEntry.data.d[1]}; res = resultMetadata.update(ANDROID_SENSOR_NOISE_PROFILE, np, 2); if (res != OK) { ALOGE("%s: Failed to update SENSOR_NOISE_PROFILE: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } // ANDROID_STATISTICS_LENS_SHADING_MAP camera_metadata_ro_entry lsSizeEntry = deviceInfo.find(ANDROID_LENS_INFO_SHADING_MAP_SIZE); camera_metadata_entry lsEntry = resultMetadata.find(ANDROID_STATISTICS_LENS_SHADING_MAP); if (lsSizeEntry.count == 2 && lsEntry.count > 0 && (int32_t)lsEntry.count == 4 * lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]) { for (int32_t i = 0; i < lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]; i++) { lsEntry.data.f[4*i+1] = lsEntry.data.f[4*i]; lsEntry.data.f[4*i+2] = lsEntry.data.f[4*i]; lsEntry.data.f[4*i+3] = lsEntry.data.f[4*i]; } } // ANDROID_TONEMAP_CURVE_BLUE // ANDROID_TONEMAP_CURVE_GREEN // ANDROID_TONEMAP_CURVE_RED camera_metadata_entry tcbEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_BLUE); camera_metadata_entry tcgEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_GREEN); camera_metadata_entry tcrEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_RED); if (tcbEntry.count > 0 && tcbEntry.count == tcgEntry.count && tcbEntry.count == tcrEntry.count) { for (size_t i = 0; i < tcbEntry.count; i++) { tcbEntry.data.f[i] = tcrEntry.data.f[i]; tcgEntry.data.f[i] = tcrEntry.data.f[i]; } } return res; } }; // namespace android