/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.view.math; public class Math3DHelper { private static final float EPSILON = 0.0000001f; private Math3DHelper() { } /** * Calculates [p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]; * * @param d - dimension in which the poly is represented (supports 2 or 3D) * @return float[]{t2, t, p1} or float[]{Float.NaN} */ public static float[] rayIntersectPoly(float[] poly, int polyLength, float px, float py, float dx, float dy, int d) { int p1 = polyLength - 1; for (int p2 = 0; p2 < polyLength; p2++) { float p1x = poly[p1 * d + 0]; float p1y = poly[p1 * d + 1]; float p2x = poly[p2 * d + 0]; float p2y = poly[p2 * d + 1]; float div = (dx * (p1y - p2y) + dy * (p2x - p1x)); if (div != 0) { float t = (dx * (p1y - py) + dy * (px - p1x)) / div; if (t >= 0 && t <= 1) { float t2 = (p1x * (py - p2y) + p2x * (p1y - py) + px * (p2y - p1y)) / div; if (t2 > 0) { return new float[]{t2, t, p1}; } } } p1 = p2; } return new float[]{Float.NaN}; } public static void centroid2d(float[] poly, int len, float[] ret) { float sumx = 0; float sumy = 0; int p1 = len - 1; float area = 0; for (int p2 = 0; p2 < len; p2++) { float x1 = poly[p1 * 2 + 0]; float y1 = poly[p1 * 2 + 1]; float x2 = poly[p2 * 2 + 0]; float y2 = poly[p2 * 2 + 1]; float a = (x1 * y2 - x2 * y1); sumx += (x1 + x2) * a; sumy += (y1 + y2) * a; area += a; p1 = p2; } float centroidx = sumx / (3 * area); float centroidy = sumy / (3 * area); ret[0] = centroidx; ret[1] = centroidy; } public static void centroid3d(float[] poly, int len, float[] ret) { int n = len - 1; double area = 0; double cx = 0; double cy = 0; double cz = 0; for (int i = 1; i < n; i++) { int k = i + 1; float a0 = poly[i * 3 + 0] - poly[0 * 3 + 0]; float a1 = poly[i * 3 + 1] - poly[0 * 3 + 1]; float a2 = poly[i * 3 + 2] - poly[0 * 3 + 2]; float b0 = poly[k * 3 + 0] - poly[0 * 3 + 0]; float b1 = poly[k * 3 + 1] - poly[0 * 3 + 1]; float b2 = poly[k * 3 + 2] - poly[0 * 3 + 2]; float c0 = a1 * b2 - b1 * a2; float c1 = a2 * b0 - b2 * a0; float c2 = a0 * b1 - b0 * a1; double areaOfTriangle = Math.sqrt(c0 * c0 + c1 * c1 + c2 * c2); area += areaOfTriangle; cx += areaOfTriangle * (poly[i * 3 + 0] + poly[k * 3 + 0] + poly[0 * 3 + 0]); cy += areaOfTriangle * (poly[i * 3 + 1] + poly[k * 3 + 1] + poly[0 * 3 + 1]); cz += areaOfTriangle * (poly[i * 3 + 2] + poly[k * 3 + 2] + poly[0 * 3 + 2]); } ret[0] = (float) (cx / (3 * area)); ret[1] = (float) (cy / (3 * area)); ret[2] = (float) (cz / (3 * area)); } public final static int min(int x1, int x2, int x3) { return (x1 > x2) ? ((x2 > x3) ? x3 : x2) : ((x1 > x3) ? x3 : x1); } public final static int max(int x1, int x2, int x3) { return (x1 < x2) ? ((x2 < x3) ? x3 : x2) : ((x1 < x3) ? x3 : x1); } private static void xsort(float[] points, int pointsLength) { quicksortX(points, 0, pointsLength - 1); } public static int hull(float[] points, int pointsLength, float[] retPoly) { xsort(points, pointsLength); int n = pointsLength; float[] lUpper = new float[n * 2]; lUpper[0] = points[0]; lUpper[1] = points[1]; lUpper[2] = points[2]; lUpper[3] = points[3]; int lUpperSize = 2; for (int i = 2; i < n; i++) { lUpper[lUpperSize * 2 + 0] = points[i * 2 + 0]; lUpper[lUpperSize * 2 + 1] = points[i * 2 + 1]; lUpperSize++; while (lUpperSize > 2 && !rightTurn( lUpper[(lUpperSize - 3) * 2], lUpper[(lUpperSize - 3) * 2 + 1], lUpper[(lUpperSize - 2) * 2], lUpper[(lUpperSize - 2) * 2 + 1], lUpper[(lUpperSize - 1) * 2], lUpper[(lUpperSize - 1) * 2 + 1])) { // Remove the middle point of the three last lUpper[(lUpperSize - 2) * 2 + 0] = lUpper[(lUpperSize - 1) * 2 + 0]; lUpper[(lUpperSize - 2) * 2 + 1] = lUpper[(lUpperSize - 1) * 2 + 1]; lUpperSize--; } } float[] lLower = new float[n * 2]; lLower[0] = points[(n - 1) * 2 + 0]; lLower[1] = points[(n - 1) * 2 + 1]; lLower[2] = points[(n - 2) * 2 + 0]; lLower[3] = points[(n - 2) * 2 + 1]; int lLowerSize = 2; for (int i = n - 3; i >= 0; i--) { lLower[lLowerSize * 2 + 0] = points[i * 2 + 0]; lLower[lLowerSize * 2 + 1] = points[i * 2 + 1]; lLowerSize++; while (lLowerSize > 2 && !rightTurn( lLower[(lLowerSize - 3) * 2], lLower[(lLowerSize - 3) * 2 + 1], lLower[(lLowerSize - 2) * 2], lLower[(lLowerSize - 2) * 2 + 1], lLower[(lLowerSize - 1) * 2], lLower[(lLowerSize - 1) * 2 + 1])) { // Remove the middle point of the three last lLower[(lLowerSize - 2) * 2 + 0] = lLower[(lLowerSize - 1) * 2 + 0]; lLower[(lLowerSize - 2) * 2 + 1] = lLower[(lLowerSize - 1) * 2 + 1]; lLowerSize--; } } int count = 0; for (int i = 0; i < lUpperSize; i++) { retPoly[count * 2 + 0] = lUpper[i * 2 + 0]; retPoly[count * 2 + 1] = lUpper[i * 2 + 1]; count++; } for (int i = 1; i < lLowerSize - 1; i++) { retPoly[count * 2 + 0] = lLower[i * 2 + 0]; retPoly[count * 2 + 1] = lLower[i * 2 + 1]; count++; } return count; } private static boolean rightTurn(float ax, float ay, float bx, float by, float cx, float cy) { return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > 0.00001; } /** * Calculates the intersection of poly1 with poly2 and puts in poly2 * @return number of point in poly2 */ public static int intersection( float[] poly1, int poly1length, float[] poly2, int poly2length) { makeClockwise(poly1, poly1length); makeClockwise(poly2, poly2length); float[] poly = new float[(poly1length * poly2length + 2) * 2]; int count = 0; int pcount = 0; for (int i = 0; i < poly1length; i++) { if (pointInsidePolygon(poly1[i * 2], poly1[i * 2 + 1], poly2, poly2length)) { poly[count * 2] = poly1[i * 2]; poly[count * 2 + 1] = poly1[i * 2 + 1]; count++; pcount++; } } int fromP1 = pcount; for (int i = 0; i < poly2length; i++) { if (pointInsidePolygon(poly2[i * 2], poly2[i * 2 + 1], poly1, poly1length)) { poly[count * 2] = poly2[i * 2]; poly[count * 2 + 1] = poly2[i * 2 + 1]; count++; } } int fromP2 = count - fromP1; if (fromP1 == poly1length) { // use p1 for (int i = 0; i < poly1length; i++) { poly2[i * 2] = poly1[i * 2]; poly2[i * 2 + 1] = poly1[i * 2 + 1]; } return poly1length; } if (fromP2 == poly2length) { // use p2 return poly2length; } float[] intersection = new float[2]; for (int i = 0; i < poly2length; i++) { for (int j = 0; j < poly1length; j++) { int i1_by_2 = i * 2; int i2_by_2 = ((i + 1) % poly2length) * 2; int j1_by_2 = j * 2; int j2_by_2 = ((j + 1) % poly1length) * 2; boolean found = lineIntersection( poly2[i1_by_2], poly2[i1_by_2 + 1], poly2[i2_by_2], poly2[i2_by_2 + 1], poly1[j1_by_2], poly1[j1_by_2 + 1], poly1[j2_by_2], poly1[j2_by_2 + 1], intersection); if (found) { poly[count * 2] = intersection[0]; poly[count * 2 + 1] = intersection[1]; count++; } else { float dx = poly2[i * 2] - poly1[j * 2]; float dy = poly2[i * 2 + 1] - poly1[j * 2 + 1]; if (dx * dx + dy * dy < 0.01) { poly[count * 2] = poly2[i * 2]; poly[count * 2 + 1] = poly2[i * 2 + 1]; count++; } } } } if (count == 0) { return 0; } float avgx = 0; float avgy = 0; for (int i = 0; i < count; i++) { avgx += poly[i * 2]; avgy += poly[i * 2 + 1]; } avgx /= count; avgy /= count; float[] ctr = new float[] { avgx, avgy }; sort(poly, count, ctr); int size = count; poly2[0] = poly[0]; poly2[1] = poly[1]; count = 1; for (int i = 1; i < size; i++) { float dx = poly[i * 2] - poly[(i - 1) * 2]; float dy = poly[i * 2 + 1] - poly[(i - 1) * 2 + 1]; if (dx * dx + dy * dy >= 0.01) { poly2[count * 2] = poly[i * 2]; poly2[count * 2 + 1] = poly[i * 2 + 1]; count++; } } return count; } public static void sort(float[] poly, int polyLength, float[] ctr) { quicksortCirc(poly, 0, polyLength - 1, ctr); } public static float angle(float x1, float y1, float[] ctr) { return -(float) Math.atan2(x1 - ctr[0], y1 - ctr[1]); } private static void swap(float[] points, int i, int j) { float x = points[i * 2]; float y = points[i * 2 + 1]; points[i * 2] = points[j * 2]; points[i * 2 + 1] = points[j * 2 + 1]; points[j * 2] = x; points[j * 2 + 1] = y; } private static void quicksortCirc(float[] points, int low, int high, float[] ctr) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = angle(points[p * 2], points[p * 2 + 1], ctr); while (i <= j) { while (angle(points[i * 2], points[i * 2 + 1], ctr) < pivot) { i++; } while (angle(points[j * 2], points[j * 2 + 1], ctr) > pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) { quicksortCirc(points, low, j, ctr); } if (i < high) { quicksortCirc(points, i, high, ctr); } } private static void quicksortX(float[] points, int low, int high) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = points[p * 2]; while (i <= j) { while (points[i * 2] < pivot) { i++; } while (points[j * 2] > pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) { quicksortX(points, low, j); } if (i < high) { quicksortX(points, i, high); } } private static boolean pointInsidePolygon(float x, float y, float[] poly, int len) { boolean c = false; float testx = x; float testy = y; for (int i = 0, j = len - 1; i < len; j = i++) { if (((poly[i * 2 + 1] > testy) != (poly[j * 2 + 1] > testy)) && (testx < (poly[j * 2] - poly[i * 2]) * (testy - poly[i * 2 + 1]) / (poly[j * 2 + 1] - poly[i * 2 + 1]) + poly[i * 2])) { c = !c; } } return c; } private static void makeClockwise(float[] polygon, int len) { if (polygon == null || len == 0) { return; } if (!isClockwise(polygon, len)) { reverse(polygon, len); } } private static boolean isClockwise(float[] polygon, int len) { float sum = 0; float p1x = polygon[(len - 1) * 2]; float p1y = polygon[(len - 1) * 2 + 1]; for (int i = 0; i < len; i++) { float p2x = polygon[i * 2]; float p2y = polygon[i * 2 + 1]; sum += p1x * p2y - p2x * p1y; p1x = p2x; p1y = p2y; } return sum < 0; } private static void reverse(float[] polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { float tmp0 = polygon[i * 2]; float tmp1 = polygon[i * 2 + 1]; int k = len - 1 - i; polygon[i * 2] = polygon[k * 2]; polygon[i * 2 + 1] = polygon[k * 2 + 1]; polygon[k * 2] = tmp0; polygon[k * 2 + 1] = tmp1; } } /** * Intersects two lines in parametric form. */ private static final boolean lineIntersection( float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, float[] ret) { float d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); if (d == 0.000f) { return false; } float dx = (x1 * y2 - y1 * x2); float dy = (x3 * y4 - y3 * x4); float x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; float y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; if (((x - x1) * (x - x2) > EPSILON) || ((x - x3) * (x - x4) > EPSILON) || ((y - y1) * (y - y2) > EPSILON) || ((y - y3) * (y - y4) > EPSILON)) { return false; } ret[0] = x; ret[1] = y; return true; } /** * Imagine a donut shaped image and trying to create triangles from its centroid (like * cutting a pie). This function performs such action (and also edge-case triangle strips * generation) then returns the resulting triangle strips. * * @param retstrips - the resulting triangle strips */ public static void donutPie2(float[] penumbra, int penumbraLength, float[] umbra, int umbraLength, int rays, int layers, float strength, float[] retstrips) { int rings = layers + 1; double step = Math.PI * 2 / rays; float[] retxy = new float[2]; centroid2d(umbra, umbraLength, retxy); float cx = retxy[0]; float cy = retxy[1]; float[] t1 = new float[rays]; float[] t2 = new float[rays]; for (int i = 0; i < rays; i++) { float dx = (float) Math.sin(Math.PI / 4 + step * i); float dy = (float) Math.cos(Math.PI / 4 + step * i); t2[i] = rayIntersectPoly(umbra, umbraLength, cx, cy, dx, dy, 2)[0]; t1[i] = rayIntersectPoly(penumbra, penumbraLength, cx, cy, dx, dy, 2)[0]; } int p = 0; // Calc the vertex for (int r = 0; r < layers; r++) { int startp = p; for (int i = 0; i < rays; i++) { float dx = (float) Math.sin(Math.PI / 4 + step * i); float dy = (float) Math.cos(Math.PI / 4 + step * i); for (int j = r; j < (r + 2); j++) { float jf = j / (float) (rings - 1); float t = t1[i] + jf * (t2[i] - t1[i]); float op = (jf + 1 - 1 / (1 + (t - t1[i]) * (t - t1[i]))) / 2; retstrips[p * 3] = dx * t + cx; retstrips[p * 3 + 1] = dy * t + cy; retstrips[p * 3 + 2] = jf * op * strength; p++; } } retstrips[p * 3] = retstrips[startp * 3]; retstrips[p * 3 + 1] = retstrips[startp * 3 + 1]; retstrips[p * 3 + 2] = retstrips[startp * 3 + 2]; p++; startp++; retstrips[p * 3] = retstrips[startp * 3]; retstrips[p * 3 + 1] = retstrips[startp * 3 + 1]; retstrips[p * 3 + 2] = retstrips[startp * 3 + 2]; p++; } int oldp = p - 1; retstrips[p * 3] = retstrips[oldp * 3]; retstrips[p * 3 + 1] = retstrips[oldp * 3 + 1]; retstrips[p * 3 + 2] = retstrips[oldp * 3 + 2]; p+=2; oldp = p; for (int k = 0; k < rays; k++) { int i = k / 2; if ((k & 1) == 1) { // traverse the inside in a zig zag pattern // for strips i = rays - i - 1; } float dx = (float) Math.sin(Math.PI / 4 + step * i); float dy = (float) Math.cos(Math.PI / 4 + step * i); float jf = 1; float t = t1[i] + jf * (t2[i] - t1[i]); float op = (jf + 1 - 1 / (1 + (t - t1[i]) * (t - t1[i]))) / 2; retstrips[p * 3] = dx * t + cx; retstrips[p * 3 + 1] = dy * t + cy; retstrips[p * 3 + 2] = jf * op * strength; p++; } p = oldp - 1; retstrips[p * 3] = retstrips[oldp * 3]; retstrips[p * 3 + 1] = retstrips[oldp * 3 + 1]; retstrips[p * 3 + 2] = retstrips[oldp * 3 + 2]; } /** * @return Rect bound of flattened (ignoring z). LTRB * @param dimension - 2D or 3D */ public static float[] flatBound(float[] poly, int dimension) { int polySize = poly.length/dimension; float left = poly[0]; float right = poly[0]; float top = poly[1]; float bottom = poly[1]; for (int i = 0; i < polySize; i++) { float x = poly[i * dimension + 0]; float y = poly[i * dimension + 1]; if (left > x) { left = x; } else if (right < x) { right = x; } if (top > y) { top = y; } else if (bottom < y) { bottom = y; } } return new float[]{left, top, right, bottom}; } /** * Translate the polygon to x and y * @param dimension in what dimension is polygon represented (supports 2 or 3D). */ public static void translate(float[] poly, float translateX, float translateY, int dimension) { int polySize = poly.length/dimension; for (int i = 0; i < polySize; i++) { poly[i * dimension + 0] += translateX; poly[i * dimension + 1] += translateY; } } }