/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OperationsUtils" #include "OperationsUtils.h" #include "Operations.h" #include "Utils.h" #include namespace android { namespace nn { namespace { bool validateOperandTypes(const std::vector& expectedTypes, const char* tag, uint32_t operandCount, std::function getOperandType) { NN_RET_CHECK_EQ(operandCount, expectedTypes.size()); for (uint32_t i = 0; i < operandCount; ++i) { OperandType type = getOperandType(i); NN_RET_CHECK(type == expectedTypes[i]) << "Invalid " << tag << " tensor type " << toString(type) << " for " << tag << " " << i << ", expected " << toString(expectedTypes[i]); } return true; } } // namespace bool validateInputTypes(const IOperationValidationContext* context, const std::vector& expectedTypes) { return validateOperandTypes(expectedTypes, "input", context->getNumInputs(), [context](uint32_t index) { return context->getInputType(index); }); } bool validateOutputTypes(const IOperationValidationContext* context, const std::vector& expectedTypes) { return validateOperandTypes( expectedTypes, "output", context->getNumOutputs(), [context](uint32_t index) { return context->getOutputType(index); }); } bool validateHalVersion(const IOperationValidationContext* context, HalVersion minSupportedHalVersion) { if (context->getHalVersion() < minSupportedHalVersion) { NN_RET_CHECK_FAIL() << "The given inputs and outputs are only supported in " << toString(minSupportedHalVersion) << " and later (validating using " << toString(context->getHalVersion()) << ")"; } return true; } bool SameShape(const Shape& in1, const Shape& in2) { if (in1.type != in2.type || in1.dimensions.size() != in2.dimensions.size()) { return false; } for (size_t i = 0; i < in1.dimensions.size(); i++) { if (in1.dimensions[i] != in2.dimensions[i]) { return false; } } return true; } bool SetShape(const Shape& in, Shape* out) { if (in.type != out->type) { return false; } out->dimensions = in.dimensions; return true; } bool combineDimensions(const std::vector& lhs, const std::vector& rhs, std::vector* combined) { if (rhs.empty()) { *combined = lhs; return true; } if (lhs.empty()) { *combined = rhs; return true; } NN_RET_CHECK_EQ(lhs.size(), rhs.size()) << "incompatible ranks"; combined->resize(lhs.size()); for (uint32_t i = 0; i < lhs.size(); i++) { if (lhs[i] == 0) { (*combined)[i] = rhs[i]; continue; } if (rhs[i] == 0) { (*combined)[i] = lhs[i]; continue; } NN_RET_CHECK_EQ(lhs[i], rhs[i]) << "incompatible dimension: " << i; (*combined)[i] = lhs[i]; } return true; } uint32_t getNumberOfElements(const Shape& shape) { uint32_t count = 1; for (size_t i = 0; i < shape.dimensions.size(); i++) { count *= shape.dimensions[i]; } return count; } uint32_t getNumberOfElements(const Shape& shape, size_t firstAxisInclusive, size_t lastAxisExclusive) { nnAssert(0 <= firstAxisInclusive); nnAssert(firstAxisInclusive <= lastAxisExclusive); nnAssert(lastAxisExclusive <= shape.dimensions.size()); uint32_t count = 1; for (size_t i = firstAxisInclusive; i < lastAxisExclusive; i++) { count *= shape.dimensions[i]; } return count; } uint32_t getNumberOfDimensions(const Shape& shape) { return shape.dimensions.size(); } uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx) { nnAssert(0 <= dimensionIdx && dimensionIdx < shape.dimensions.size()); return shape.dimensions[dimensionIdx]; } bool handleNegativeAxis(int32_t numberOfDimensions, int32_t* axis) { NN_CHECK(-numberOfDimensions <= *axis && *axis < numberOfDimensions); if (*axis < 0) { *axis += numberOfDimensions; } return true; } bool QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, int* shift) { if (double_multiplier == 0.) { *quantized_multiplier = 0; *shift = 0; return true; } const double q = std::frexp(double_multiplier, shift); auto q_fixed = static_cast(std::round(q * (1ll << 31))); NN_RET_CHECK(q_fixed <= (1ll << 31)); if (q_fixed == (1ll << 31)) { q_fixed /= 2; ++*shift; } NN_RET_CHECK_LE(q_fixed, std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return true; } bool QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t* quantized_multiplier, int32_t* right_shift) { NN_OPS_CHECK(double_multiplier >= 0.); NN_OPS_CHECK(double_multiplier < 1.); if (double_multiplier == 0.) { *quantized_multiplier = 0; *right_shift = 0; return true; } NN_OPS_CHECK(double_multiplier > 0.); const double q = std::frexp(double_multiplier, right_shift); *right_shift *= -1; int64_t q_fixed = static_cast(std::round(q * (1LL << 31))); NN_OPS_CHECK(q_fixed <= (1LL << 31)); if (q_fixed == (1LL << 31)) { q_fixed /= 2; --*right_shift; } NN_OPS_CHECK(*right_shift >= 0); NN_OPS_CHECK(q_fixed <= std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return true; } bool QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t* quantized_multiplier, int* left_shift) { NN_OPS_CHECK(double_multiplier > 1.); const double q = std::frexp(double_multiplier, left_shift); int64_t q_fixed = static_cast(std::round(q * (1LL << 31))); NN_OPS_CHECK(q_fixed <= (1LL << 31)); if (q_fixed == (1LL << 31)) { q_fixed /= 2; ++*left_shift; } NN_OPS_CHECK(*left_shift >= 0); NN_OPS_CHECK(q_fixed <= std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return true; } bool GetQuantizedConvolutionMultipler(const Shape& inputShape, const Shape& filterShape, const Shape& biasShape, const Shape& outputShape, double* multiplier) { // Upcast bias and input_product to double const double input_product_scale = inputShape.scale * filterShape.scale; const double bias_scale = biasShape.scale; // The following conditions must be guaranteed by the training pipeline. NN_OPS_CHECK(std::abs(input_product_scale - bias_scale) <= 1e-6 * std::min(input_product_scale, bias_scale)); NN_OPS_CHECK(input_product_scale >= 0); *multiplier = input_product_scale / outputShape.scale; return true; } void CalculateActivationRangeUint8(int32_t activation, const Shape& outputShape, int32_t* act_min, int32_t* act_max) { const int32_t qmin = std::numeric_limits::min(); const int32_t qmax = std::numeric_limits::max(); const auto scale = outputShape.scale; const auto zero_point = outputShape.offset; auto quantize = [scale, zero_point](float f) { return zero_point + static_cast(std::round(f / scale)); }; if (activation == kActivationRelu) { *act_min = std::max(qmin, quantize(0.0)); *act_max = qmax; } else if (activation == kActivationRelu6) { *act_min = std::max(qmin, quantize(0.0)); *act_max = std::min(qmax, quantize(6.0)); } else if (activation == kActivationRelu1) { *act_min = std::max(qmin, quantize(-1.0)); *act_max = std::min(qmax, quantize(1.0)); } else if (activation == kActivationNone){ *act_min = qmin; *act_max = qmax; } else { LOG(ERROR) << "Unsupported fused activation function."; } } void CalculateActivationRangeFloat(int32_t activation, float* activation_min, float* activation_max) { if (activation == kActivationRelu) { *activation_min = 0.f; *activation_max = std::numeric_limits::max(); } else if (activation == kActivationRelu6) { *activation_min = 0.f; *activation_max = 6.f; } else if (activation == kActivationRelu1) { *activation_min = -1.f; *activation_max = 1.f; } else if (activation == kActivationNone){ *activation_min = std::numeric_limits::lowest(); *activation_max = std::numeric_limits::max(); } else { LOG(ERROR) << "Unsupported fused activation function."; } } int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift) { const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) * (1LL << (31 - input_integer_bits)) / (1LL << input_left_shift); // Tighten bound using floor. Suppose that we could use the exact value. // After scaling the difference, the result would be at the maximum. Thus we // must ensure that our value has lower magnitude. return static_cast(std::floor(max_input_rescaled)); } void calculateExplicitPaddingImpl(int32_t in_size, int32_t stride, int32_t dilation_factor, int32_t filter_size, int32_t padding_implicit, bool isTransposeConv, int32_t* padding_head, int32_t* padding_tail) { *padding_head = 0; *padding_tail = 0; int32_t effective_filter_size = (filter_size - 1) * dilation_factor + 1; if (padding_implicit == kPaddingSame) { int32_t out_size = (in_size + stride - 1) / stride; int32_t tmp = (out_size - 1) * stride + effective_filter_size; if (tmp > in_size) { *padding_head = (tmp - in_size) / 2; *padding_tail = (tmp - in_size) - *padding_head; } // For transpose conv, make padding tail fit tightly to the end of the last stride. if (isTransposeConv) { *padding_tail = (tmp - in_size) - *padding_head; } } } bool calculateBroadcastedShape(const Shape& in1, const Shape& in2, Shape* out) { NN_RET_CHECK(in1.type == in2.type); uint32_t numberOfDims1 = getNumberOfDimensions(in1); uint32_t numberOfDims2 = getNumberOfDimensions(in2); uint32_t maxDims = std::max(numberOfDims1, numberOfDims2); out->dimensions = std::vector(maxDims); for (uint32_t i = 1; i <= maxDims; i++) { uint32_t dim1 = 1; if (i <= numberOfDims1) { dim1 = getSizeOfDimension(in1, numberOfDims1 - i); } uint32_t dim2 = 1; if (i <= numberOfDims2) { dim2 = getSizeOfDimension(in2, numberOfDims2 - i); } if (dim1 != dim2 && dim1 != 1 && dim2 != 1) { LOG(ERROR) << "Dimensions mismatch for broadcast:\n" << "First tensor: dimension " << numberOfDims1 - i << " of size " << dim1 << "\nSecond tensor: dimension " << numberOfDims2 - i << "of size " << dim2; return false; } out->dimensions[maxDims - i] = (dim1 == 1) ? dim2 : dim1; } return true; } uint8_t requantize(uint8_t value, const Shape& oldShape, const Shape& newShape) { double doubleValue = (value - oldShape.offset) * oldShape.scale; double doubleRet = doubleValue / newShape.scale + newShape.offset; if (doubleRet < 0) return 0; if (doubleRet > 255) return 255; return static_cast(std::round(doubleRet)); } bool floorPrepare(const Shape& input, Shape* output) { return SetShape(input, output); } bool depthwiseConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t depth_multiplier, int32_t dilation_width_factor, int32_t dilation_height_factor, Shape* output) { if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM); } else { NN_OPS_CHECK(input.type == filter.type); } if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_OPS_CHECK(input.type == bias.type); } NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(getNumberOfDimensions(filter) == 4); NN_OPS_CHECK(getNumberOfDimensions(bias) == 1); NN_OPS_CHECK(getSizeOfDimension(filter, 3) == getSizeOfDimension(bias, 0)); uint32_t channels_out = getSizeOfDimension(filter, 3); uint32_t channels_in = getSizeOfDimension(input, 3); uint32_t width = getSizeOfDimension(input, 2); uint32_t height = getSizeOfDimension(input, 1); uint32_t filterWidth = getSizeOfDimension(filter, 2); uint32_t filterHeight = getSizeOfDimension(filter, 1); uint32_t batches = getSizeOfDimension(input, 0); NN_OPS_CHECK(depth_multiplier * channels_in == channels_out); int32_t effectiveFilterWidth = (filterWidth - 1) * dilation_width_factor + 1; int32_t effectiveFilterHeight = (filterHeight - 1) * dilation_height_factor + 1; NN_RET_CHECK_GT(effectiveFilterWidth, padding_left); NN_RET_CHECK_GT(effectiveFilterWidth, padding_right); NN_RET_CHECK_GT(effectiveFilterHeight, padding_top); NN_RET_CHECK_GT(effectiveFilterHeight, padding_bottom); uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, dilation_width_factor, padding_left, padding_right); uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, dilation_height_factor, padding_top, padding_bottom); output->type = input.type; output->dimensions = {batches, outHeight, outWidth, channels_out}; return true; } bool genericActivationPrepare(const Shape& input, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) <= 4); return SetShape(input, output); } bool genericNormalizationPrepare(const Shape& input, Shape* output) { return SetShape(input, output); } bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize, Shape* output) { // Reshape allows one of the targetDims components to have the // special -1 value, meaning it will be calculated automatically based on the // input. Here we calculate what that dimension should be so that the number // of output elements in the same as the number of input elements. int32_t numInputElements = (int32_t) getNumberOfElements(input); std::vector outDims(targetDimsSize); int32_t numOutputElements = 1; int32_t strechDim = -1; for (int32_t i = 0; i < targetDimsSize; ++i) { int32_t value = targetDims[i]; if (value == -1) { NN_OPS_CHECK(strechDim == -1); strechDim = i; } else { numOutputElements *= value; outDims[i] = (uint32_t)value; } } if (strechDim != -1) { int32_t strechValue = numInputElements / numOutputElements; outDims[strechDim] = (uint32_t) strechValue; numOutputElements *= strechValue; } NN_OPS_CHECK(numInputElements == numOutputElements); output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(blockSize > 0); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(channels % (blockSize * blockSize) == 0); output->type = input.type; output->dimensions = {batches, height * blockSize, width * blockSize, channels / (blockSize * blockSize)}; output->offset = input.offset; output->scale = input.scale; return true; } bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) { NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(blockSize > 0); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(height % blockSize == 0); NN_OPS_CHECK(width % blockSize == 0); output->type = input.type; output->dimensions = {batches, height / blockSize, width / blockSize, channels * (blockSize * blockSize)}; output->offset = input.offset; output->scale = input.scale; return true; } bool embeddingLookupPrepare(const Shape &valueShape, const Shape &lookupShape, Shape *outputShape) { NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 2); NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1); const uint32_t rows = getSizeOfDimension(valueShape, 0); const uint32_t columns = getSizeOfDimension(valueShape, 1); const uint32_t lookups = getSizeOfDimension(lookupShape, 0); outputShape->type = valueShape.type; outputShape->dimensions = { lookups, columns }; for (uint32_t i = 2; i < getNumberOfDimensions(valueShape); i++) { outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i)); } outputShape->offset = valueShape.offset; outputShape->scale = valueShape.scale; return true; } bool hashtableLookupPrepare(const Shape &lookupShape, const Shape &keyShape, const Shape &valueShape, Shape *outputShape, Shape *hitShape) { NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(keyShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 1); const uint32_t lookups = getSizeOfDimension(lookupShape, 0); const uint32_t keys = getSizeOfDimension(keyShape, 0); const uint32_t rows = getSizeOfDimension(valueShape, 0); outputShape->type = valueShape.type; outputShape->dimensions = { lookups }; for (uint32_t i = 1; i < getNumberOfDimensions(valueShape); i++) { outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i)); } outputShape->offset = valueShape.offset; outputShape->scale = valueShape.scale; hitShape->type = OperandType::TENSOR_QUANT8_ASYMM; hitShape->dimensions = { lookups }; hitShape->offset = 0; hitShape->scale = 1.f; return true; } bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output) { uint32_t numInputDims = getNumberOfDimensions(input); // paddings need to be provided as a 2-D int32 tensor. NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2); std::vector outDims(numInputDims); for (uint32_t i = 0; i < numInputDims; ++i) { int32_t beforePadding = *paddingsData++; int32_t afterPadding = *paddingsData++; // Pad value has to be greater than equal to 0. NN_OPS_CHECK(beforePadding >= 0 && afterPadding >= 0); outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding; } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, Shape* output) { // Only 4D NHWC tensors are supported. NN_OPS_CHECK(getNumberOfDimensions(input) == 4); // blockSize need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1); // Only applies to spatial dimensions. NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); output->type = input.type; output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), height * blockSizeData[0], width * blockSizeData[1], channels}; output->offset = input.offset; output->scale = input.scale; return true; } bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output) { // Only 4D NHWC tensors are supported. NN_OPS_CHECK(getNumberOfDimensions(input) == 4); // blockSize need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1); // Only applies to spatial dimensions. NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2); // paddings need to be provided as a 2-D int32 tensor. NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == 2); NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, 1); uint32_t width = getSizeOfDimension(input, 2); uint32_t channels = getSizeOfDimension(input, 3); uint32_t paddedHeight = paddingsData[0] + height + paddingsData[1]; uint32_t paddedWidth = paddingsData[2] + width + paddingsData[3]; NN_OPS_CHECK(paddedHeight % blockSizeData[0] == 0); NN_OPS_CHECK(paddedWidth % blockSizeData[1] == 0); output->type = input.type; output->dimensions = {batches * (blockSizeData[0] * blockSizeData[1]), paddedHeight / blockSizeData[0], paddedWidth / blockSizeData[1], channels}; output->offset = input.offset; output->scale = input.scale; return true; } bool squeezePrepare(const Shape& input, const int32_t* squeezeDims, const Shape& squeezeDimsShape, Shape* output) { int32_t numInputDims = static_cast(getNumberOfDimensions(input)); // squeezeDims need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(squeezeDimsShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(squeezeDimsShape) == 1); int32_t squeezeDimsSize = static_cast(getSizeOfDimension(squeezeDimsShape, 0)); std::vector shouldSqueeze(numInputDims, false); int32_t numDimsSqueezed = 0; if (squeezeDimsSize == 0) { // If squeezeDimsSize is 0, all dims with value 1 will be squeezed. for (int32_t idx = 0; idx < numInputDims; ++idx) { if (getSizeOfDimension(input, idx) == 1) { shouldSqueeze[idx] = true; ++numDimsSqueezed; } } } else { for (int32_t idx = 0; idx < squeezeDimsSize; ++idx) { int32_t current = squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx]; NN_OPS_CHECK(current >= 0 && current < numInputDims && getSizeOfDimension(input, current) == 1); if (!shouldSqueeze[current]) ++numDimsSqueezed; shouldSqueeze[current] = true; } } // Sets output dimensions. std::vector outDims(numInputDims - numDimsSqueezed); for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) { if (!shouldSqueeze[inIdx]) { outDims[outIdx++] = getSizeOfDimension(input, inIdx); } } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, Shape* output) { // perm need to be provided as a 1-D int32 tensor. NN_OPS_CHECK(axisShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(getNumberOfDimensions(axisShape) == 1); int32_t numInputDims = static_cast(getNumberOfDimensions(input)); int32_t axisSize = static_cast(getSizeOfDimension(axisShape, 0)); // Determines size of output tensor. if (keepDims) { std::vector outDims(numInputDims); for (int32_t idx = 0; idx < numInputDims; ++idx) { bool isAxis = false; for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) { if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) { isAxis = true; break; } } if (isAxis) { outDims[idx] = 1; } else { outDims[idx] = getSizeOfDimension(input, idx); } } output->dimensions = outDims; } else { // Calculates size of reducing axis. int32_t numReduceAxis = axisSize; for (int32_t i = 0; i < axisSize; ++i) { int32_t current = axisData[i]; if (current < 0) { current += numInputDims; } NN_OPS_CHECK(current >= 0 && current < numInputDims); for (int32_t j = 0; j < i; ++j) { int32_t previous = axisData[j]; if (previous < 0) { previous += numInputDims; } if (current == previous) { --numReduceAxis; break; } } } // Determines output dimensions. std::vector outDims(numInputDims - numReduceAxis); int32_t numSkipAxis = 0; for (int32_t idx = 0; idx < numInputDims; ++idx) { bool isAxis = false; for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) { if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) { ++numSkipAxis; isAxis = true; break; } } if (!isAxis) { outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx); } } output->dimensions = outDims; } output->type = input.type; output->offset = input.offset; output->scale = input.scale; return true; } bool stridedSlicePrepare(const Shape& input, const int32_t* beginData, const Shape& beginShape, const int32_t* endData, const Shape& endShape, const int32_t* stridesData, const Shape& stridesShape, int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask, Shape* output) { uint32_t numInputDims = getNumberOfDimensions(input); // StridedSlice op only supports 1D-4D input arrays. NN_OPS_CHECK(numInputDims <= 4); NN_OPS_CHECK(getNumberOfDimensions(beginShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(endShape) == 1); NN_OPS_CHECK(getNumberOfDimensions(stridesShape) == 1); NN_OPS_CHECK(getSizeOfDimension(beginShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(endShape, 0) == numInputDims); NN_OPS_CHECK(getSizeOfDimension(stridesShape, 0) == numInputDims); NN_OPS_CHECK(beginShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(endShape.type == OperandType::TENSOR_INT32); NN_OPS_CHECK(stridesShape.type == OperandType::TENSOR_INT32); // Determine size of output tensor and map indices std::vector outDims; for (int32_t idx = 0; idx < static_cast(numInputDims); idx++) { int32_t dim = static_cast(getSizeOfDimension(input, idx)); int32_t stride = stridesData[idx]; // stride value has to be non-zero NN_OPS_CHECK(stride != 0); bool positiveStride = stride > 0; int32_t begin = beginMask & (1 << idx) ? positiveStride ? 0 : dim - 1 : ClampedIndex(beginData[idx], dim, positiveStride); int32_t end = endMask & (1 << idx) ? positiveStride ? dim : -1 : ClampedIndex(endData[idx], dim, positiveStride); // This is valid for both positive and negative strides int32_t outDim = ceil((end - begin) / static_cast(stride)); outDim = outDim < 0 ? 0 : static_cast(outDim); if (!(shrinkAxisMask & (1 << idx))) { outDims.push_back(outDim); } else { if (outDim != 1) { LOG(ERROR) << "Outdim " << idx << " is " << outDim << ", expected 1"; NN_OPS_CHECK(outDim == 1); } } } output->type = input.type; output->dimensions = outDims; output->offset = input.offset; output->scale = input.scale; return true; } bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output) { NN_CHECK(handleNegativeAxis(input, &axis)); output->type = OperandType::TENSOR_INT32; // Copy the input dimensions, omitting the axis dimension. output->dimensions.clear(); output->dimensions.reserve(getNumberOfDimensions(input) - 1); output->dimensions.insert(output->dimensions.end(), input.dimensions.begin(), input.dimensions.begin() + axis); output->dimensions.insert(output->dimensions.end(), input.dimensions.begin() + axis + 1, input.dimensions.end()); return true; } bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, std::vector* output) { NN_CHECK(handleNegativeAxis(input, &axis)); const int32_t sizeOfAxisToSplit = input.dimensions[axis]; NN_OPS_CHECK(sizeOfAxisToSplit % numOutputs == 0); const int32_t sliceSize = sizeOfAxisToSplit / numOutputs; for (int i = 0; i < numOutputs; ++i) { output->at(i).type = input.type; output->at(i).dimensions = input.dimensions; output->at(i).dimensions[axis] = sliceSize; output->at(i).offset = input.offset; output->at(i).scale = input.scale; } return true; } bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, Shape* output) { if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM); } else { NN_OPS_CHECK(input.type == filter.type); } if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_OPS_CHECK(input.type == bias.type); } NN_OPS_CHECK(getNumberOfDimensions(input) == 4); NN_OPS_CHECK(getNumberOfDimensions(filter) == 4); NN_OPS_CHECK(getNumberOfDimensions(bias) == 1); NN_OPS_CHECK(getSizeOfDimension(filter, 0) == getSizeOfDimension(bias, 0)); NN_OPS_CHECK(getSizeOfDimension(filter, 3) * numGroups == getSizeOfDimension(input, 3)); NN_OPS_CHECK(getSizeOfDimension(filter, 0) % numGroups == 0); uint32_t channels_out = getSizeOfDimension(filter, 0); uint32_t width = getSizeOfDimension(input, 2); uint32_t height = getSizeOfDimension(input, 1); uint32_t filterWidth = getSizeOfDimension(filter, 2); uint32_t filterHeight = getSizeOfDimension(filter, 1); uint32_t batches = getSizeOfDimension(input, 0); NN_RET_CHECK_GT(static_cast(filterWidth), padding_left); NN_RET_CHECK_GT(static_cast(filterWidth), padding_right); NN_RET_CHECK_GT(static_cast(filterHeight), padding_top); NN_RET_CHECK_GT(static_cast(filterHeight), padding_bottom); uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, padding_top, padding_bottom); output->type = input.type; output->dimensions = {batches, outHeight, outWidth, channels_out}; return true; } } // namespace nn } // namespace android