/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H #define ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H #include "Utils.h" #include #include namespace android { namespace nn { // DEPRECATED. Use NN_RET_CHECK instead. #define NN_CHECK(x) NN_RET_CHECK(x) #define NN_OPS_CHECK(x) NN_RET_CHECK(x) // DEPRECATED. Use NN_RET_CHECK_EQ instead. #define NN_CHECK_EQ(x, y) NN_RET_CHECK_EQ(x, y) // An 8-bit boolean type (sizeof(bool) is implementation-defined). typedef uint8_t bool8; enum PaddingScheme { kPaddingUnknown = 0, kPaddingSame = 1, kPaddingValid = 2, }; // Stores operand type information. "Shape" is a historical name. struct Shape { OperandType type; std::vector dimensions; float scale; int32_t offset; Operand::ExtraParams extraParams; }; // Provides information available during graph creation to validate an operation. class IOperationValidationContext { public: virtual ~IOperationValidationContext() {} // The HAL version of the environment in which the operation is to be // executed. // // Operation validation logic needs to handle all HAL versions to support // the following use cases (assume in these examples that the latest HAL // version is V1_2): // 1. Our runtime wants to distribute work to a driver implementing an older // HAL version and calls, for example, // compliantWithV1_0(const V1_2::Model&). // 2. A driver implements an older HAL version and delegates model // validation to, for example, validateModel(const V1_0::Model&). // // If getHalVersion() returns HalVersion::V1_0 and the operation // is only supported since HalVersion::V1_1, validation will fail. virtual HalVersion getHalVersion() const = 0; virtual uint32_t getNumInputs() const = 0; virtual OperandType getInputType(uint32_t index) const = 0; virtual Shape getInputShape(uint32_t index) const = 0; virtual const Operand::ExtraParams getInputExtraParams(uint32_t index) const = 0; virtual uint32_t getNumOutputs() const = 0; virtual OperandType getOutputType(uint32_t index) const = 0; virtual Shape getOutputShape(uint32_t index) const = 0; }; // Provides inputs and outputs during operation execution. class IOperationExecutionContext { public: virtual ~IOperationExecutionContext() {} virtual uint32_t getNumInputs() const = 0; virtual OperandType getInputType(uint32_t index) const = 0; virtual Shape getInputShape(uint32_t index) const = 0; virtual const void* getInputBuffer(uint32_t index) const = 0; virtual const Operand::ExtraParams getInputExtraParams(uint32_t index) const = 0; virtual uint32_t getNumOutputs() const = 0; virtual OperandType getOutputType(uint32_t index) const = 0; virtual Shape getOutputShape(uint32_t index) const = 0; virtual void* getOutputBuffer(uint32_t index) = 0; // Updates the output shape, allocating the buffer if necessary. virtual bool setOutputShape(uint32_t index, const Shape& shape) = 0; virtual bool isOmittedInput(uint32_t index) const = 0; virtual bool isOmittedOutput(uint32_t index) const = 0; template const T* getInputBuffer(uint32_t index) const { return reinterpret_cast(getInputBuffer(index)); } template T* getOutputBuffer(uint32_t index) { return reinterpret_cast(getOutputBuffer(index)); } template T getInputValue(uint32_t index) const { return getInputBuffer(index)[0]; } }; // Verifies that the number and types of operation inputs are as expected. bool validateInputTypes(const IOperationValidationContext* context, const std::vector& expectedTypes); // Verifies that the number and types of operation outputs are as expected. bool validateOutputTypes(const IOperationValidationContext* context, const std::vector& expectedTypes); // Verifies that the HAL version specified in the context is greater or equal // than the minimal supported HAL version. bool validateHalVersion(const IOperationValidationContext* context, HalVersion minSupportedHalVersion); // Verifies that the two shapes are the same. bool SameShape(const Shape& in1, const Shape& in2); // Sets out to the same shape as in. bool SetShape(const Shape& in, Shape* out); // Combine two tensor dimensions, both can have unspecified dimensions. bool combineDimensions(const std::vector& lhs, const std::vector& rhs, std::vector* combined); // Return the total number of elements, i.e. all the dimensions multiplied // together. For a scalar, returns one. uint32_t getNumberOfElements(const Shape& shape); uint32_t getNumberOfElements(const Shape& shape, size_t firstAxisInclusive, size_t lastAxisExclusive); uint32_t getNumberOfDimensions(const Shape& shape); uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx); // Converts an axis index from the range [-dims, dims) into the range [0, dims). bool handleNegativeAxis(int32_t numberOfDimensions, int32_t* axis); inline bool handleNegativeAxis(const Shape& shape, int32_t* axis) { return handleNegativeAxis(getNumberOfDimensions(shape), axis); } inline int32_t computeOutSize(int32_t imageSize, int32_t filterSize, int32_t stride, int32_t paddingHead, int32_t paddingTail) { return (imageSize - filterSize + stride + paddingHead + paddingTail) / stride; } inline int32_t computeOutSize(int32_t imageSize, int32_t filterSize, int32_t stride, int32_t dilationRate, int32_t paddingHead, int32_t paddingTail) { int32_t effectiveFilterSize = ((filterSize - 1) * dilationRate + 1); return (imageSize - effectiveFilterSize + stride + paddingHead + paddingTail) / stride; } inline int32_t computeOutSizeTransposeConv(int32_t imageSize, int32_t filterSize, int32_t stride, int32_t paddingHead, int32_t paddingTail) { return imageSize * stride + filterSize - stride - paddingHead - paddingTail; } __wur bool QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, int* shift); __wur bool QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t* quantized_multiplier, int32_t* right_shift); __wur bool QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t* quantized_multiplier, int* left_shift); __wur bool GetQuantizedConvolutionMultipler(const Shape& inputShape, const Shape& filterShape, const Shape& biasShape, const Shape& outputShape, double* multiplier); void CalculateActivationRangeUint8(int32_t activation, const Shape& outputShape, int32_t* act_min, int32_t* act_max); void CalculateActivationRangeFloat(int32_t activation, float* activation_min, float* activation_max); int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift); void calculateExplicitPaddingImpl(int32_t in_size, int32_t stride, int32_t dilation_factor, int32_t filter_size, int32_t padding_implicit, bool isTransposeConv, int32_t* padding_head, int32_t* padding_tail); inline void calculateExplicitPadding(int32_t in_size, int32_t stride, int32_t dilation_factor, int32_t filter_size, int32_t padding_implicit, int32_t* padding_head, int32_t* padding_tail) { calculateExplicitPaddingImpl(in_size, stride, dilation_factor, filter_size, padding_implicit, /*isTransposeConv=*/false, padding_head, padding_tail); } inline void calculateExplicitPadding(int32_t in_size, int32_t stride, int32_t filter_size, int32_t padding_implicit, int32_t* padding_head, int32_t* padding_tail) { calculateExplicitPadding(in_size, stride, 1, filter_size, padding_implicit, padding_head, padding_tail); } inline void calculateExplicitPaddingTransposeConv(int32_t in_size, int32_t stride, int32_t filter_size, int32_t padding_implicit, int32_t* padding_head, int32_t* padding_tail) { calculateExplicitPaddingImpl(in_size, stride, /*dilation_factor=*/1, filter_size, padding_implicit, /*isTransposeConv=*/true, padding_head, padding_tail); } inline PaddingScheme getPaddingScheme(int32_t inWidth, int32_t inHeight, int32_t strideWidth, int32_t strideHeight, int32_t filterWidth, int32_t filterHeight, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom) { if (paddingLeft == 0 && paddingRight == 0 && paddingTop == 0 && paddingBottom == 0) { return kPaddingValid; } int32_t expectedPaddingLeft, expectedPaddingRight; int32_t expectedPaddingTop, expectedPaddingBottom; calculateExplicitPadding(inWidth, strideWidth, filterWidth, kPaddingSame, &expectedPaddingLeft, &expectedPaddingRight); calculateExplicitPadding(inHeight, strideHeight, filterHeight, kPaddingSame, &expectedPaddingTop, &expectedPaddingBottom); if (expectedPaddingLeft == paddingLeft && expectedPaddingRight == paddingRight && expectedPaddingTop == paddingTop && expectedPaddingBottom == paddingBottom) { return kPaddingSame; } else { return kPaddingUnknown; } } // TODO: add more documentation from upstream. // Reverse order of bits in the mask to match the expected order in kernel inline int ReverseMaskBits(int mask, int num_dimensions) { int out = 0; for (int dim = 0; dim < num_dimensions; dim++) { out <<= 1; out += (mask & 1); mask >>= 1; } return out; } // TODO: add more documentation from upstream. inline int32_t PositiveRemainder(int32_t dividend, int32_t divisor) { return (divisor + (dividend % divisor)) % divisor; } // TODO: add more documentation from upstream. inline int32_t ClampedIndex(int32_t index, int dim, bool pos_stride) { return pos_stride ? (index >= dim ? dim : PositiveRemainder( std::min(std::max(index, -dim), dim), dim)) : (index < -dim ? -1 : PositiveRemainder( std::min(std::max(index, -dim), dim - 1), dim)); } // Broadcasts input shape against one another and puts the result into output // shape. Returns true on success and false on error. bool calculateBroadcastedShape(const Shape& in1, const Shape& in2, Shape* out); // Dequantizes a value and quantizes it back using new scale and offset. uint8_t requantize(uint8_t value, const Shape& oldShape, const Shape& newShape); // Preparation functions for the corresponding ops bool floorPrepare(const Shape& input, Shape* output); bool depthwiseConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t depth_multiplier, int32_t dilation_width_factor, int32_t dilation_height_factor, Shape* output); bool genericActivationPrepare(const Shape& input, Shape* output); bool genericNormalizationPrepare(const Shape& input, Shape* output); bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize, Shape* output); bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output); bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output); bool embeddingLookupPrepare(const Shape &valueShape, const Shape &lookupShape, Shape *outputShape); bool hashtableLookupPrepare(const Shape &lookupShape, const Shape &keyShape, const Shape &valueShape, Shape *outputShape, Shape *hitShape); bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output); bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, Shape* output); bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, const Shape& blockSizeShape, const int32_t* paddingsData, const Shape& paddingsShape, Shape* output); bool squeezePrepare(const Shape& input, const int32_t* squeezeDims, const Shape& squeezeDimsShape, Shape* output); bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, Shape* output); bool stridedSlicePrepare(const Shape& input, const int32_t* beginData, const Shape& beginShape, const int32_t* endData, const Shape& endShape, const int32_t* stridesData, const Shape& stridesShape, int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask, Shape* output); bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output); bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, std::vector* output); bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, Shape* output); // Transposes the first two dimensions. template inline bool transposeFirstTwoDimensions(const T* buffer, const Shape& shape, T* transposedBuffer) { const int numDims = getNumberOfDimensions(shape); NN_RET_CHECK(numDims >= 2); const int firstDim = getSizeOfDimension(shape, 0); const int secondDim = getSizeOfDimension(shape, 1); int blockSize = 1; for (int i = 2; i < numDims; ++i) { blockSize *= getSizeOfDimension(shape, i); } for (int i = 0; i < firstDim; ++i) { for (int j = 0; j < secondDim; ++j) { for (int k = 0; k < blockSize; ++k) { transposedBuffer[(j * firstDim + i) * blockSize + k] = buffer[(i * secondDim + j) * blockSize + k]; } } } return true; } inline bool transposeFirstTwoDimensions(const Shape& shape, Shape* transposedShape) { NN_RET_CHECK(getNumberOfDimensions(shape) >= 2); *transposedShape = shape; transposedShape->dimensions[0] = shape.dimensions[1]; transposedShape->dimensions[1] = shape.dimensions[0]; return true; } // Given two 3-dimensional tensors, merge them into one 3-dimensional tensor // at the third dimension. The merged tensor's third dimension size will be // sum of that of the two inputs. template inline bool mergeThirdDimension(const T* bufferA, const std::vector& dimsA, const T* bufferB, const std::vector& dimsB, T* merged) { NN_RET_CHECK_EQ(dimsA.size(), 3u); NN_RET_CHECK_EQ(dimsB.size(), 3u); NN_RET_CHECK_EQ(dimsA[0], dimsB[0]); NN_RET_CHECK_EQ(dimsA[1], dimsB[1]); for (unsigned int i = 0; i < dimsA[0]; ++i) { for (unsigned int j = 0; j < dimsA[1]; ++j) { for (unsigned int k = 0; k < dimsA[2]; ++k) { merged[(i * dimsA[1] + j) * (dimsA[2] + dimsB[2]) + k] = bufferA[(i * dimsA[1] + j) * dimsA[2] + k]; } for (unsigned int k = 0; k < dimsB[2]; ++k) { merged[(i * dimsA[1] + j) * (dimsA[2] + dimsB[2]) + dimsA[2] + k] = bufferB[(i * dimsB[1] + j) * dimsB[2] + k]; } } } return true; } } // namespace nn } // namespace android #endif // ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H