/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CpuOperationUtils.h" #include "OperationResolver.h" #include "Operations.h" #include "Utils.h" #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h" #include "Tracing.h" namespace android { namespace nn { namespace conv_2d { constexpr char kOperationName[] = "CONV_2D"; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kFilterTensor = 1; constexpr uint32_t kBiasTensor = 2; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; namespace { // If possible we will use this static buffer for the tensor. constexpr size_t kStaticBufferSize = 1605632; char static_scratch_buffer[kStaticBufferSize]; // executionMutex is used to protect concurrent access of the static_scratch_buffer // and other non-threadsafe resources like gemmlowp::GemmContext. // std::mutex is safe for pthreads on Android. std::mutex executionMutex; struct Conv2dParam { int32_t padding_left, padding_right; int32_t padding_top, padding_bottom; int32_t stride_width, stride_height; int32_t dilation_width_factor = 1, dilation_height_factor = 1; int32_t activation; bool useNchw = false; bool initialize(const IOperationExecutionContext* context) { uint32_t inCount = context->getNumInputs(); int32_t padding_implicit = 0; bool useImplicitPadding = false; if ((inCount >= 8 && context->getInputType(7) == OperandType::BOOL) || inCount == 7) { padding_implicit = context->getInputValue(3); stride_width = context->getInputValue(4); stride_height = context->getInputValue(5); activation = context->getInputValue(6); if (inCount >= 8) { useNchw = context->getInputValue(7); } if (inCount == 10) { dilation_width_factor = context->getInputValue(8); dilation_height_factor = context->getInputValue(9); } useImplicitPadding = true; } else if (inCount >= 10 && context->getInputType(7) == OperandType::INT32) { padding_left = context->getInputValue(3); padding_right = context->getInputValue(4); padding_top = context->getInputValue(5); padding_bottom = context->getInputValue(6); stride_width = context->getInputValue(7); stride_height = context->getInputValue(8); activation = context->getInputValue(9); if (inCount >= 11) { useNchw = context->getInputValue(10); } if (inCount == 13) { dilation_width_factor = context->getInputValue(11); dilation_height_factor = context->getInputValue(12); } } else { NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName; } if (useImplicitPadding) { Shape inputShape = context->getInputShape(kInputTensor); Shape filterShape = context->getInputShape(kFilterTensor); int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2); int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1); int32_t filter_width = getSizeOfDimension(filterShape, 2); int32_t filter_height = getSizeOfDimension(filterShape, 1); calculateExplicitPadding(input_width, stride_width, dilation_width_factor, filter_width, padding_implicit, &padding_left, &padding_right); calculateExplicitPadding(input_height, stride_height, dilation_height_factor, filter_height, padding_implicit, &padding_top, &padding_bottom); } NN_RET_CHECK_GE(padding_left, 0); NN_RET_CHECK_GE(padding_right, 0); NN_RET_CHECK_GE(padding_top, 0); NN_RET_CHECK_GE(padding_bottom, 0); NN_RET_CHECK_GT(stride_width, 0); NN_RET_CHECK_GT(stride_height, 0); NN_RET_CHECK_GT(dilation_width_factor, 0); NN_RET_CHECK_GT(dilation_height_factor, 0); NN_RET_CHECK_GE(activation, 0); return true; } }; #define ANDROID_NN_CONV_PARAMETERS(Type) \ uint32_t height = getSizeOfDimension(inputShape, 1); \ uint32_t width = getSizeOfDimension(inputShape, 2); \ uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ uint32_t inDepth = getSizeOfDimension(inputShape, 3); \ \ uint32_t paddingHeight = (uint32_t)padding_top; \ uint32_t paddingWidth = (uint32_t)padding_left; \ \ tflite::Dims<4> im2colDim; \ im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \ im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \ im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \ im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ \ im2colDim.strides[0] = 1; \ for (int i=1; i<4; i++) { \ im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1]; \ } \ \ Type* im2colData = nullptr; \ uint64_t im2colByteSize = sizeof(Type); \ std::unique_ptr im2colGuard; \ for (int i=0; i<4; i++) { \ im2colByteSize *= im2colDim.sizes[i]; \ } \ /* http://b/77982879, tflite::optimized_ops::Conv uses int for offsets */ \ if (im2colByteSize >= 0x7fffffff) { \ LOG(ERROR) << "Conv size is too large, not enough memory"; \ return false; \ } \ if (im2colByteSize <= kStaticBufferSize) { \ im2colData = reinterpret_cast(static_scratch_buffer); \ } else { \ im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)]; \ if (im2colData == nullptr) { \ LOG(ERROR) << "Conv size is too large, not enough memory"; \ return false; \ } \ im2colGuard.reset(im2colData); \ } bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData, const Shape& filterShape, const float* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("convFloat32"); ANDROID_NN_CONV_PARAMETERS(float) float output_activation_min, output_activation_max; CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); // Prevent concurrent executions that may access the scratch buffer. std::unique_lock lock(executionMutex); NNTRACE_COMP_SWITCH("optimized_ops::Conv"); tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), biasData, convertShapeToDims(biasShape), stride_width, stride_height, dilation_width_factor, dilation_height_factor, paddingWidth, paddingHeight, output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape), im2colData, im2colDim); return true; } bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("convQuant8"); ANDROID_NN_CONV_PARAMETERS(uint8_t) int32_t inputOffset = -inputShape.offset; int32_t filterOffset = -filterShape.offset; int32_t outputOffset = outputShape.offset; double real_multiplier = 0.0; int32_t output_multiplier = 0; int32_t output_shift = 0; int32_t output_activation_min = 0; int32_t output_activation_max = 0; NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, &real_multiplier)); int exponent; NN_RET_CHECK(QuantizeMultiplier(real_multiplier, &output_multiplier, &exponent)); output_shift = -exponent; CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, &output_activation_max); static gemmlowp::GemmContext gemm_context; // Prevent concurrent executions that may access the scratch buffer and // gemm_context. std::unique_lock lock(executionMutex); // Alow gemmlowp automatically decide how many threads to use. gemm_context.set_max_num_threads(0); NNTRACE_COMP_SWITCH("optimized_ops::Conv"); tflite::optimized_ops::Conv( inputData, convertShapeToDims(inputShape), inputOffset, filterData, convertShapeToDims(filterShape), filterOffset, biasData, convertShapeToDims(biasShape), stride_width, stride_height, dilation_width_factor, dilation_height_factor, paddingWidth, paddingHeight, outputOffset, output_multiplier, output_shift, output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape), im2colData, im2colDim, &gemm_context); return true; } bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, const Shape& filterShape, const _Float16* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("convFloat16"); std::vector inputData_float32(getNumberOfElements(inputShape)); std::vector filterData_float32(getNumberOfElements(filterShape)); std::vector biasData_float32(getNumberOfElements(biasShape)); std::vector outputData_float32(getNumberOfElements(outputShape)); convertFloat16ToFloat32(inputData, &inputData_float32); convertFloat16ToFloat32(filterData, &filterData_float32); convertFloat16ToFloat32(biasData, &biasData_float32); convNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape, biasData_float32.data(), biasShape, padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, activation, outputData_float32.data(), outputShape); convertFloat32ToFloat16(outputData_float32, outputData); return true; } template bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, bool useNchw, T_Input* outputData, const Shape& outputShape) { InputWithLayout input(useNchw); OutputWithLayout output(useNchw); NN_RET_CHECK(input.initialize(inputData, inputShape)); NN_RET_CHECK(output.initialize(outputData, outputShape)); NN_RET_CHECK(convNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, biasData, biasShape, padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, activation, output.getNhwcBuffer(), output.getNhwcShape())); NN_RET_CHECK(output.commit()); return true; } bool convQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData, const Shape& filterShape, const float* filterScales, const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t activation, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("convQuant8PerChannel"); uint32_t numBatches = getSizeOfDimension(inputShape, 0); uint32_t inputHeight = getSizeOfDimension(inputShape, 1); uint32_t inputWidth = getSizeOfDimension(inputShape, 2); uint32_t inputDepth = getSizeOfDimension(inputShape, 3); uint32_t filterHeight = getSizeOfDimension(filterShape, 1); uint32_t filterWidth = getSizeOfDimension(filterShape, 2); uint32_t filterDepth = getSizeOfDimension(filterShape, 3); uint32_t outputHeight = getSizeOfDimension(outputShape, 1); uint32_t outputWidth = getSizeOfDimension(outputShape, 2); uint32_t outputDepth = getSizeOfDimension(outputShape, 3); int32_t inputOffset = -inputShape.offset; int32_t outputOffset = outputShape.offset; auto realMultiplier = std::vector(outputDepth, .0f); auto outputMultiplier = std::vector(outputDepth, 0); auto outputShift = std::vector(outputDepth, .0f); for (int i = 0; i < outputDepth; ++i) { Shape filterChannelShape = filterShape; filterChannelShape.scale = filterScales[i]; Shape biasChannelShape = biasShape; biasChannelShape.scale = filterScales[i] * inputShape.scale; NN_RET_CHECK(GetQuantizedConvolutionMultipler( inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); int exponent; NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent)); outputShift[i] = -exponent; } int32_t output_activation_min = 0, output_activation_max = 0; CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, &output_activation_max); const uint8_t* inputBase = inputData; uint8_t* outPtr = outputData; for (uint32_t b = 0; b < numBatches; b++) { for (uint32_t h = 0; h < outputHeight; h++) { for (uint32_t w = 0; w < outputWidth; w++) { const int8_t* filterBase = filterData; for (uint32_t d = 0; d < outputDepth; d++) { int32_t wInputOrigin = static_cast(w) * strideWidth - paddingLeft; int32_t hInputOrigin = static_cast(h) * strideHeight - paddingTop; int32_t sum = 0.0f; for (uint32_t i = 0; i < filterHeight; i++) { for (uint32_t j = 0; j < filterWidth; j++) { for (uint32_t k = 0; k < filterDepth; k++) { int32_t hInput = hInputOrigin + dilationHeightFactor * static_cast(i); int32_t wInput = wInputOrigin + dilationWidthFactor * static_cast(j); uint32_t dInput = k; if (hInput >= 0 && hInput < static_cast(inputHeight) && wInput >= 0 && wInput < static_cast(inputWidth)) { uint32_t filterIndex = i * filterWidth * filterDepth + j * filterDepth + k; uint32_t inputIndex = hInput * inputWidth * inputDepth + wInput * inputDepth + dInput; sum += (static_cast(filterBase[filterIndex])) * (static_cast(inputBase[inputIndex]) + inputOffset); } } } } sum += biasData[d]; sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier[d], -outputShift[d]); sum += outputOffset; sum = std::max(std::min(sum, output_activation_max), output_activation_min); outPtr[d] = static_cast(sum); filterBase += filterHeight * filterWidth * filterDepth; } outPtr += outputDepth; } } inputBase += inputHeight * inputWidth * inputDepth; } return true; } bool convQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData, const Shape& filterShape, const float* filterScales, const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t activation, bool useNchw, uint8_t* outputData, const Shape& outputShape) { InputWithLayout input(useNchw); OutputWithLayout output(useNchw); NN_RET_CHECK(input.initialize(inputData, inputShape)); NN_RET_CHECK(output.initialize(outputData, outputShape)); NN_RET_CHECK(convQuant8PerChannelNhwc( input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales, biasData, biasShape, paddingLeft, paddingRight, paddingTop, paddingBottom, strideWidth, strideHeight, dilationWidthFactor, dilationHeightFactor, activation, output.getNhwcBuffer(), output.getNhwcShape())); NN_RET_CHECK(output.commit()); return true; } #undef ANDROID_NN_CONV_PARAMETERS } // namespace bool validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); auto inputCount = context->getNumInputs(); auto inputType = context->getInputType(kInputTensor); auto filterType = context->getInputType(kFilterTensor); std::vector inExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { if (filterType == OperandType::TENSOR_QUANT8_ASYMM || filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, filterType, OperandType::TENSOR_INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { NN_RET_CHECK_EQ( context->getInputExtraParams(kFilterTensor).channelQuant().channelDim, 0) << "Unsupported filter tensor channel dimension for operation " << kOperationName; } } else { NN_RET_CHECK_FAIL() << "Unsupported filter tensor type for operation " << kOperationName; } } else { NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName; } // NeuralNetworks.h specifies that ANEURALNETWORKS_CONV_2D's output must // meet "outputScale > inputScale * filterScale" for the operand type // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29. For other // operand types (e.g., ANEURALNETWORKS_TENSOR_FLOAT32), this constraint // does not apply, so by default the constraint is met. bool meetsQuantizedScaleConstraintBeforeV1_2 = true; if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { const float inputScale = context->getInputShape(kInputTensor).scale; const float filterScale = context->getInputShape(kFilterTensor).scale; const float outputScale = context->getInputShape(kOutputTensor).scale; meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * filterScale); } bool withExplicitPadding = false; bool withLayout = false; bool withDilation = false; if (inputCount >= 8) { if (context->getInputType(7) == OperandType::INT32 && inputCount >= 10) { std::vector explicitScalarTypes(3, OperandType::INT32); inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(), explicitScalarTypes.end()); withExplicitPadding = true; } int inputOffset = withExplicitPadding ? 3 : 0; if (inputCount >= 8 + inputOffset) { inExpectedTypes.push_back(OperandType::BOOL); withLayout = true; } NN_RET_CHECK_NE(inputCount, 9 + inputOffset) << "Provided only one dilation factor value, two values are requred for operation " << kOperationName; if (inputCount == 10 + inputOffset) { inExpectedTypes.push_back(OperandType::INT32); inExpectedTypes.push_back(OperandType::INT32); withDilation = true; } } if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || withLayout || withDilation || !meetsQuantizedScaleConstraintBeforeV1_2) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2)); } else { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0)); } return validateInputTypes(context, inExpectedTypes) && validateOutputTypes(context, {inputType}); } bool prepare(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); Shape filter = context->getInputShape(kFilterTensor); Shape bias = context->getInputShape(kBiasTensor); if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM); } else { NN_RET_CHECK(input.type == filter.type); } if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_RET_CHECK(input.type == bias.type); } NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4); NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4); NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1); Conv2dParam param; NN_RET_CHECK(param.initialize(context)); uint32_t batches = getSizeOfDimension(input, 0); uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1); uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2); uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3); uint32_t channels_out = getSizeOfDimension(filter, 0); uint32_t filterHeight = getSizeOfDimension(filter, 1); uint32_t filterWidth = getSizeOfDimension(filter, 2); // Only batches can be zero. NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3)); NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0)); NN_RET_CHECK_GT(height, 0); NN_RET_CHECK_GT(width, 0); NN_RET_CHECK_GT(channels_in, 0); NN_RET_CHECK_GT(channels_out, 0); int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; int32_t effectiveFilterHeight = (filterHeight - 1) * param.dilation_height_factor + 1; NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_left); NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_right); NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_top); NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_bottom); uint32_t outWidth = computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, param.padding_left, param.padding_right); uint32_t outHeight = computeOutSize(height, filterHeight, param.stride_height, param.dilation_height_factor, param.padding_top, param.padding_bottom); Shape output = context->getOutputShape(kOutputTensor); output.type = input.type; if (param.useNchw) { output.dimensions = {batches, channels_out, outHeight, outWidth}; } else { output.dimensions = {batches, outHeight, outWidth, channels_out}; } return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { // Bypass execution in the case of zero-sized input. if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; Conv2dParam param; NN_RET_CHECK(param.initialize(context)); switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT32: return conv(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kFilterTensor), context->getInputShape(kFilterTensor), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), param.padding_left, param.padding_right, param.padding_top, param.padding_bottom, param.stride_width, param.stride_height, param.dilation_width_factor, param.dilation_height_factor, param.activation, param.useNchw, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_FLOAT16: return conv(context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<_Float16>(kFilterTensor), context->getInputShape(kFilterTensor), context->getInputBuffer<_Float16>(kBiasTensor), context->getInputShape(kBiasTensor), param.padding_left, param.padding_right, param.padding_top, param.padding_bottom, param.stride_width, param.stride_height, param.dilation_width_factor, param.dilation_height_factor, param.activation, param.useNchw, context->getOutputBuffer<_Float16>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { return convQuant8PerChannel( context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kFilterTensor), context->getInputShape(kFilterTensor), context->getInputExtraParams(kFilterTensor).channelQuant().scales.data(), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), param.padding_left, param.padding_right, param.padding_top, param.padding_bottom, param.stride_width, param.stride_height, param.dilation_width_factor, param.dilation_height_factor, param.activation, param.useNchw, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) { return conv(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kFilterTensor), context->getInputShape(kFilterTensor), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), param.padding_left, param.padding_right, param.padding_top, param.padding_bottom, param.stride_width, param.stride_height, param.dilation_width_factor, param.dilation_height_factor, param.activation, param.useNchw, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); } else { NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName; } default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } } // namespace conv_2d NN_REGISTER_OPERATION(CONV_2D, conv_2d::kOperationName, conv_2d::validate, conv_2d::prepare, conv_2d::execute, .allowZeroSizedInput = true); } // namespace nn } // namespace android