/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_ML_NN_RUNTIME_MANAGER_H #define ANDROID_ML_NN_RUNTIME_MANAGER_H #include "HalInterfaces.h" #include "Utils.h" #include "VersionedInterfaces.h" #include #include #include #include namespace android { namespace nn { // A unified interface for actual driver devices as well as the CPU class Device { public: virtual ~Device() {} // Get the handle of underlying VersionedIDevice, if any virtual VersionedIDevice* getInterface() = 0; // Introspection methods returning device information virtual const char* getName() const = 0; virtual const char* getVersionString() const = 0; virtual int64_t getFeatureLevel() = 0; virtual int32_t getType() const = 0; virtual hidl_vec getSupportedExtensions() const = 0; // If hidlModel is not compliant with the HAL version of the driver device, // then the behavior depends on whether or not a non-nullptr slicer is // provided. // // If there is no slicer, then no operations are supported. // // If there is a slicer, and it successfully slices the model, then some // operations may be supported. // // See the IModelSlicer class in Utils.h for more details. virtual void getSupportedOperations(const Model& hidlModel, IModelSlicer* slicer, hidl_vec* supportedOperations) = 0; void getSupportedOperations(const Model& hidlModel, hidl_vec* supportedOperations) { return getSupportedOperations(hidlModel, nullptr, supportedOperations); } virtual PerformanceInfo getPerformance(OperandType type) const = 0; virtual PerformanceInfo getRelaxedFloat32toFloat16PerformanceScalar() const = 0; virtual PerformanceInfo getRelaxedFloat32toFloat16PerformanceTensor() const = 0; virtual std::pair getNumberOfCacheFilesNeeded() const = 0; bool isCachingSupported() const; virtual int prepareModel( const Model& hidlModel, ExecutionPreference executionPreference, const hidl_vec& modelCache, const hidl_vec& dataCache, const hidl_array& token, std::shared_ptr* preparedModel) = 0; virtual int prepareModelFromCache( const hidl_vec& modelCache, const hidl_vec& dataCache, const hidl_array& token, std::shared_ptr* preparedModel) = 0; }; // Manages the NN HAL devices. Only one instance of this class will exist. // Use get() to retrieve it. class DeviceManager { public: const std::vector>& getDrivers() const { if (mSetCpuOnly || mDebugNNCpuOnly) { return mDevicesCpuOnly; } return mDevices; } // For testing only: void setUseCpuOnly(bool useCpuOnly) { mSetCpuOnly = useCpuOnly; } bool getUseCpuOnly() const { return mSetCpuOnly; } void setSyncExecHal(bool val) { mSyncExecHal = val; mSyncExecHalSetter = true; } bool syncExecCpu() const { return mSyncExecCpu; } bool syncExecHal() const { return mSyncExecHal; } bool syncExecRuntime() const { return mSyncExecRuntime; } // How to handle graph partitioning? // 0 - Don't do graph partitioning. // 1 - Do graph partitioning; but fall back to non-partitioned // execution if there is a partitioning failure. // 2 - Do graph partitioning, and rely on it; there is no fallback. enum { kPartitioningNo = 0, kPartitioningWithFallback = 1, kPartitioningWithoutFallback = 2 }; uint32_t getPartitioning() const { return mPartitioning; } static bool partitioningAllowsFallback(uint32_t partitioning) { return partitioning == kPartitioningWithFallback; } bool strictSlicing() const { return mStrictSlicing; } // Returns the singleton manager. static DeviceManager* get(); // Returns the singleton Cpu device. static std::shared_ptr getCpuDevice(); // The forTest_* functions below are solely intended for use by unit tests. // Returns all devices (ignores the cpu-only flags). std::vector> forTest_getDevices() const { return mDevices; } // Sets the device list (does not affect cpu-only queries). void forTest_setDevices(std::vector> devices) { mDevices = std::move(devices); } // Register a test device. void forTest_registerDevice(const char* name, const sp& device) { registerDevice(name, device); } // Re-initialize the list of available devices. void forTest_reInitializeDeviceList() { mDevices.clear(); mDevicesCpuOnly.clear(); findAvailableDevices(); } // Make a test device static std::shared_ptr forTest_makeDriverDevice(const std::string& name, const sp& device); bool forTest_isCpuDevice(const ANeuralNetworksDevice* device) const { return reinterpret_cast(device) == getCpuDevice().get(); } private: // Builds the list of available drivers and queries their capabilities. DeviceManager(); // Adds a device for the manager to use. void registerDevice(const char* name, const sp& device); void findAvailableDevices(); // List of all the devices we discovered (including CpuDevice). std::vector> mDevices; // We set this one to have CpuDevice only. To be used when m*CpuOnly is true. std::vector> mDevicesCpuOnly; // If either of these is true, we'll ignore the drivers that are // on the device and run everything on the CPU. bool mSetCpuOnly = false; // set by setUseCpuOnly() bool mDebugNNCpuOnly = false; // derived from system property debug.nn.cpuonly // synchronous execution bool mSyncExecCpu = true; bool mSyncExecHal = true; // Call executeSynchronously() when available on device. bool mSyncExecHalSetter = false; // Has mSyncExecHal been set by setSyncExecHal()? // If so, don't allow the setting to be overridden // by system property debug.nn.syncexec-hal bool mSyncExecRuntime = false; static const uint32_t kPartitioningDefault = kPartitioningWithFallback; uint32_t mPartitioning = kPartitioningDefault; bool mStrictSlicing = false; }; } // namespace nn } // namespace android #endif // ANDROID_ML_NN_RUNTIME_MANAGER_H