/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CompilationBuilder.h" #include "ExecutionPlan.h" #include "HalInterfaces.h" #include "Manager.h" #include "ModelBuilder.h" #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include "SampleDriver.h" #include "TestNeuralNetworksWrapper.h" #include "Utils.h" #include "ValidateHal.h" #include #include #include #include #include #include // Uncomment the following line to generate some debugging output that // may be useful when analyzing failures: // // #define VERBOSE VERBOSE // These tests do whitebox testing of the graph partitioning // algorithm. It is "whitebox" in the sense that we're not evaluating // whether a particular partitioning is legal, or "good enough" // according to some metric, but whether it exactly matches the // expected behavior of the current partitioning algorithm. // // A key part of the current partitioning algorithm is to determine // which device among the available devices should be the one to // execute a particular operation from the graph. This determination // is made "locally" -- i.e., it does not depend on the graph // topology, only on the properties of the operation in question. // IDevice::getSupportedOperations() indicates which operations in a // graph can be executed on a device, and IDevice::getCapabilities() // indicates how "good" that device is for executing particular kinds // of operations. For each operation, the partitioning algorithm // picks the "best" device that is capable of executing that // operation; if no device can do so, then the algorithm picks the // cpu. // // As part of this testing approach, we want to make it easy to // specify which operations in a test graph can be executed on which // devices. We accomplish this in the following way: // - A unary OEM operation is available. // - There is a collection of operations (each of which has two inputs // and one output): // - Eight kinds of operations available at driver version V1_0 or // later. They are represented in the graph as ADD or MUL with a // particular activation function -- two opcodes times four // activation functions means eight available operation kinds. // This is a low-level representation detail -- when we specify the // behavior of the device or build a graph, we do so in terms of // operation encodings 0..7. // - Eight kinds of operations available at driver version V1_1 or // later. They are represented in the graph as DIV or SUB with // a particular activation function, exactly analogous to ADD // and MUL above. We use operation encodings 8..15 for them. // - Four kinds of operations available at driver version V1_2 or // later. They are represented in the graph as MAXIMUM, // MINIMUM, POW, or PRELU. These operations take no activation // function, so we only get 4 operation kinds, for which we // use operation encodings 16..19. // When we instantiate a device for testing purposes, we specify what subset of // those operations the device is able to execute. // // In order to determine whether or not a partitioning matches the // expected partitioning, we check the number of partitions, check // which device each partition targets, and compare each partition's // subgraph, model inputs, model outputs, submodel inputs, and // submodel outputs against what is expected. In order to perform // that comparison, we build a model to compare against a partition's // submodel and run a graph comparison algorithm on it. The graph // comparison and the inputs and outputs comparisons are syntactic // rather than semantic comparisons -- they don't allow for // reorderings of inputs and outputs. Because of this, we need to // know exactly how the partitioning algorithm orders inputs and // outputs in order to construct the models and operand lists to // compare against. Here are some relevant behaviors of the // partitioning algorithm: // // - It builds a subgraph by walking operations in forward topological // order, and adding each operation's input operands and output // operands in index order (input followed by output) when that // operation is added. (It does not add an input that has already // been added.) // - It finds model inputs, model outputs, and submodel inputs in // the order the corresponding operands were added to the subgraph // (see ExecutionStep methods getModelInputs(), getModelOutputs(), // getTempsAsSubModelInputs(), getOutputsAsSubModelInputs()). // - It finds temps as submodel outputs in numerical order of corresponding // operand number in the original model (see ExecutionStep method // getTempsAsSubModelOutputs()). // - When it calls identifyInputsAndOutputs() on the submodel, it // passes inputs from getModelInputs() in order, followed by temps as // submodel inputs from getTempsAsSubModelInputs() in order, // followed by outputs as submodel inputs from // getOutputsAsSubModelInputs() in order; and it passes outputs from // getModelOutputs() in order followed by submodel outputs from // getTempsAsSubModelOutputs() in order. // // TODO: Maybe the logic for comparing a partition to an expected // model should be changed to tolerate reorderings of inputs and // outputs, so that when we build models and lists to compare // against, we don't need to worry about input and output // orderings. But is there a way to do this that still lets us // verify that we have the correct relationships between // an (original) model's inputs and outputs and each submodel's // inputs and outputs, as well as the correct relationship // between submodel inputs and outputs across partitions? namespace { const Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX}; using CompilationBuilder = ::android::nn::CompilationBuilder; using Device = ::android::nn::Device; using DeviceManager = ::android::nn::DeviceManager; using ExecutePreference = ::android::nn::test_wrapper::ExecutePreference; using ExecutionPlan = ::android::nn::ExecutionPlan; using ExecutionStep = ::android::nn::ExecutionStep; using HalVersion = ::android::nn::HalVersion; using HidlModel = ::android::hardware::neuralnetworks::V1_2::Model; using HidlToken = ::android::hardware::hidl_array; using ModelBuilder = ::android::nn::ModelBuilder; using Result = ::android::nn::test_wrapper::Result; using SampleDriver = ::android::nn::sample_driver::SampleDriver; using WrapperSymmPerChannelQuantParams = ::android::nn::test_wrapper::SymmPerChannelQuantParams; using WrapperCompilation = ::android::nn::test_wrapper::Compilation; using WrapperModel = ::android::nn::test_wrapper::Model; using WrapperOperandType = ::android::nn::test_wrapper::OperandType; using WrapperType = ::android::nn::test_wrapper::Type; template using sp = ::android::sp; template using MQDescriptorSync = ::android::hardware::MQDescriptorSync; Capabilities makeCapabilities(float perf) { PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf}; return {.relaxedFloat32toFloat16PerformanceScalar = perfInfo, .relaxedFloat32toFloat16PerformanceTensor = perfInfo, .operandPerformance = ::android::nn::nonExtensionOperandPerformance(perfInfo)}; }; void update(Capabilities* capabilities, OperandType type, float perf) { PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf}; ::android::nn::update(&capabilities->operandPerformance, type, perfInfo); } float lookupExecTime(const Capabilities& capabilities, OperandType type) { return ::android::nn::lookup(capabilities.operandPerformance, type).execTime; } const uint32_t kNumFuseCodes = 4; const uint32_t kBadOperation = ~0; // V1_0 operations const uint32_t kFirstEncodingADD = 0; const uint32_t kFirstEncodingMUL = kFirstEncodingADD + kNumFuseCodes; const uint32_t kFirstEncodingV1_0 = kFirstEncodingADD; const uint32_t kLastEncodingV1_0 = kFirstEncodingMUL + kNumFuseCodes - 1; // V1_1 operations const uint32_t kFirstEncodingDIV = kLastEncodingV1_0 + 1; const uint32_t kFirstEncodingSUB = kFirstEncodingDIV + kNumFuseCodes; const uint32_t kFirstEncodingV1_1 = kFirstEncodingDIV; const uint32_t kLastEncodingV1_1 = kFirstEncodingSUB + kNumFuseCodes - 1; // V1_2 operations const uint32_t kFirstEncodingMAXIMUM = kLastEncodingV1_1 + 1; const uint32_t kFirstEncodingMINIMUM = kFirstEncodingMAXIMUM + 1; const uint32_t kFirstEncodingPOW = kFirstEncodingMINIMUM + 1; const uint32_t kFirstEncodingPRELU = kFirstEncodingPOW + 1; const uint32_t kFirstEncodingV1_2 = kFirstEncodingMAXIMUM; const uint32_t kLastEncodingV1_2 = kFirstEncodingPRELU; const std::map operationToFirstEncoding = { {OperationType::ADD, kFirstEncodingADD}, {OperationType::MUL, kFirstEncodingMUL}, {OperationType::DIV, kFirstEncodingDIV}, {OperationType::SUB, kFirstEncodingSUB}, {OperationType::MAXIMUM, kFirstEncodingMAXIMUM}, {OperationType::MINIMUM, kFirstEncodingMINIMUM}, {OperationType::POW, kFirstEncodingPOW}, {OperationType::PRELU, kFirstEncodingPRELU}, }; // Sorted in reverse order (std::greater) so that we can use map::lower_bound to // find an entry whose key is numerically less than or equal to a search value. // mapped_type is (OperandCode, hasFuseCode). const std::map, std::greater<>> firstEncodingToOperation = { {kFirstEncodingADD, {ANEURALNETWORKS_ADD, true}}, {kFirstEncodingMUL, {ANEURALNETWORKS_MUL, true}}, {kFirstEncodingDIV, {ANEURALNETWORKS_DIV, true}}, {kFirstEncodingSUB, {ANEURALNETWORKS_SUB, true}}, {kFirstEncodingMAXIMUM, {ANEURALNETWORKS_MAXIMUM, false}}, {kFirstEncodingMINIMUM, {ANEURALNETWORKS_MINIMUM, false}}, {kFirstEncodingPOW, {ANEURALNETWORKS_POW, false}}, {kFirstEncodingPRELU, {ANEURALNETWORKS_PRELU, false}}, }; // Look up the operation with the specified index in a graph, and return the // operation encoding; or, if for some reason this is not one of the encoded // operations, then return kBadOperation. uint32_t lookupOperation(std::function getOperation, std::function getOperand, std::function getValue, uint32_t operationIndex) { const Operation& operation = getOperation(operationIndex); switch (operation.type) { case OperationType::ADD: case OperationType::MUL: case OperationType::DIV: case OperationType::SUB: { // input2 is the fused activation function const Operand& input2 = getOperand(operation.inputs[2]); if ((input2.type == OperandType::INT32) && (input2.lifetime == OperandLifeTime::CONSTANT_COPY)) { int32_t value; CHECK_EQ(sizeof(value), input2.location.length); memcpy(&value, getValue(input2.location.offset), input2.location.length); return value + operationToFirstEncoding.at(operation.type); } break; } default: { auto it = operationToFirstEncoding.find(operation.type); if (it != operationToFirstEncoding.end()) { return it->second; } break; } } return kBadOperation; } uint32_t lookupOperation(const HidlModel& model, uint32_t operationIndex) { return lookupOperation( [&model](uint32_t index) -> const Operation& { return model.operations[index]; }, [&model](uint32_t index) -> const Operand& { return model.operands[index]; }, [&model](uint32_t offset) {return &model.operandValues[offset];}, operationIndex); } #ifdef VERBOSE // This is a debugging utility function void dump(const char* name, const ModelBuilder* model) { HidlModel hidlModel; model->setHidlModel(&hidlModel); std::cout << name << ": " << toString(hidlModel) << std::endl; std::cout << "inputs: " << toString(hidlModel.inputIndexes) << std::endl; std::cout << "outputs: " << toString(hidlModel.outputIndexes) << std::endl; for (size_t i = 0, e = hidlModel.operations.size(); i < e; i++) { std::cout << "operation[" << i << "]: " << toString(hidlModel.operations[i]) << std::endl; } } #endif // This is an IDevice for testing purposes. It only has a few // interesting properties, all of which are specified as constructor // arguments: device capabilities; which subset of operation kinds // (0..19) does the device support; does the device support the OEM // operation. The subset is represented with a bitmask, in which // operation kind K corresponds to the bit (1 << K). class PartitioningDriver : public SampleDriver { private: // Dummy class -- a prepared model must not be nullptr. class PartitioningPreparedModel : public IPreparedModel { public: Return execute(const Request&, const sp&) override { return ErrorStatus::DEVICE_UNAVAILABLE; } Return execute_1_2(const Request&, MeasureTiming, const sp&) override { return ErrorStatus::DEVICE_UNAVAILABLE; } Return executeSynchronously(const Request&, MeasureTiming, executeSynchronously_cb cb) override { cb(ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming); return Void(); } Return configureExecutionBurst( const sp& /*callback*/, const MQDescriptorSync& /*requestChannel*/, const MQDescriptorSync& /*resultChannel*/, configureExecutionBurst_cb cb) override { cb(ErrorStatus::DEVICE_UNAVAILABLE, nullptr); return Void(); } }; public: enum OEM { OEMNo, // rejected by getSupportedOperations and prepareModel OEMIndecisive, // accepted by getSupportedOperations but not prepareModel OEMYes, // accepted by getSupportedOperations and prepareModel }; PartitioningDriver(const char* name, const char* version, Capabilities capabilities, uint32_t operationMask, OEM oem = OEMNo) : SampleDriver(name), mVersionString(version), mCapabilities(capabilities), mOperationMask(operationMask), mOEM(oem) {} ~PartitioningDriver() override {} Return getVersionString(getVersionString_cb cb) override { cb(ErrorStatus::NONE, mVersionString); return Void(); } Return prepareModel_1_2(const Model& model, ExecutionPreference, const hidl_vec&, const hidl_vec&, const HidlToken&, const sp& cb) override { ErrorStatus status = ErrorStatus::NONE; if (mOEM != OEMYes) { for (const auto& operation : model.operations) { if (operation.type == OperationType::OEM_OPERATION) { status = ErrorStatus::INVALID_ARGUMENT; break; } } } cb->notify_1_2(status, new PartitioningPreparedModel); return status; } Return getStatus() override { return DeviceStatus::AVAILABLE; } Return getCapabilities_1_2(getCapabilities_1_2_cb cb) override { cb(ErrorStatus::NONE, mCapabilities); return Void(); } Return getSupportedOperations_1_2(const Model& model, getSupportedOperations_cb cb) override { if (!android::nn::validateModel(model)) { cb(ErrorStatus::INVALID_ARGUMENT, std::vector()); return Void(); } const size_t count = model.operations.size(); std::vector supported(count); for (size_t i = 0; i < count; i++) { if (model.operations[i].type == OperationType::OEM_OPERATION) { supported[i] = (mOEM != OEMNo); continue; } supported[i] = false; uint32_t operation = lookupOperation(model, i); if ((operation != kBadOperation) && (mOperationMask & (1 << operation))) { supported[i] = true; } } cb(ErrorStatus::NONE, supported); return Void(); } Return getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override { cb(ErrorStatus::NONE, /*numModelCache=*/1, /*numDataCache=*/1); return Void(); } Return prepareModelFromCache( const hidl_vec&, const hidl_vec&, const HidlToken&, const sp& callback) override { callback->notify_1_2(ErrorStatus::NONE, new PartitioningPreparedModel); return ErrorStatus::NONE; } private: std::string mVersionString; Capabilities mCapabilities; uint32_t mOperationMask; OEM mOEM; }; // Like PartitioningDriver, but implementing 1.1 class PartitioningDriverV1_1 : public V1_1::IDevice { public: PartitioningDriverV1_1(const char* name, const char* version, Capabilities capabilities, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : mDriverV1_2(new PartitioningDriver(name, version, capabilities, operationMask, oem)) {} Return getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override { return mDriverV1_2->getCapabilities_1_1(_hidl_cb); } Return getSupportedOperations_1_1(const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations_1_1(model, _hidl_cb); } Return prepareModel_1_1( const V1_1::Model& model, ExecutionPreference preference, const sp& actualCallback) override { return mDriverV1_2->prepareModel_1_1(model, preference, actualCallback); } Return getStatus() override { return mDriverV1_2->getStatus(); } Return getCapabilities(getCapabilities_cb _hidl_cb) override { return mDriverV1_2->getCapabilities(_hidl_cb); } Return getSupportedOperations(const V1_0::Model& model, getSupportedOperations_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations(model, _hidl_cb); } Return prepareModel( const V1_0::Model& model, const sp& actualCallback) override { return mDriverV1_2->prepareModel(model, actualCallback); } private: const sp mDriverV1_2; }; // Like PartitioningDriver, but implementing 1.0 class PartitioningDriverV1_0 : public V1_0::IDevice { public: PartitioningDriverV1_0(const char* name, const char* version, Capabilities capabilities, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : mDriverV1_2(new PartitioningDriver(name, version, capabilities, operationMask, oem)) {} Return getCapabilities(getCapabilities_cb _hidl_cb) override { return mDriverV1_2->getCapabilities(_hidl_cb); } Return getSupportedOperations(const V1_0::Model& model, getSupportedOperations_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations(model, _hidl_cb); } Return prepareModel( const V1_0::Model& model, const sp& actualCallback) override { return mDriverV1_2->prepareModel(model, actualCallback); } Return getStatus() override { return mDriverV1_2->getStatus(); } private: const sp mDriverV1_2; }; // This class adds some simple abstractions and utilities on top of // WrapperModel. For example, it provides methods that work in terms of // operation kind (0..7); and because we care about graph topology rather than // details of operand types and values, it greatly simplifies the process of // creating operands. class PartitioningModel : private WrapperModel { public: using WrapperModel::finish; using WrapperModel::getHandle; using WrapperModel::identifyInputsAndOutputs; using WrapperModel::isValid; using WrapperModel::relaxComputationFloat32toFloat16; // Create a tensor operand of the specified type, and return the // corresponding operand index. uint32_t addFloatOperand() { return addOperand(WrapperType::TENSOR_FLOAT32); } uint32_t addQuantOperand() { return addOperand(WrapperType::TENSOR_QUANT8_ASYMM); } // Create an operand of the specified type, and return the corresponding // operand index. uint32_t addOperand(WrapperType wrapperType) { switch (static_cast(wrapperType)) { case ANEURALNETWORKS_BOOL: case ANEURALNETWORKS_FLOAT16: case ANEURALNETWORKS_FLOAT32: case ANEURALNETWORKS_INT32: case ANEURALNETWORKS_UINT32: case ANEURALNETWORKS_OEM_SCALAR: { WrapperOperandType wrapperOperandType(wrapperType, {}); mWrapperOperandType.push_back(wrapperOperandType); return WrapperModel::addOperand(&wrapperOperandType); } case ANEURALNETWORKS_TENSOR_BOOL8: case ANEURALNETWORKS_TENSOR_FLOAT16: case ANEURALNETWORKS_TENSOR_FLOAT32: case ANEURALNETWORKS_TENSOR_OEM_BYTE: { WrapperOperandType wrapperOperandType(wrapperType, {1}); mWrapperOperandType.push_back(wrapperOperandType); return WrapperModel::addOperand(&wrapperOperandType); } case ANEURALNETWORKS_TENSOR_INT32: case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM: case ANEURALNETWORKS_TENSOR_QUANT8_SYMM: case ANEURALNETWORKS_TENSOR_QUANT16_ASYMM: case ANEURALNETWORKS_TENSOR_QUANT16_SYMM: { WrapperOperandType wrapperOperandType(wrapperType, {1}, 1.0f); mWrapperOperandType.push_back(wrapperOperandType); return WrapperModel::addOperand(&wrapperOperandType); } case ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL: { WrapperOperandType wrapperOperandType(wrapperType, {1}, 0.0f, 0, WrapperSymmPerChannelQuantParams({1.0f}, 0)); mWrapperOperandType.push_back(wrapperOperandType); return WrapperModel::addOperand(&wrapperOperandType); } default: ADD_FAILURE() << "Unexpected type " << static_cast(wrapperType); return ~uint32_t(0); } } enum class Dimensioned { NO, YES }; // Create a V1_0 operation with two inputs and one output, specifying the // operation kind (where 0 is the first V1_0 operation) and the input // operand indexes. // Returns the output operand index. uint32_t addOperation2To1V1_0(uint32_t operation, const uint32_t input0, const uint32_t input1, Dimensioned dimensionedOutput = Dimensioned::YES) { CHECK_LE(operation, kLastEncodingV1_0 - kFirstEncodingV1_0); return addOperation2To1(operation + kFirstEncodingV1_0, input0, input1, dimensionedOutput); } // Create a V1_1 operation with two inputs and one output, specifying the // operation kind (where 0 is the first V1_1 operation) and the input // operand indexes. // Returns the output operand index. uint32_t addOperation2To1V1_1(uint32_t operation, const uint32_t input0, const uint32_t input1, Dimensioned dimensionedOutput = Dimensioned::YES) { CHECK_LE(operation, kLastEncodingV1_1 - kFirstEncodingV1_1); return addOperation2To1(operation + kFirstEncodingV1_1, input0, input1, dimensionedOutput); } // Create a V1_2 operation with two inputs and one output, specifying the // operation kind (where 0 is the first V1_2 operation) and the input // operand indexes. // Returns the output operand index. uint32_t addOperation2To1V1_2(uint32_t operation, const uint32_t input0, const uint32_t input1, Dimensioned dimensionedOutput = Dimensioned::YES) { CHECK_LE(operation, kLastEncodingV1_2 - kFirstEncodingV1_2); return addOperation2To1(operation + kFirstEncodingV1_2, input0, input1, dimensionedOutput); } // Create an OEM operation with one input and one output, // specifying the input operand index. Returns the output operand // index. uint32_t addOperationOEM1To1(const uint32_t input, Dimensioned dimensionedOutput = Dimensioned::YES) { uint32_t output = addOperandOfSameType(input, dimensionedOutput); addOperation(ANEURALNETWORKS_OEM_OPERATION, { input }, { output }); return output; } // Run the partitioning algorithm to create an ExecutionPlan. int partitionTheWork(const std::vector>& devices, ExecutePreference preference, ExecutionPlan* plan) { return reinterpret_cast(getHandle())->partitionTheWork( devices, static_cast(preference), plan); } #ifdef VERBOSE // This is a debugging utility function. void dump(const char* name) const { const ModelBuilder* mb = reinterpret_cast(getHandle()); ::dump(name, mb); } #endif private: // Create an operation with two inputs and one output, specifying // the operation kind and the input operand indexes. // Returns the output operand index. uint32_t addOperation2To1(uint32_t operation, const uint32_t input0, const uint32_t input1, Dimensioned dimensionedOutput = Dimensioned::YES) { auto it = firstEncodingToOperation.lower_bound(operation); CHECK(it != firstEncodingToOperation.end()); ANeuralNetworksOperationType type = it->second.first; if (it->second.second) { int32_t fuseCode = operation - it->first; uint32_t input2 = addIntOperand(fuseCode); uint32_t output = addOperandOfSameType(input0, dimensionedOutput); addOperation(type, {input0, input1, input2}, {output}); return output; } else { uint32_t output = addOperandOfSameType(input0, dimensionedOutput); addOperation(type, {input0, input1}, {output}); return output; } } // Create a scalar integer operand of the specified value, and // return the corresponding operand index. uint32_t addIntOperand(int32_t value) { uint32_t operand = addOperand(WrapperType::INT32); setOperandValue(operand, &value, sizeof(value)); return operand; } // Create an operand of the same type as the specified operand, // and return the operand index of the new operand. uint32_t addOperandOfSameType(uint32_t operand, Dimensioned dimensioned = Dimensioned::YES) { WrapperOperandType type = mWrapperOperandType.at(operand); for (auto& dimension : type.dimensions) { dimension = (dimensioned == Dimensioned::YES); } mWrapperOperandType.push_back(type); return WrapperModel::addOperand(&type); } // operand index to operand type std::vector mWrapperOperandType; }; // This class adds some utilities on top of WrapperCompilation. class PartitioningCompilation : public WrapperCompilation { public: PartitioningCompilation(const PartitioningModel* model, const std::vector>& devices) { ModelBuilder* m = reinterpret_cast(model->getHandle()); CompilationBuilder* c = nullptr; int result = m->createCompilation(&c, devices); EXPECT_EQ(result, 0); mCompilation = reinterpret_cast(c); } Result setPartitioning(uint32_t partitioning) { return static_cast(builder()->setPartitioning(partitioning)); } using WrapperCompilation::finish; const ExecutionPlan& getExecutionPlan() const { return builder()->forTest_getExecutionPlan(); } private: CompilationBuilder* builder() { return reinterpret_cast(getHandle()); } const CompilationBuilder* builder() const { return reinterpret_cast(getHandle()); } }; #ifdef VERBOSE #define RETURN_TRUE() \ { \ std::cerr << "returning true from " << __LINE__ << std::endl; \ return true; \ } #else #define RETURN_TRUE() \ { \ return true; \ } #endif #ifdef VERBOSE #define RETURN_FALSE(MESSAGE) \ { \ std::cerr << "returning false from " << __LINE__ MESSAGE << std::endl; \ return false; \ } #else #define RETURN_FALSE(MESSAGE) \ { \ return false; \ } #endif class PartitioningTest : public ::testing::Test { protected: using RemapVectorType = ExecutionStep::RemapVectorType; using SubModelOutputSetType = ExecutionStep::SubModelOutputSetType; virtual void SetUp() { } // From a vector of DeviceSpecification, create a vector of // Devices. struct DeviceSpecification { DeviceSpecification(const std::string& name, const Capabilities& capabilities, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : mName(name), mVersionString(kVersionString), mCapabilities(capabilities), mOperationMask(operationMask), mOEM(oem) {} DeviceSpecification(const std::string& name, float perf, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : DeviceSpecification(name, perf, perf, operationMask, oem) {} DeviceSpecification(const std::string& name, float perf, float perfRelaxed, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : DeviceSpecification(name, kVersionString, perf, perfRelaxed, operationMask, oem) {} DeviceSpecification(const std::string& name, const std::string& version, float perf, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : DeviceSpecification(name, version, perf, perf, operationMask, oem) {} DeviceSpecification(const std::string& name, const std::string& version, float perf, float perfRelaxed, uint32_t operationMask, PartitioningDriver::OEM oem = PartitioningDriver::OEMNo) : mName(name), mVersionString(version), mOperationMask(operationMask), mOEM(oem) { PerformanceInfo perfRelaxedInfo = {.execTime = perfRelaxed, .powerUsage = perfRelaxed}; mCapabilities = {.relaxedFloat32toFloat16PerformanceScalar = perfRelaxedInfo, .relaxedFloat32toFloat16PerformanceTensor = perfRelaxedInfo, .operandPerformance = ::android::nn::nonExtensionOperandPerformance( {.execTime = perf, .powerUsage = perf})}; } DeviceSpecification(const std::string& name, float perf, HalVersion halVersion, uint32_t operationMaskV1_0, uint32_t operationMaskV1_1 = 0, uint32_t operationMaskV1_2 = 0) : DeviceSpecification(name, perf, perf, makeOperationMask(halVersion, operationMaskV1_0, operationMaskV1_1, operationMaskV1_2)) { mHalVersion = halVersion; } std::string mName; std::string mVersionString; Capabilities mCapabilities; HalVersion mHalVersion = HalVersion::LATEST; uint32_t mOperationMask; PartitioningDriver::OEM mOEM = PartitioningDriver::OEMNo; static constexpr char kVersionString[] = "JUST_AN_EXAMPLE"; private: // This function takes three operation masks aligned at the low-order // bit -- one mask each for V1_0, V1_1, and V1_2 -- and produces a single // composite operation mask, formed by shifting each of the input // operation masks appropriately and ORing the results together. // // For convenience, any bits of an input mask that are too high order // for that mask are discarded -- this allows ~0 to be a legal input // mask. // // For the sake of example, assume that each low order mask is 4 bits // wide, and take some artistic license to write literals in binary. // Then: // // assert(makeOperationMask(HalVersion::V1_2, 0b0110, 0b1001, 0b0101) == // 0b 0101 1001 0110); // // This is used by a DeviceSpecification constructor to build a mask of // operations to be supported by the device. static uint32_t makeOperationMask(HalVersion halVersion, uint32_t operationMaskV1_0, uint32_t operationMaskV1_1, uint32_t operationMaskV1_2) { if (halVersion < HalVersion::V1_2) { CHECK(!operationMaskV1_2); } if (halVersion < HalVersion::V1_1) { CHECK(!operationMaskV1_1); } auto maskOfWidth = [](uint32_t width) -> uint32_t { return (1U << width) - 1; }; static const uint32_t kOperationMaskV1_0 = maskOfWidth(kLastEncodingV1_0 - kFirstEncodingV1_0 + 1); static const uint32_t kOperationMaskV1_1 = maskOfWidth(kLastEncodingV1_1 - kFirstEncodingV1_1 + 1); static const uint32_t kOperationMaskV1_2 = maskOfWidth(kLastEncodingV1_2 - kFirstEncodingV1_2 + 1); return ((operationMaskV1_0 & kOperationMaskV1_0) << kFirstEncodingV1_0) | ((operationMaskV1_1 & kOperationMaskV1_1) << kFirstEncodingV1_1) | ((operationMaskV1_2 & kOperationMaskV1_2) << kFirstEncodingV1_2); } }; static std::vector> makeDevices( std::vector specifications) { std::vector> devices; for (const auto& specification : specifications) { V1_0::IDevice* halDriver = nullptr; switch (specification.mHalVersion) { case HalVersion::V1_2: halDriver = new PartitioningDriver( specification.mName.c_str(), specification.mVersionString.c_str(), specification.mCapabilities, specification.mOperationMask, specification.mOEM); break; case HalVersion::V1_1: halDriver = new PartitioningDriverV1_1( specification.mName.c_str(), specification.mVersionString.c_str(), specification.mCapabilities, specification.mOperationMask, specification.mOEM); break; case HalVersion::V1_0: halDriver = new PartitioningDriverV1_0( specification.mName.c_str(), specification.mVersionString.c_str(), specification.mCapabilities, specification.mOperationMask, specification.mOEM); break; default: ADD_FAILURE() << "Unexpected"; } auto device = DeviceManager::forTest_makeDriverDevice(specification.mName, halDriver); devices.push_back(device); } devices.push_back(DeviceManager::getCpuDevice()); return devices; } /*-- Graph comparision ----------------------------------------------------------------*/ // An operand with certain values for its lifetime does not have a // defining operation in the graph. For the purposes of the graph // comparison algorithm, we encode the "defining operation" index of // such an operand as follows: // - NO_VALUE kPseudoDefiningOperationNoValue // - MODEL_INPUT kPseudoDefiningOperationModelInput0 + (position in list of inputs) // - CONSTANT_COPY kPseudoDefiningOperationConstantCopy0 + (constant value) // Note: For the graphs we build in this test, we // only expect to see 4-byte constants within // a very restricted range, so we only make // room for such constants in our encoding // space. // We do not expect to see CONSTANT_REFERENCE, and so we do not handle // it. // // The encoding is intended to be relatively human readable; it is not // designed to represent some optimal balance of ranges for the items // within its scope (actual operations, inputs, constants). enum PseudoDefiningOperationEncodings : uint32_t { kPseudoDefiningOperationModelInput0 = 0x80000000U, kPseudoDefiningOperationConstantCopy0 = 0x90000000U, kPseudoDefiningOperationNoValue = 0xeeeeeeeeU, // lowest value for special encoding kPseudoDefiningOperationBase = 0x80000000U, // range of encoded input or constant kPseudoDefiningOperationRange = 0x10000000U, }; // Build a map from operand to defining operation. // TODO: Replace map with vector? void buildDefinitionMap(const ModelBuilder* model, std::map* defMap) { // actual definitions ASSERT_LT(model->operationCount(), kPseudoDefiningOperationBase); for (uint32_t i = 0, e = model->operationCount(); i < e; i++) { const Operation& operation = model->getOperation(i); for (uint32_t output : operation.outputs) { (*defMap)[output] = i; } } // inputs ASSERT_LT(model->inputCount(), kPseudoDefiningOperationRange); for (uint32_t i = 0, e = model->inputCount(); i < e; i++) { (*defMap)[model->getInputOperandIndex(i)] = kPseudoDefiningOperationModelInput0 + i; } // look for NO_VALUE and CONSTANT_COPY for (uint32_t i = 0, e = model->operandCount(); i < e; i++) { const Operand& operand = model->getOperand(i); switch (operand.lifetime) { case OperandLifeTime::NO_VALUE: (*defMap)[i] = kPseudoDefiningOperationNoValue; break; case OperandLifeTime::CONSTANT_COPY: { ASSERT_EQ(operand.location.length, sizeof(uint32_t)); uint32_t value; memcpy(&value, model->getPointerToOperandValue(operand.location.offset), sizeof(uint32_t)); ASSERT_LT(value, kPseudoDefiningOperationNoValue); (*defMap)[i] = kPseudoDefiningOperationConstantCopy0 + value; break; } case OperandLifeTime::TEMPORARY_VARIABLE: case OperandLifeTime::MODEL_INPUT: case OperandLifeTime::MODEL_OUTPUT: // already handled break; default: FAIL(); break; } } // sanity check ASSERT_EQ(model->operandCount(), defMap->size()); } #ifdef VERBOSE void dump(const char* name, const std::map* aMap) { auto writeNum = [](uint32_t num) { if (num >= kPseudoDefiningOperationBase) { std::cout << "0x" << std::hex << num << std::dec; } else { std::cout << num; } }; std::cout << name << ": { "; bool gotOne = false; for (const auto& entry : *aMap) { if (gotOne) { std::cout << ", "; } else { gotOne = true; } std::cout << "("; writeNum(entry.first); std::cout << ", "; writeNum(entry.second); std::cout << ")"; } std::cout << " }" << std::endl; } #endif bool compare(const Operand& operandA, const Operand& operandB) { if (operandA.type != operandB.type || operandA.dimensions != operandB.dimensions || operandA.numberOfConsumers != operandB.numberOfConsumers || operandA.scale != operandB.scale || operandA.zeroPoint != operandB.zeroPoint) { return false; } return true; } // Compare two graphs. We ignore operand and operation indexes (i.e., // two nodes can be the same even if they are numbered differently) // but we also ignore semantics (e.g., even if an operation kind is // such that the operand is commutative, we still pay attention to the // order of its input operands). // // The comparison algorithm works by walking modelA from outputs // towards inputs, along the edge from each operand to its // defining operation, and then along the edges to the operation's // input operands. At each step along the way, we try to match up // operands and operations from modelA with equivalent operands // and operations from modelB. // // We start by assuming that modelA's outputs and modelB's outputs // match positionally (e.g., modelA's first output operand is // equivalent to modelB's first output operand). Once we've // discovered two equivalent operands (such as those outputs), we // place them in a work queue. We repeatedly pull operands off // the queue and compare their defining operations and those // operations' input operands, to discover more pairs of // equivalent operands. If we ever find operations that do not // match (e.g., because operation kind differs), or operands that // do not match (e.g., because operand type differs); or if we // ever find a conflict (we've already decided that operand A's // equivalent operand is B0, but it looks like we need its // equivalent operand to be B1); then the graphs compare unequal. // Otherwise, we'll eventually exhaust the work queue, and // conclude that the graphs compare equal. // // As a side effect of the comparison, we produce a map // *inputsAndOutputsBToA that maps from each of the model input and output // operand numbers of modelB to the corresponding operand numbers of modelA. // If the comparison returns false, the contents of the map are undefined. bool compare(const ModelBuilder* modelA, const ModelBuilder* modelB, std::map* inputsAndOutputsBToA) { CHECK(inputsAndOutputsBToA != nullptr); EXPECT_TRUE(inputsAndOutputsBToA->empty()); #ifdef VERBOSE ::dump("compare(A)", modelA); ::dump("compare(B)", modelB); #endif if (modelA->operandCount() != modelB->operandCount() || modelA->operationCount() != modelB->operationCount() || modelA->inputCount() != modelB->inputCount() || modelA->outputCount() != modelB->outputCount()) { RETURN_FALSE(); } // Maps from operand index to index of defining operation. std::map defsA, defsB; buildDefinitionMap(modelA, &defsA); buildDefinitionMap(modelB, &defsB); if (HasFatalFailure()) return false; // Maps from operand index in modelA to equivalent operand index // in modelB; and from operation index in modelA to equivalent // operation index in modelB. std::map equivalentOperandsAToB; std::map equivalentOperationsAToB; // Queue of operand indexes from modelA, each of whose defining // operations are to be checked for equivalence with modelB. std::queue workQueueOperandsA; // Seed operand equivalence map and work queue from model outputs. for (uint32_t i = 0, e = modelA->outputCount(); i < e; i++) { uint32_t outputA = modelA->getOutputOperandIndex(i); uint32_t outputB = modelB->getOutputOperandIndex(i); if (!compare(modelA->getOperand(outputA), modelB->getOperand(outputB))) { RETURN_FALSE(); } equivalentOperandsAToB[outputA] = outputB; workQueueOperandsA.push(outputA); } #ifdef VERBOSE dump("defsA", &defsA); dump("defsB", &defsB); #endif // Process the queue. uint32_t pseudoDefinitionCount = 0; while (!workQueueOperandsA.empty()) { #ifdef VERBOSE dump("equivalentOperandsAToB", &equivalentOperandsAToB); dump("equivalentOperationsAToB", &equivalentOperationsAToB); #endif uint32_t operandIndexA = workQueueOperandsA.front(); #ifdef VERBOSE std::cout << "operandIndexA: " << operandIndexA << std::endl; #endif workQueueOperandsA.pop(); uint32_t operandIndexB = equivalentOperandsAToB.at(operandIndexA); uint32_t operationIndexA = defsA.at(operandIndexA); uint32_t operationIndexB = defsB.at(operandIndexB); auto it = equivalentOperationsAToB.find(operationIndexA); if (it != equivalentOperationsAToB.end()) { if (it->second != operationIndexB) { RETURN_FALSE(); } continue; } // We haven't identified an equivalent operation for // operationIndexA. if ((operationIndexA >= kPseudoDefiningOperationBase) != (operationIndexB >= kPseudoDefiningOperationBase)) { RETURN_FALSE(); } // Either both operands have pseudo-definitions, or neither // does. if (operationIndexA >= kPseudoDefiningOperationBase) { // Both operands have pseudo-definitions. if (operationIndexA != operationIndexB) { RETURN_FALSE(); } equivalentOperationsAToB[operationIndexA] = operationIndexB; ++pseudoDefinitionCount; continue; } // If we get here, neither operation A nor operation B is a // pseudo-definition. const Operation& operationA = modelA->getOperation(operationIndexA); const Operation& operationB = modelB->getOperation(operationIndexB); if (operationA.type != operationB.type || operationA.inputs.size() != operationB.inputs.size() || operationA.outputs.size() != operationB.outputs.size()) { RETURN_FALSE(); } equivalentOperationsAToB[operationIndexA] = operationIndexB; for (uint32_t i = 0, e = operationA.inputs.size(); i < e; i++) { uint32_t inputA = operationA.inputs[i]; uint32_t inputB = operationB.inputs[i]; auto it = equivalentOperandsAToB.find(inputA); if (it != equivalentOperandsAToB.end()) { if (it->second != inputB) { RETURN_FALSE(); } continue; } // We haven't identified an equivalent operand for inputA. if (!compare(modelA->getOperand(inputA), modelB->getOperand(inputB))) { RETURN_FALSE(); } equivalentOperandsAToB[inputA] = inputB; workQueueOperandsA.push(inputA); } } // Sanity check if (modelA->operandCount() != defsA.size() || modelA->operandCount() != defsB.size() || modelA->operandCount() != equivalentOperandsAToB.size() || modelA->operationCount() + pseudoDefinitionCount != equivalentOperationsAToB.size()) { RETURN_FALSE(); } // Build *inputsAndOutputsBToA for (uint32_t aInputIndex : modelA->getInputOperandIndexes()) { (*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aInputIndex)] = aInputIndex; } for (uint32_t aOutputIndex : modelA->getOutputOperandIndexes()) { (*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aOutputIndex)] = aOutputIndex; } RETURN_TRUE(); } /*-------------------------------------------------------------------------------------*/ // As a side effect of the comparison, we produce a map // *inputsAndOutputsModelToStep that maps from each of the model input and // output operand numbers of "model" to the corresponding operand numbers of // the submodel from "step". If the comparison returns false, the contents // of the map are undefined. bool compare(std::shared_ptr step, const PartitioningModel* model, std::shared_ptr device, std::map* inputsAndOutputsModelToStep) { return (step->getDevice() == device) && compare(step->getSubModel(), reinterpret_cast(model->getHandle()), inputsAndOutputsModelToStep); } void compare(std::shared_ptr step, const PartitioningModel* model, std::shared_ptr device, const RemapVectorType& modelInputs, const RemapVectorType& modelOutputs, const RemapVectorType& tempsAsSubModelInputs, const SubModelOutputSetType& tempsAsSubModelOutputs, const RemapVectorType& outputsAsSubModelInputs) { std::map inputsAndOutputsModelToStep; ASSERT_NO_FATAL_FAILURE( ASSERT_TRUE(compare(step, model, device, &inputsAndOutputsModelToStep))); ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelInputs(), modelInputs)); ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelOutputs(), modelOutputs)); ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getTempsAsSubModelInputs(), tempsAsSubModelInputs)); ASSERT_TRUE(compareSubModelOutputSets(inputsAndOutputsModelToStep, step->getTempsAsSubModelOutputs(), tempsAsSubModelOutputs)); ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getOutputsAsSubModelInputs(), outputsAsSubModelInputs)); } private: static bool compareRemapVectors(const std::map& inputsAndOutputsModelToStep, const RemapVectorType& step, RemapVectorType model) { std::transform(model.begin(), model.end(), model.begin(), [&inputsAndOutputsModelToStep](const RemapVectorType::value_type& val) { return std::make_pair(val.first, inputsAndOutputsModelToStep.at(val.second)); }); return step == model; } static bool compareSubModelOutputSets( const std::map& inputsAndOutputsModelToStep, const SubModelOutputSetType& step, const SubModelOutputSetType& model) { SubModelOutputSetType modelTransformed; std::transform( model.begin(), model.end(), std::inserter(modelTransformed, modelTransformed.end()), [&inputsAndOutputsModelToStep](const SubModelOutputSetType::value_type& val) { return std::make_pair(val.first, inputsAndOutputsModelToStep.at(val.second)); }); return step == modelTransformed; } }; TEST_F(PartitioningTest, SimpleModel) { PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1); uint32_t opnd3 = model.addFloatOperand(); uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3); model.identifyInputsAndOutputs({ opnd0, opnd1, opnd3 }, { opnd4 }); model.finish(); ASSERT_TRUE(model.isValid()); // Simple partition (two devices are each capable of everything, one is the best). // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. const auto devicesA = makeDevices({{"bad", 0.9, ~0U}, {"good", 0.5, ~0U}}); ExecutionPlan planA; ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER, &planA), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr); ASSERT_STREQ(planA.forTest_simpleGetDevice()->getName(), "good"); // Simple partition (two devices are each capable of everything, none better than CPU). // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. const auto devicesC = makeDevices({{"bad", 1.1, ~0U}, {"bad2", 1.0, ~0U}}); ExecutionPlan planC; ASSERT_EQ(model.partitionTheWork(devicesC, ExecutePreference::PREFER_LOW_POWER, &planC), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(planC.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_EQ(planC.forTest_simpleGetDevice(), DeviceManager::getCpuDevice()); // Compound partition (two devices, each is capable of one of the // two operations). We could do more extensive checking here -- // for example, verify that each step within the plan has the // correct (model and submodel)x(inputs and outputs). const auto devicesB = makeDevices({{"0", 0.9, 1 << 0}, {"1", 0.5, 1 << 1}}); ExecutionPlan planB; ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER, &planB), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND); const auto& stepsB = planB.forTest_compoundGetSteps(); ASSERT_EQ(stepsB.size(), size_t(2)); { // Build a model to compare against the submodel from stepsB[0]. PartitioningModel modelB0; uint32_t b0Opnd0 = modelB0.addFloatOperand(); uint32_t b0Opnd1 = modelB0.addFloatOperand(); uint32_t b0Opnd2 = modelB0.addOperation2To1V1_0(0, b0Opnd0, b0Opnd1); modelB0.identifyInputsAndOutputs({ b0Opnd0, b0Opnd1 }, { b0Opnd2 }); modelB0.finish(); ASSERT_TRUE(modelB0.isValid()); ASSERT_NO_FATAL_FAILURE( compare(stepsB[0], &modelB0, devicesB[0], RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs RemapVectorType{}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{{opnd2, b0Opnd2}}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs; } { // Build a model to compare against the submodel from stepsB[1]. PartitioningModel modelB1; uint32_t b1Opnd2 = modelB1.addFloatOperand(); uint32_t b1Opnd3 = modelB1.addFloatOperand(); uint32_t b1Opnd4 = modelB1.addOperation2To1V1_0(1, b1Opnd2, b1Opnd3); // Note: In the partitioning algorithm, submodel inputs follow // model inputs. In the original model "model", opnd2 is not // an input; so in the submodel "modelB1", the corresponding // input b1Opnd2 is a submodel input, and must follow the // model input b1Opnd3. modelB1.identifyInputsAndOutputs({ b1Opnd3, b1Opnd2 }, { b1Opnd4 }); modelB1.finish(); ASSERT_TRUE(modelB1.isValid()); ASSERT_NO_FATAL_FAILURE(compare(stepsB[1], &modelB1, devicesB[1], RemapVectorType{{opnd3, b1Opnd3}}, // modelInputs RemapVectorType{{opnd4, b1Opnd4}}, // modelOutputs RemapVectorType{{opnd2, b1Opnd2}}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } } TEST_F(PartitioningTest, SliceModel) { PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1); uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd0, opnd1); uint32_t opnd4 = model.addOperation2To1V1_1(0, opnd0, opnd1); uint32_t opnd5 = model.addOperation2To1V1_2(0, opnd2, opnd3); model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd4, opnd5}); model.finish(); ASSERT_TRUE(model.isValid()); // Simple partition (V1_0, V1_1, V1_2 devices are available; V1_2 has best perf). // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. const auto devicesA = makeDevices({{"V1_0", 0.8, HalVersion::V1_0, ~0U}, {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U}, {"V1_2", 0.6, HalVersion::V1_2, ~0U, ~0U, ~0U}}); ExecutionPlan planA; ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER, &planA), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr); ASSERT_STREQ(planA.forTest_simpleGetDevice()->getName(), "V1_2"); // Compound partition (V1_0, V1_1, V1_2 devices are available, in decreasing // order of performance; model is distributed across all three devices). const auto devicesB = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U}, {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U}, {"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U}}); ExecutionPlan planB; ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER, &planB), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND); const auto& stepsB = planB.forTest_compoundGetSteps(); ASSERT_EQ(stepsB.size(), size_t(3)); { // Build a model to compare against the submodel from stepsB[0]. PartitioningModel modelB0; uint32_t b0Opnd0 = modelB0.addFloatOperand(); uint32_t b0Opnd1 = modelB0.addFloatOperand(); uint32_t b0Opnd2 = modelB0.addOperation2To1V1_1(0, b0Opnd0, b0Opnd1); modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2}); modelB0.finish(); ASSERT_TRUE(modelB0.isValid()); ASSERT_NO_FATAL_FAILURE( compare(stepsB[0], &modelB0, devicesB[1], RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs RemapVectorType{{opnd4, b0Opnd2}}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } { // Build a model to compare against the submodel from stepsB[1]. PartitioningModel modelB1; uint32_t b1Opnd0 = modelB1.addFloatOperand(); uint32_t b1Opnd1 = modelB1.addFloatOperand(); uint32_t b1Opnd2 = modelB1.addOperation2To1V1_0(0, b1Opnd0, b1Opnd1); uint32_t b1Opnd3 = modelB1.addOperation2To1V1_0(1, b1Opnd0, b1Opnd1); modelB1.identifyInputsAndOutputs({b1Opnd0, b1Opnd1}, {b1Opnd2, b1Opnd3}); modelB1.finish(); ASSERT_TRUE(modelB1.isValid()); ASSERT_NO_FATAL_FAILURE( compare(stepsB[1], &modelB1, devicesB[0], RemapVectorType{{opnd0, b1Opnd0}, {opnd1, b1Opnd1}}, // modelInputs RemapVectorType{{opnd2, b1Opnd2}}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{{opnd3, b1Opnd3}}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } { // Build a model to compare against the submodel from stepsB[2]. PartitioningModel modelB2; uint32_t b2Opnd0 = modelB2.addFloatOperand(); uint32_t b2Opnd1 = modelB2.addFloatOperand(); uint32_t b2Opnd2 = modelB2.addOperation2To1V1_2(0, b2Opnd0, b2Opnd1); // Note: In the partitioning algorithm, temps that are // submodel inputs precede model outputs that are submodel // inputs. In the original model "model", opnd3 is a temp and // opnd2 is a model output; so in the submodel "modelB2", the // corresponding inputs b2Opnd1 and b2Opnd0 must appear in // that order. modelB2.identifyInputsAndOutputs({b2Opnd1, b2Opnd0}, {b2Opnd2}); modelB2.finish(); ASSERT_TRUE(modelB2.isValid()); ASSERT_NO_FATAL_FAILURE( compare(stepsB[2], &modelB2, devicesB[2], RemapVectorType{}, // modelInputs RemapVectorType{{opnd5, b2Opnd2}}, // modelOutputs RemapVectorType{{opnd3, b2Opnd1}}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{{opnd2, b2Opnd0}})); // outputsAsSubModelInputs } // TODO: Make sure this still works when we have multiple devices // of same version available for slicing. An easy (?) choice would // be to route the two different V1_0 operations to different // devices. } TEST_F(PartitioningTest, SliceModelToEmpty) { PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_2(0, opnd0, opnd1); model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2}); model.finish(); ASSERT_TRUE(model.isValid()); // Only the V1_2 device can handle any operations in the model. // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. const auto devices = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U}, {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U}, {"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U}}); ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_NE(plan.forTest_simpleGetDevice().get(), nullptr); ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "V1_2"); } TEST_F(PartitioningTest, Cpu) { // Here's a model where some operations execute only on the Cpu. // To make things interesting, we produce three partitions -- // device, cpu, same-device. static const uint32_t kCpuOp = 1; static const uint32_t kDevOp = 2; const auto devices = makeDevices({{"1", 0.5, 1 << kDevOp}}); PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd1); uint32_t opnd3 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd2); uint32_t opnd4 = model.addOperation2To1V1_0(kCpuOp, opnd0, opnd3); uint32_t opnd5 = model.addOperation2To1V1_0(kCpuOp, opnd2, opnd4); uint32_t opnd6 = model.addFloatOperand(); uint32_t opnd7 = model.addOperation2To1V1_0(kDevOp, opnd3, opnd5); uint32_t opnd8 = model.addOperation2To1V1_0(kDevOp, opnd6, opnd7); model.identifyInputsAndOutputs({ opnd0, opnd1, opnd6 }, { opnd4, opnd8 }); model.finish(); ASSERT_TRUE(model.isValid()); ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND); const auto& steps = plan.forTest_compoundGetSteps(); ASSERT_EQ(steps.size(), size_t(3)); { const auto& step0 = steps[0]; // Build a model to compare against the submodel from steps[0]. PartitioningModel model0; uint32_t m0Opnd0 = model0.addFloatOperand(); uint32_t m0Opnd1 = model0.addFloatOperand(); uint32_t m0Opnd2 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd1); uint32_t m0Opnd3 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd2); model0.identifyInputsAndOutputs({ m0Opnd0, m0Opnd1 }, { m0Opnd2, m0Opnd3 }); model0.finish(); ASSERT_TRUE(model0.isValid()); ASSERT_NO_FATAL_FAILURE( compare(step0, &model0, devices[0], RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs RemapVectorType{}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{{opnd2, m0Opnd2}, {opnd3, m0Opnd3}}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } { const auto& step1 = steps[1]; // Build a model to compare against the submodel from steps[1]. PartitioningModel model1; uint32_t m1Opnd0 = model1.addFloatOperand(); uint32_t m1Opnd3 = model1.addFloatOperand(); uint32_t m1Opnd4 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd0, m1Opnd3); uint32_t m1Opnd2 = model1.addFloatOperand(); uint32_t m1Opnd5 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd2, m1Opnd4); model1.identifyInputsAndOutputs({ m1Opnd0, m1Opnd3, m1Opnd2 }, { m1Opnd4, m1Opnd5 }); model1.finish(); ASSERT_TRUE(model1.isValid()); ASSERT_NO_FATAL_FAILURE(compare( step1, &model1, DeviceManager::getCpuDevice(), RemapVectorType{{opnd0, m1Opnd0}}, // modelInputs RemapVectorType{{opnd4, m1Opnd4}}, // modelOutputs RemapVectorType{{opnd3, m1Opnd3}, {opnd2, m1Opnd2}}, // tempsAsSubModelInputs SubModelOutputSetType{{opnd5, m1Opnd5}}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } { const auto& step2 = steps[2]; // Build a model to compare against the submodel from steps[2]. PartitioningModel model2; uint32_t m2Opnd3 = model2.addFloatOperand(); uint32_t m2Opnd5 = model2.addFloatOperand(); uint32_t m2Opnd7 = model2.addOperation2To1V1_0(kDevOp, m2Opnd3, m2Opnd5); uint32_t m2Opnd6 = model2.addFloatOperand(); uint32_t m2Opnd8 = model2.addOperation2To1V1_0(kDevOp, m2Opnd6, m2Opnd7); model2.identifyInputsAndOutputs({ m2Opnd6, m2Opnd3, m2Opnd5 }, { m2Opnd8 }); model2.finish(); ASSERT_TRUE(model2.isValid()); ASSERT_NO_FATAL_FAILURE(compare( step2, &model2, devices[0], RemapVectorType{{opnd6, m2Opnd6}}, // modelInputs RemapVectorType{{opnd8, m2Opnd8}}, // modelOutputs RemapVectorType{{opnd3, m2Opnd3}, {opnd5, m2Opnd5}}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } } TEST_F(PartitioningTest, SetPartitioning) { PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1, PartitioningModel::Dimensioned::NO); uint32_t opnd3 = model.addFloatOperand(); uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3); model.identifyInputsAndOutputs({ opnd0, opnd1, opnd3 }, { opnd4 }); model.finish(); ASSERT_TRUE(model.isValid()); // We expect that we cannot successfully partition, because we // have an intermediate operand (opnd2) without dimensions, and // this is not currently handled. // One device that can and should execute operation 0. const auto devices = makeDevices({{"hw", 0.5, (1 << 0)}}); // Test kPartitioningNo. We should not even attempt partitioning, // so there should be a SIMPLE plan on CPU. // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. PartitioningCompilation cPNo(&model, devices); ASSERT_EQ(cPNo.setPartitioning(DeviceManager::kPartitioningNo), Result::NO_ERROR); ASSERT_EQ(cPNo.finish(), Result::NO_ERROR); ASSERT_EQ(cPNo.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_EQ(cPNo.getExecutionPlan().forTest_simpleGetDevice(), DeviceManager::getCpuDevice()); // Test kPartitioningWithFallback. We should attempt // partitioning, reach the end of the partitioning process (so we // have an unsuccessful execution plan), discover the dimensionless // intermediate operand, then fallback to CPU with a SIMPLE plan, and // finally return success. // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. PartitioningCompilation cPWithFallback(&model, devices); ASSERT_EQ(cPWithFallback.setPartitioning(DeviceManager::kPartitioningWithFallback), Result::NO_ERROR); ASSERT_EQ(cPWithFallback.finish(), Result::NO_ERROR); ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_simpleGetDevice(), DeviceManager::getCpuDevice()); // Test kPartitioningWithoutFallback. We should attempt // partitioning, and fail. PartitioningCompilation cPWithoutFallback(&model, devices); ASSERT_EQ(cPWithoutFallback.setPartitioning(DeviceManager::kPartitioningWithoutFallback), Result::NO_ERROR); ASSERT_EQ(cPWithoutFallback.finish(), Result::OP_FAILED); ASSERT_TRUE(cPWithoutFallback.getExecutionPlan().forTest_hasSubModelOutputsOfUnknownSize()); ASSERT_EQ(cPWithoutFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::ERROR); } // Regression test for http://b/69166603: // "partitioned compilation and execution yields wrong results when model output is submodel input" TEST_F(PartitioningTest, ModelOutputAsSubmodelInput) { PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1); uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd2, opnd2); model.identifyInputsAndOutputs({ opnd0, opnd1 }, { opnd2, opnd3 }); model.finish(); ASSERT_TRUE(model.isValid()); // Compound partition (two devices, each is capable of one of the // two operations). We could do more extensive checking here -- // for example, verify that each step within the plan has the // correct (model and submodel)x(inputs and outputs). const auto devices = makeDevices({{"0", 0.5, 1 << 0}, {"1", 0.5, 1 << 1}}); ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND); const auto& steps = plan.forTest_compoundGetSteps(); ASSERT_EQ(steps.size(), size_t(2)); { // Build a model to compare against the submodel from steps[0]. PartitioningModel model0; uint32_t m0Opnd0 = model0.addFloatOperand(); uint32_t m0Opnd1 = model0.addFloatOperand(); uint32_t m0Opnd2 = model0.addOperation2To1V1_0(0, m0Opnd0, m0Opnd1); model0.identifyInputsAndOutputs({ m0Opnd0, m0Opnd1 }, { m0Opnd2 }); model0.finish(); ASSERT_TRUE(model0.isValid()); ASSERT_NO_FATAL_FAILURE( compare(steps[0], &model0, devices[0], RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs RemapVectorType{{opnd2, m0Opnd2}}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{})); // outputsAsSubModelInputs } { // Build a model to compare against the submodel from steps[1]. PartitioningModel model1; uint32_t m1Opnd2 = model1.addFloatOperand(); uint32_t m1Opnd3 = model1.addOperation2To1V1_0(1, m1Opnd2, m1Opnd2); model1.identifyInputsAndOutputs({ m1Opnd2 }, { m1Opnd3 }); model1.finish(); ASSERT_TRUE(model1.isValid()); ASSERT_NO_FATAL_FAILURE( compare(steps[1], &model1, devices[1], RemapVectorType{}, // modelInputs RemapVectorType{{opnd3, m1Opnd3}}, // modelOutputs RemapVectorType{}, // tempsAsSubModelInputs SubModelOutputSetType{}, // tempsAsSubModelOutputs RemapVectorType{{opnd2, m1Opnd2}})); // outputsAsSubModelInputs } } TEST_F(PartitioningTest, OemOperations) { // Trivial model consisting solely of OEM operation. PartitioningModel model; uint32_t opndIn = model.addFloatOperand(); uint32_t opndOut = model.addOperationOEM1To1(opndIn); model.identifyInputsAndOutputs({ opndIn }, { opndOut }); model.finish(); ASSERT_TRUE(model.isValid()); // Verify that the best driver than can run an OEM operation is // used, even if it is not better than the CPU. // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. const auto devicesBestOEM = makeDevices({{"badOEM", 1.5, ~0U, PartitioningDriver::OEMYes}, {"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo}, {"goodOEM", 1.2, ~0U, PartitioningDriver::OEMYes}}); PartitioningCompilation compilationBestOEM(&model, devicesBestOEM); ASSERT_EQ(compilationBestOEM.finish(), Result::NO_ERROR); const auto& planBestOEM = compilationBestOEM.getExecutionPlan(); ASSERT_EQ(planBestOEM.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_NE(planBestOEM.forTest_simpleGetDevice().get(), nullptr); ASSERT_STREQ(planBestOEM.forTest_simpleGetDevice()->getName(), "goodOEM"); // Verify that we get an error if no driver can run an OEM operation. const auto devicesNoOEM = makeDevices({{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo}}); PartitioningCompilation compilationNoOEM(&model, devicesNoOEM); ASSERT_EQ(compilationNoOEM.finish(), Result::BAD_DATA); // Verify that we get an error if a driver can SUPPORT but not PREPARE an OEM operation. const auto devicesIndecisiveOEM = makeDevices({{"indecisiveOEM", 0.5, ~0U, PartitioningDriver::OEMIndecisive}}); PartitioningCompilation compilationIndecisiveOEM(&model, devicesIndecisiveOEM); ASSERT_NE(compilationIndecisiveOEM.finish(), Result::NO_ERROR); // Verify that we get an error if there are no drivers (only CPU fallback). PartitioningCompilation compilationNoDrivers(&model, makeDevices({}) /* no drivers */); ASSERT_EQ(compilationNoDrivers.finish(), Result::BAD_DATA); } TEST_F(PartitioningTest, RelaxedFP) { const auto devices = makeDevices({// Best choice for non-relaxed model. {"f32", 0.8, 0.9 /* relaxed */, ~0U}, // Best choice for relaxed model. {"f16", 0.9, 0.8 /* relaxed */, ~0U}}); auto TrivialTest = [&devices](bool doRelax, const char* expectDevice) { // Trivial model consisting solely of one operation. SCOPED_TRACE(expectDevice); PartitioningModel model; uint32_t opnd0 = model.addFloatOperand(); uint32_t opnd1 = model.addFloatOperand(); uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1); model.identifyInputsAndOutputs({ opnd0, opnd1 }, { opnd2 }); model.relaxComputationFloat32toFloat16(doRelax); model.finish(); ASSERT_TRUE(model.isValid()); // Verify that the model will be executed on the appropriate device. // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), expectDevice); }; ASSERT_NO_FATAL_FAILURE(TrivialTest(false, "f32")); ASSERT_NO_FATAL_FAILURE(TrivialTest(true, "f16")); } TEST_F(PartitioningTest, Perf) { // The various type names used here are confusing. // // OperandType (from HAL file), WrapperType (from NeuralNetworksWrapper.h), // and OperandCode (from NeuralNetworks.h) are different enums representing // the same type kind -- e.g., OperandType::FLOAT32, WrapperType::FLOAT32, // ANEURALNETWORKS_FLOAT32. Corresponding enumerators have the same value. // // WrapperOperandType is the NeuralNetworksWrapper.h representation of a // full operand type (WrapperType plus dimensions plus other attributes). auto TestType = [](OperandType operandType) { SCOPED_TRACE(toString(operandType)); // Trivial model consisting solely of OEM operation. We // pick OEM operation because this allows us to use // inputs and outputs of any number and type. PartitioningModel model; uint32_t opndIn = model.addOperand(static_cast(operandType)); uint32_t opndOut = model.addOperationOEM1To1(opndIn); model.identifyInputsAndOutputs({opndIn}, {opndOut}); model.finish(); ASSERT_TRUE(model.isValid()); const Capabilities baseCapabilities = makeCapabilities(0.5); { // better than base Capabilities goodCapabilities = baseCapabilities; update(&goodCapabilities, operandType, 0.25); const auto devices = makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes}, {"good", goodCapabilities, ~0U, PartitioningDriver::OEMYes}}); // Verify that model will be executed on "good". // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "good"); } { // worse than base Capabilities badCapabilities = baseCapabilities; update(&badCapabilities, operandType, 0.75); const auto devices = makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes}, {"bad", badCapabilities, ~0U, PartitioningDriver::OEMYes}}); // Verify that model will be executed on "base". // No need to compare the original model to the model from the plan -- we // didn't actually do any partitioning. ExecutionPlan plan; ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE); ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "base"); } }; for (uint32_t type = static_cast(OperandTypeRange::FUNDAMENTAL_MIN); type <= static_cast(OperandTypeRange::FUNDAMENTAL_MAX); ++type) { TestType(static_cast(type)); } for (uint32_t type = static_cast(OperandTypeRange::OEM_MIN); type <= static_cast(OperandTypeRange::OEM_MAX); ++type) { TestType(static_cast(type)); } } // Test token rehashing during the compilation step. class CacheTest : public PartitioningTest { protected: virtual void SetUp() override { PartitioningTest::SetUp(); char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX"; char* cacheDir = mkdtemp(cacheDirTemp); ASSERT_NE(cacheDir, nullptr); mCacheDir = cacheDir; } virtual void TearDown() override { if (!::testing::Test::HasFailure()) { std::filesystem::remove_all(mCacheDir); } PartitioningTest::TearDown(); } void expectUniqueTokens(const std::vector>& tokens) { for (uint32_t i = 0; i < tokens.size(); i++) { SCOPED_TRACE(i); for (uint32_t j = i + 1; j < tokens.size(); j++) { SCOPED_TRACE(j); EXPECT_NE(tokens[i], tokens[j]); } } } // Launch a single run of the partitioner against the provided model and device list with // cache token privided as tokenIn. Find the partition for the device with deviceName. // Record the tranformed token into tokenOut. // If tokenIn is empty, no caching information will be provided to the partitioner. void getTransformedCacheTokenSingle(const PartitioningModel& model, const std::vector>& devices, const char* deviceName, const std::vector& tokenIn, ExecutePreference preference, std::vector* tokenOut) { // Compile the model and get the execution plan. PartitioningCompilation compilation(&model, devices); if (!tokenIn.empty()) { compilation.setCaching(mCacheDir.c_str(), tokenIn); } compilation.setPreference(preference); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); const ExecutionPlan& plan = compilation.getExecutionPlan(); // Find the cache info for the device. const uint8_t* token = nullptr; if (plan.forTest_getKind() == ExecutionPlan::Kind::SIMPLE) { ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), deviceName); token = plan.forTest_simpleGetCacheToken(); } else if (plan.forTest_getKind() == ExecutionPlan::Kind::COMPOUND) { const auto& steps = plan.forTest_compoundGetSteps(); bool found = false; for (const auto& step : steps) { // In general, two or more partitions can be on the same device. However, this will // not happen on the test models with only 2 operations. if (strcmp(step->getDevice()->getName(), deviceName) == 0) { ASSERT_FALSE(found); token = step->forTest_getCacheToken(); found = true; } } ASSERT_TRUE(found); } else { FAIL(); } // Retrieve the transformed token from the cache info. if (token == nullptr) { tokenOut->clear(); } else { tokenOut->resize(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN); std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, tokenOut->begin()); } } // A wrapper of getTransformedCacheTokenSingle, which runs getTransformedCacheTokenSingle // multiple times and checks if the transformation provides consistent result. void getTransformedCacheToken(const PartitioningModel& model, const std::vector>& devices, const char* deviceName, const std::vector& tokenIn, ExecutePreference preference, std::vector* tokenOut) { getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, tokenOut); // Test if the runtime maps to the same cache token every time for the same compilation // setup. for (uint32_t i = 0; i < 10; i++) { std::vector token; SCOPED_TRACE(i); getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, &token); EXPECT_EQ(*tokenOut, token); } } void CreateModelForCachingTests(PartitioningModel* model) { uint32_t opnd0 = model->addFloatOperand(); uint32_t opnd1 = model->addFloatOperand(); uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1); uint32_t opnd3 = model->addFloatOperand(); uint32_t opnd4 = model->addOperation2To1V1_0(1, opnd2, opnd3); model->identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4}); model->finish(); ASSERT_TRUE(model->isValid()); } std::string mCacheDir; }; // Test the case when no token is provided by the application and the execution plan has a // simple body. TEST_F(CacheTest, CacheTokenNoneSimpleBody) { PartitioningModel model; CreateModelForCachingTests(&model); // deviceA can execute the whole model. const auto deviceA = makeDevices({ {"deviceA", 0.5, ~0U}, }); std::vector tokenIn, tokenOut; getTransformedCacheToken(model, deviceA, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut); EXPECT_TRUE(tokenOut.empty()); } // Test if the runtime maps to different cache tokens for devices with different names in // execution plan with a simple body. TEST_F(CacheTest, CacheTokenDifferentDeviceNamesSimpleBody) { PartitioningModel model; CreateModelForCachingTests(&model); // Two devices that can both execute the whole model. const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}}); const auto deviceB = makeDevices({{"deviceB", 0.5, ~0U}}); std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector deviceAToken, deviceBToken; getTransformedCacheToken(model, deviceA, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceAToken); getTransformedCacheToken(model, deviceB, "deviceB", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceBToken); expectUniqueTokens({deviceAToken, deviceBToken}); } // Test if the runtime maps to different cache tokens for devices with different version strings in // execution plan with a simple body. TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsSimpleBody) { PartitioningModel model; CreateModelForCachingTests(&model); // Two devices that can both execute the whole model. const auto deviceA_1_0 = makeDevices({{"deviceA", "1.0", 0.5, ~0U}}); const auto deviceA_1_1 = makeDevices({{"deviceA", "1.1", 0.5, ~0U}}); std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector deviceA_1_0_Token, deviceA_1_1_Token; getTransformedCacheToken(model, deviceA_1_0, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_0_Token); getTransformedCacheToken(model, deviceA_1_1, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_1_Token); expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token}); } // Test if the runtime maps to different cache tokens for compilations with different preferences // in execution plan with a simple body. TEST_F(CacheTest, CacheTokenDifferentPreferencesSimpleBody) { PartitioningModel model; CreateModelForCachingTests(&model); // One device that can execute the whole model. const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}}); std::vector fastToken, powerToken, sustainedToken; std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); getTransformedCacheToken(model, deviceA, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &fastToken); getTransformedCacheToken(model, deviceA, "deviceA", tokenIn, ExecutePreference::PREFER_LOW_POWER, &powerToken); getTransformedCacheToken(model, deviceA, "deviceA", tokenIn, ExecutePreference::PREFER_SUSTAINED_SPEED, &sustainedToken); expectUniqueTokens({fastToken, powerToken, sustainedToken}); } // Test if the runtime maps to different cache tokens for compilations with different tokens // provided by application in execution plan with a simple body. TEST_F(CacheTest, CacheTokenDifferentTokensSimpleBody) { PartitioningModel model; CreateModelForCachingTests(&model); // One device that can execute the whole model. const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}}); std::vector tokenOut1, tokenOut2; std::vector tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1); getTransformedCacheToken(model, deviceA, "deviceA", tokenIn1, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1); getTransformedCacheToken(model, deviceA, "deviceA", tokenIn2, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2); expectUniqueTokens({tokenOut1, tokenOut2}); } // Test the case when no token is provided by the application and the execution plan has a // compound body. TEST_F(CacheTest, CacheTokenNoneCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the first operation only. const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); std::vector tokenIn, tokenOut; getTransformedCacheToken(model, devices, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut); EXPECT_TRUE(tokenOut.empty()); getTransformedCacheToken(model, devices, "deviceB", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut); EXPECT_TRUE(tokenOut.empty()); } // Test if the runtime maps to different cache tokens for devices with different names in // execution plan with a compound body. TEST_F(CacheTest, CacheTokenDifferentDeviceNamesCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the first operation only. const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}}); // DeviceB executes the first operation only. const auto devices2 = makeDevices({{"deviceB", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}}); std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector deviceAToken, deviceBToken; getTransformedCacheToken(model, devices1, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceAToken); getTransformedCacheToken(model, devices2, "deviceB", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceBToken); expectUniqueTokens({deviceAToken, deviceBToken}); } // Test if the runtime maps to different cache tokens for devices with different names in // execution plan with a compound body. TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the first operation only. const auto devices1 = makeDevices({{"deviceA", "1.0", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); // DeviceB executes the first operation only. const auto devices2 = makeDevices({{"deviceA", "1.1", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector deviceA_1_0_Token, deviceA_1_1_Token; getTransformedCacheToken(model, devices1, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_0_Token); getTransformedCacheToken(model, devices2, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_1_Token); expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token}); } // Test if the runtime maps to different cache tokens for compilations with different preferences // in execution plan with a compound body. TEST_F(CacheTest, CacheTokenDifferentPreferencesCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the first operation only. const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); std::vector fastToken, powerToken, sustainedToken; std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); getTransformedCacheToken(model, devices, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &fastToken); getTransformedCacheToken(model, devices, "deviceA", tokenIn, ExecutePreference::PREFER_LOW_POWER, &powerToken); getTransformedCacheToken(model, devices, "deviceA", tokenIn, ExecutePreference::PREFER_SUSTAINED_SPEED, &sustainedToken); expectUniqueTokens({fastToken, powerToken, sustainedToken}); } // Test if the runtime maps to different cache tokens for compilations with different tokens // provided by application in execution plan with a compound body. TEST_F(CacheTest, CacheTokenDifferentTokensCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the first operation only. const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); std::vector tokenOut1, tokenOut2; std::vector tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1); getTransformedCacheToken(model, devices, "deviceA", tokenIn1, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1); getTransformedCacheToken(model, devices, "deviceA", tokenIn2, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2); expectUniqueTokens({tokenOut1, tokenOut2}); } // Test if the runtime maps to different cache tokens for compilations with different partitioning // outcome in execution plan with a compound body. TEST_F(CacheTest, CacheTokenDifferentPartitionsCompoundBody) { PartitioningModel model; CreateModelForCachingTests(&model); // DeviceA executes the whole model. const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 0U}}); // DeviceA executes the first operation only. const auto devices2 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}}); // DeviceA executes the second operation only. const auto devices3 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 0}}); std::vector tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); std::vector tokenOut1, tokenOut2, tokenOut3; getTransformedCacheToken(model, devices1, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1); getTransformedCacheToken(model, devices2, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2); getTransformedCacheToken(model, devices3, "deviceA", tokenIn, ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut3); expectUniqueTokens({tokenOut1, tokenOut2, tokenOut3}); } // Very basic tests of some of the PerformanceInfo functionality. // Placed in this file because partitioning is the consumer of this functionality. class PerfTest : public ::testing::Test {}; TEST_F(PerfTest, Lookup) { // Derive an arbitrary (but reproducible) performance value from an OperandType. // We'll use this to ensure that we can save and then recover a type's performance. auto typePerf = [](OperandType type) { return float(static_cast(type)); }; Capabilities capabilities = makeCapabilities(-1.0f); for (uint32_t type = static_cast(OperandTypeRange::FUNDAMENTAL_MIN); type <= static_cast(OperandTypeRange::FUNDAMENTAL_MAX); ++type) { OperandType operandType = static_cast(type); update(&capabilities, operandType, typePerf(operandType)); } for (uint32_t type = static_cast(OperandTypeRange::OEM_MIN); type <= static_cast(OperandTypeRange::OEM_MAX); ++type) { OperandType operandType = static_cast(type); update(&capabilities, operandType, typePerf(operandType)); } // Make sure lookup retrieves the values stored by update for (uint32_t type = static_cast(OperandTypeRange::FUNDAMENTAL_MIN); type <= static_cast(OperandTypeRange::FUNDAMENTAL_MAX); ++type) { OperandType operandType = static_cast(type); SCOPED_TRACE(toString(operandType)); EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType)); } for (uint32_t type = static_cast(OperandTypeRange::OEM_MIN); type <= static_cast(OperandTypeRange::OEM_MAX); ++type) { OperandType operandType = static_cast(type); SCOPED_TRACE(toString(operandType)); EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType)); } // Check the behavior of a missing type OperandType operandType = static_cast(static_cast(OperandTypeRange::BASE_MAX) + 1); EXPECT_EQ(lookupExecTime(capabilities, operandType), FLT_MAX); } } // namespace