/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "RandomVariable.h" #include <algorithm> #include <memory> #include <set> #include <string> #include <unordered_set> #include <vector> #include "RandomGraphGeneratorUtils.h" namespace android { namespace nn { namespace fuzzing_test { unsigned int RandomVariableBase::globalIndex = 0; int RandomVariable::defaultValue = 10; RandomVariableBase::RandomVariableBase(int value) : index(globalIndex++), type(RandomVariableType::CONST), range(value), value(value), timestamp(RandomVariableNetwork::get()->getGlobalTime()) {} RandomVariableBase::RandomVariableBase(int lower, int upper) : index(globalIndex++), type(RandomVariableType::FREE), range(lower, upper), timestamp(RandomVariableNetwork::get()->getGlobalTime()) {} RandomVariableBase::RandomVariableBase(const std::vector<int>& choices) : index(globalIndex++), type(RandomVariableType::FREE), range(choices), timestamp(RandomVariableNetwork::get()->getGlobalTime()) {} RandomVariableBase::RandomVariableBase(const RandomVariableNode& lhs, const RandomVariableNode& rhs, const std::shared_ptr<const IRandomVariableOp>& op) : index(globalIndex++), type(RandomVariableType::OP), range(op->getInitRange(lhs->range, rhs == nullptr ? RandomVariableRange(0) : rhs->range)), op(op), parent1(lhs), parent2(rhs), timestamp(RandomVariableNetwork::get()->getGlobalTime()) {} void RandomVariableRange::setRange(int lower, int upper) { // kInvalidValue indicates unlimited bound. auto head = lower == kInvalidValue ? mChoices.begin() : std::lower_bound(mChoices.begin(), mChoices.end(), lower); auto tail = upper == kInvalidValue ? mChoices.end() : std::upper_bound(mChoices.begin(), mChoices.end(), upper); NN_FUZZER_CHECK(head <= tail) << "Invalid range!"; if (head != mChoices.begin() || tail != mChoices.end()) { mChoices = std::vector<int>(head, tail); } } int RandomVariableRange::toConst() { if (mChoices.size() > 1) mChoices = {getRandomChoice(mChoices)}; return mChoices[0]; } RandomVariableRange operator&(const RandomVariableRange& lhs, const RandomVariableRange& rhs) { std::vector<int> result(lhs.size() + rhs.size()); auto it = std::set_intersection(lhs.mChoices.begin(), lhs.mChoices.end(), rhs.mChoices.begin(), rhs.mChoices.end(), result.begin()); result.resize(it - result.begin()); return RandomVariableRange(std::move(result)); } void RandomVariableBase::freeze() { if (type == RandomVariableType::CONST) return; value = range.toConst(); type = RandomVariableType::CONST; } int RandomVariableBase::getValue() const { switch (type) { case RandomVariableType::CONST: return value; case RandomVariableType::OP: return op->eval(parent1->getValue(), parent2 == nullptr ? 0 : parent2->getValue()); default: NN_FUZZER_CHECK(false) << "Invalid type when getting value of var" << index; return 0; } } void RandomVariableBase::updateTimestamp() { timestamp = RandomVariableNetwork::get()->getGlobalTime(); NN_FUZZER_LOG << "Update timestamp of var" << index << " to " << timestamp; } RandomVariable::RandomVariable(int value) : mVar(new RandomVariableBase(value)) { NN_FUZZER_LOG << "New RandomVariable " << toString(mVar); RandomVariableNetwork::get()->add(mVar); } RandomVariable::RandomVariable(int lower, int upper) : mVar(new RandomVariableBase(lower, upper)) { NN_FUZZER_LOG << "New RandomVariable " << toString(mVar); RandomVariableNetwork::get()->add(mVar); } RandomVariable::RandomVariable(const std::vector<int>& choices) : mVar(new RandomVariableBase(choices)) { NN_FUZZER_LOG << "New RandomVariable " << toString(mVar); RandomVariableNetwork::get()->add(mVar); } RandomVariable::RandomVariable(RandomVariableType type) : mVar(new RandomVariableBase(1, defaultValue)) { NN_FUZZER_CHECK(type == RandomVariableType::FREE); NN_FUZZER_LOG << "New RandomVariable " << toString(mVar); RandomVariableNetwork::get()->add(mVar); } RandomVariable::RandomVariable(const RandomVariable& lhs, const RandomVariable& rhs, const std::shared_ptr<const IRandomVariableOp>& op) : mVar(new RandomVariableBase(lhs.get(), rhs.get(), op)) { // Make a copy if the parent is CONST. This will resolve the fake dependency problem. if (mVar->parent1->type == RandomVariableType::CONST) { mVar->parent1 = RandomVariable(mVar->parent1->value).get(); } if (mVar->parent2 != nullptr && mVar->parent2->type == RandomVariableType::CONST) { mVar->parent2 = RandomVariable(mVar->parent2->value).get(); } mVar->parent1->children.push_back(mVar); if (mVar->parent2 != nullptr) mVar->parent2->children.push_back(mVar); RandomVariableNetwork::get()->add(mVar); NN_FUZZER_LOG << "New RandomVariable " << toString(mVar); } void RandomVariable::setRange(int lower, int upper) { NN_FUZZER_CHECK(mVar != nullptr) << "setRange() on nullptr"; NN_FUZZER_LOG << "Set range [" << lower << ", " << upper << "] on var" << mVar->index; size_t oldSize = mVar->range.size(); mVar->range.setRange(lower, upper); // Only update the timestamp if the range is *indeed* narrowed down. if (mVar->range.size() != oldSize) mVar->updateTimestamp(); } RandomVariableRange IRandomVariableOp::getInitRange(const RandomVariableRange& lhs, const RandomVariableRange& rhs) const { std::set<int> st; for (auto i : lhs.getChoices()) { for (auto j : rhs.getChoices()) { int res = this->eval(i, j); if (res > kMaxValue || res < -kMaxValue) continue; st.insert(res); } } return RandomVariableRange(st); } // Check if the range contains exactly all values in [min, max]. static inline bool isContinuous(const std::set<int>* range) { return (*(range->rbegin()) - *(range->begin()) + 1) == static_cast<int>(range->size()); } // Fill the set with a range of values specified by [lower, upper]. static inline void fillRange(std::set<int>* range, int lower, int upper) { for (int i = lower; i <= upper; i++) range->insert(i); } // The slowest algorithm: iterate through every combinations of parents and save the valid pairs. void IRandomVariableOp::eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const { // Avoid the binary search if the child is a closed range. bool isChildInContinuous = isContinuous(childIn); std::pair<int, int> child = {*childIn->begin(), *childIn->rbegin()}; for (auto i : *parent1In) { bool valid = false; for (auto j : *parent2In) { int res = this->eval(i, j); // Avoid the binary search if obviously out of range. if (res > child.second || res < child.first) continue; if (isChildInContinuous || childIn->find(res) != childIn->end()) { parent2Out->insert(j); childOut->insert(res); valid = true; } } if (valid) parent1Out->insert(i); } } // A helper template to make a class into a Singleton. template <class T> class Singleton : public T { public: static const std::shared_ptr<const T>& get() { static std::shared_ptr<const T> instance(new T); return instance; } }; // A set of operations that only compute on a single input value. class IUnaryOp : public IRandomVariableOp { public: using IRandomVariableOp::eval; virtual int eval(int val) const = 0; virtual int eval(int lhs, int) const override { return eval(lhs); } // The slowest algorithm: iterate through every value of the parent and save the valid one. virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { NN_FUZZER_CHECK(parent2In == nullptr); NN_FUZZER_CHECK(parent2Out == nullptr); bool isChildInContinuous = isContinuous(childIn); std::pair<int, int> child = {*childIn->begin(), *childIn->rbegin()}; for (auto i : *parent1In) { int res = this->eval(i); if (res > child.second || res < child.first) continue; if (isChildInContinuous || childIn->find(res) != childIn->end()) { parent1Out->insert(i); childOut->insert(res); } } } }; // A set of operations that only check conditional constraints. class IConstraintOp : public IRandomVariableOp { public: using IRandomVariableOp::eval; virtual bool check(int lhs, int rhs) const = 0; virtual int eval(int lhs, int rhs) const override { return check(lhs, rhs) ? 0 : kInvalidValue; } // The range for a constraint op is always {0}. virtual RandomVariableRange getInitRange(const RandomVariableRange&, const RandomVariableRange&) const override { return RandomVariableRange(0); } // The slowest algorithm: // iterate through every combinations of parents and save the valid pairs. virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>*, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { for (auto i : *parent1In) { bool valid = false; for (auto j : *parent2In) { if (this->check(i, j)) { parent2Out->insert(j); valid = true; } } if (valid) parent1Out->insert(i); } if (!parent1Out->empty()) childOut->insert(0); } }; class Addition : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return lhs + rhs; } virtual RandomVariableRange getInitRange(const RandomVariableRange& lhs, const RandomVariableRange& rhs) const override { return RandomVariableRange(lhs.min() + rhs.min(), lhs.max() + rhs.max()); } virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { if (!isContinuous(parent1In) || !isContinuous(parent2In) || !isContinuous(childIn)) { IRandomVariableOp::eval(parent1In, parent2In, childIn, parent1Out, parent2Out, childOut); } else { // For parents and child with close range, the out range can be computed directly // without iterations. std::pair<int, int> parent1 = {*parent1In->begin(), *parent1In->rbegin()}; std::pair<int, int> parent2 = {*parent2In->begin(), *parent2In->rbegin()}; std::pair<int, int> child = {*childIn->begin(), *childIn->rbegin()}; // From ranges for parent, evalute range for child. // [a, b] + [c, d] -> [a + c, b + d] fillRange(childOut, std::max(child.first, parent1.first + parent2.first), std::min(child.second, parent1.second + parent2.second)); // From ranges for child and one parent, evalute range for another parent. // [a, b] - [c, d] -> [a - d, b - c] fillRange(parent1Out, std::max(parent1.first, child.first - parent2.second), std::min(parent1.second, child.second - parent2.first)); fillRange(parent2Out, std::max(parent2.first, child.first - parent1.second), std::min(parent2.second, child.second - parent1.first)); } } virtual const char* getName() const override { return "ADD"; } }; class Subtraction : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return lhs - rhs; } virtual RandomVariableRange getInitRange(const RandomVariableRange& lhs, const RandomVariableRange& rhs) const override { return RandomVariableRange(lhs.min() - rhs.max(), lhs.max() - rhs.min()); } virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { if (!isContinuous(parent1In) || !isContinuous(parent2In) || !isContinuous(childIn)) { IRandomVariableOp::eval(parent1In, parent2In, childIn, parent1Out, parent2Out, childOut); } else { // Similar algorithm as Addition. std::pair<int, int> parent1 = {*parent1In->begin(), *parent1In->rbegin()}; std::pair<int, int> parent2 = {*parent2In->begin(), *parent2In->rbegin()}; std::pair<int, int> child = {*childIn->begin(), *childIn->rbegin()}; fillRange(childOut, std::max(child.first, parent1.first - parent2.second), std::min(child.second, parent1.second - parent2.first)); fillRange(parent1Out, std::max(parent1.first, child.first + parent2.first), std::min(parent1.second, child.second + parent2.second)); fillRange(parent2Out, std::max(parent2.first, parent1.first - child.second), std::min(parent2.second, parent1.second - child.first)); } } virtual const char* getName() const override { return "SUB"; } }; class Multiplication : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return lhs * rhs; } virtual RandomVariableRange getInitRange(const RandomVariableRange& lhs, const RandomVariableRange& rhs) const override { if (lhs.min() < 0 || rhs.min() < 0) { return IRandomVariableOp::getInitRange(lhs, rhs); } else { int lower = std::min(lhs.min() * rhs.min(), kMaxValue); int upper = std::min(lhs.max() * rhs.max(), kMaxValue); return RandomVariableRange(lower, upper); } } virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { if (*parent1In->begin() < 0 || *parent2In->begin() < 0 || *childIn->begin() < 0) { IRandomVariableOp::eval(parent1In, parent2In, childIn, parent1Out, parent2Out, childOut); } else { bool isChildInContinuous = isContinuous(childIn); std::pair<int, int> child = {*childIn->begin(), *childIn->rbegin()}; for (auto i : *parent1In) { bool valid = false; for (auto j : *parent2In) { int res = this->eval(i, j); // Since MUL increases monotonically with one value, break the loop if the // result is larger than the limit. if (res > child.second) break; if (res < child.first) continue; if (isChildInContinuous || childIn->find(res) != childIn->end()) { valid = true; parent2Out->insert(j); childOut->insert(res); } } if (valid) parent1Out->insert(i); } } } virtual const char* getName() const override { return "MUL"; } }; class Division : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return rhs == 0 ? kInvalidValue : lhs / rhs; } virtual RandomVariableRange getInitRange(const RandomVariableRange& lhs, const RandomVariableRange& rhs) const override { if (lhs.min() < 0 || rhs.min() <= 0) { return IRandomVariableOp::getInitRange(lhs, rhs); } else { return RandomVariableRange(lhs.min() / rhs.max(), lhs.max() / rhs.min()); } } virtual const char* getName() const override { return "DIV"; } }; class ExactDivision : public Division { public: virtual int eval(int lhs, int rhs) const override { return (rhs == 0 || lhs % rhs != 0) ? kInvalidValue : lhs / rhs; } virtual const char* getName() const override { return "EXACT_DIV"; } }; class Modulo : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return rhs == 0 ? kInvalidValue : lhs % rhs; } virtual RandomVariableRange getInitRange(const RandomVariableRange&, const RandomVariableRange& rhs) const override { return RandomVariableRange(0, rhs.max()); } virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { if (*childIn->begin() != 0 || childIn->size() != 1u) { IRandomVariableOp::eval(parent1In, parent2In, childIn, parent1Out, parent2Out, childOut); } else { // For the special case that child is a const 0, it would be faster if the range for // parents are evaluated separately. // Evalute parent1 directly. for (auto i : *parent1In) { for (auto j : *parent2In) { if (i % j == 0) { parent1Out->insert(i); break; } } } // Evalute parent2, see if a multiple of parent2 value can be found in parent1. int parent1Max = *parent1In->rbegin(); for (auto i : *parent2In) { int jMax = parent1Max / i; for (int j = 1; j <= jMax; j++) { if (parent1In->find(i * j) != parent1In->end()) { parent2Out->insert(i); break; } } } if (!parent1Out->empty()) childOut->insert(0); } } virtual const char* getName() const override { return "MOD"; } }; class Maximum : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return std::max(lhs, rhs); } virtual const char* getName() const override { return "MAX"; } }; class Minimum : public IRandomVariableOp { public: virtual int eval(int lhs, int rhs) const override { return std::min(lhs, rhs); } virtual const char* getName() const override { return "MIN"; } }; class Square : public IUnaryOp { public: virtual int eval(int val) const override { return val * val; } virtual const char* getName() const override { return "SQUARE"; } }; class UnaryEqual : public IUnaryOp { public: virtual int eval(int val) const override { return val; } virtual const char* getName() const override { return "UNARY_EQUAL"; } }; class Equal : public IConstraintOp { public: virtual bool check(int lhs, int rhs) const override { return lhs == rhs; } virtual void eval(const std::set<int>* parent1In, const std::set<int>* parent2In, const std::set<int>* childIn, std::set<int>* parent1Out, std::set<int>* parent2Out, std::set<int>* childOut) const override { NN_FUZZER_CHECK(childIn->size() == 1u && *childIn->begin() == 0); // The intersection of two sets can be found in O(n). std::set_intersection(parent1In->begin(), parent1In->end(), parent2In->begin(), parent2In->end(), std::inserter(*parent1Out, parent1Out->begin())); *parent2Out = *parent1Out; childOut->insert(0); } virtual const char* getName() const override { return "EQUAL"; } }; class GreaterThan : public IConstraintOp { public: virtual bool check(int lhs, int rhs) const override { return lhs > rhs; } virtual const char* getName() const override { return "GREATER_THAN"; } }; class GreaterEqual : public IConstraintOp { public: virtual bool check(int lhs, int rhs) const override { return lhs >= rhs; } virtual const char* getName() const override { return "GREATER_EQUAL"; } }; class FloatMultiplication : public IUnaryOp { public: FloatMultiplication(float multiplicand) : mMultiplicand(multiplicand) {} virtual int eval(int val) const override { return static_cast<int>(std::floor(static_cast<float>(val) * mMultiplicand)); } virtual const char* getName() const override { return "MUL_FLOAT"; } private: float mMultiplicand; }; // Arithmetic operators and methods on RandomVariables will create OP RandomVariableNodes. // Since there must be at most one edge between two RandomVariableNodes, we have to do something // special when both sides are refering to the same node. RandomVariable operator+(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? RandomVariable(lhs, 2, Singleton<Multiplication>::get()) : RandomVariable(lhs, rhs, Singleton<Addition>::get()); } RandomVariable operator-(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? RandomVariable(0) : RandomVariable(lhs, rhs, Singleton<Subtraction>::get()); } RandomVariable operator*(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? RandomVariable(lhs, RandomVariable(), Singleton<Square>::get()) : RandomVariable(lhs, rhs, Singleton<Multiplication>::get()); } RandomVariable operator*(const RandomVariable& lhs, const float& rhs) { return RandomVariable(lhs, RandomVariable(), std::make_shared<FloatMultiplication>(rhs)); } RandomVariable operator/(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? RandomVariable(1) : RandomVariable(lhs, rhs, Singleton<Division>::get()); } RandomVariable operator%(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? RandomVariable(0) : RandomVariable(lhs, rhs, Singleton<Modulo>::get()); } RandomVariable max(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? lhs : RandomVariable(lhs, rhs, Singleton<Maximum>::get()); } RandomVariable min(const RandomVariable& lhs, const RandomVariable& rhs) { return lhs.get() == rhs.get() ? lhs : RandomVariable(lhs, rhs, Singleton<Minimum>::get()); } RandomVariable RandomVariable::exactDiv(const RandomVariable& other) { return mVar == other.get() ? RandomVariable(1) : RandomVariable(*this, other, Singleton<ExactDivision>::get()); } RandomVariable RandomVariable::setEqual(const RandomVariable& other) const { RandomVariableNode node1 = mVar, node2 = other.get(); NN_FUZZER_LOG << "Set equality of var" << node1->index << " and var" << node2->index; // Do not setEqual on the same pair twice. if (node1 == node2 || (node1->op == Singleton<UnaryEqual>::get() && node1->parent1 == node2) || (node2->op == Singleton<UnaryEqual>::get() && node2->parent1 == node1)) { NN_FUZZER_LOG << "Already equal. Return."; return RandomVariable(); } // If possible, always try UnaryEqual first to reduce the search space. // UnaryEqual can be used if node B is FREE and is evaluated later than node A. // TODO: Reduce code duplication. if (RandomVariableNetwork::get()->isSubordinate(node1, node2)) { NN_FUZZER_LOG << " Make var" << node2->index << " a child of var" << node1->index; node2->type = RandomVariableType::OP; node2->parent1 = node1; node2->op = Singleton<UnaryEqual>::get(); node1->children.push_back(node2); RandomVariableNetwork::get()->join(node1, node2); node1->updateTimestamp(); return other; } if (RandomVariableNetwork::get()->isSubordinate(node2, node1)) { NN_FUZZER_LOG << " Make var" << node1->index << " a child of var" << node2->index; node1->type = RandomVariableType::OP; node1->parent1 = node2; node1->op = Singleton<UnaryEqual>::get(); node2->children.push_back(node1); RandomVariableNetwork::get()->join(node2, node1); node1->updateTimestamp(); return *this; } return RandomVariable(*this, other, Singleton<Equal>::get()); } RandomVariable RandomVariable::setGreaterThan(const RandomVariable& other) const { NN_FUZZER_CHECK(mVar != other.get()); return RandomVariable(*this, other, Singleton<GreaterThan>::get()); } RandomVariable RandomVariable::setGreaterEqual(const RandomVariable& other) const { return mVar == other.get() ? *this : RandomVariable(*this, other, Singleton<GreaterEqual>::get()); } void DisjointNetwork::add(const RandomVariableNode& var) { // Find the subnet index of the parents and decide the index for var. int ind1 = var->parent1 == nullptr ? -1 : mIndexMap[var->parent1]; int ind2 = var->parent2 == nullptr ? -1 : mIndexMap[var->parent2]; int ind = join(ind1, ind2); // If no parent, put it into a new subnet component. if (ind == -1) ind = mNextIndex++; NN_FUZZER_LOG << "Add RandomVariable var" << var->index << " to network #" << ind; mIndexMap[var] = ind; mEvalOrderMap[ind].push_back(var); } int DisjointNetwork::join(int ind1, int ind2) { if (ind1 == -1) return ind2; if (ind2 == -1) return ind1; if (ind1 == ind2) return ind1; NN_FUZZER_LOG << "Join network #" << ind1 << " and #" << ind2; auto &order1 = mEvalOrderMap[ind1], &order2 = mEvalOrderMap[ind2]; // Append every node in ind2 to the end of ind1 for (const auto& var : order2) { order1.push_back(var); mIndexMap[var] = ind1; } // Remove ind2 from mEvalOrderMap. mEvalOrderMap.erase(mEvalOrderMap.find(ind2)); return ind1; } RandomVariableNetwork* RandomVariableNetwork::get() { static RandomVariableNetwork instance; return &instance; } void RandomVariableNetwork::initialize(int defaultValue) { RandomVariableBase::globalIndex = 0; RandomVariable::defaultValue = defaultValue; mIndexMap.clear(); mEvalOrderMap.clear(); mDimProd.clear(); mNextIndex = 0; mGlobalTime = 0; mTimestamp = -1; } bool RandomVariableNetwork::isSubordinate(const RandomVariableNode& node1, const RandomVariableNode& node2) { if (node2->type != RandomVariableType::FREE) return false; int ind1 = mIndexMap[node1]; // node2 is of a different subnet. if (ind1 != mIndexMap[node2]) return true; for (const auto& node : mEvalOrderMap[ind1]) { if (node == node2) return false; // node2 is of the same subnet but evaluated later than node1. if (node == node1) return true; } NN_FUZZER_CHECK(false) << "Code executed in non-reachable region."; return false; } struct EvalInfo { // The RandomVariableNode that this EvalInfo is associated with. // var->value is the current value during evaluation. RandomVariableNode var; // The RandomVariable value is staged when a valid combination is found. std::set<int> staging; // The staging values are committed after a subnet evaluation. std::set<int> committed; // Keeps track of the latest timestamp that committed is updated. int timestamp; // For evalSubnetWithLocalNetwork. RandomVariableType originalType; // Should only invoke eval on OP RandomVariable. bool eval() { NN_FUZZER_CHECK(var->type == RandomVariableType::OP); var->value = var->op->eval(var->parent1->value, var->parent2 == nullptr ? 0 : var->parent2->value); if (var->value == kInvalidValue) return false; return committed.find(var->value) != committed.end(); } void stage() { staging.insert(var->value); } void commit() { // Only update committed and timestamp if the range is *indeed* changed. if (staging.size() != committed.size()) { committed = std::move(staging); timestamp = RandomVariableNetwork::get()->getGlobalTime(); } staging.clear(); } void updateRange() { // Only update range and timestamp if the range is *indeed* changed. if (committed.size() != var->range.size()) { var->range = RandomVariableRange(committed); var->timestamp = timestamp; } committed.clear(); } EvalInfo(const RandomVariableNode& var) : var(var), committed(var->range.getChoices().begin(), var->range.getChoices().end()), timestamp(var->timestamp) {} }; using EvalContext = std::unordered_map<RandomVariableNode, EvalInfo>; // For logging only. inline std::string toString(const RandomVariableNode& var, EvalContext* context) { std::stringstream ss; ss << "var" << var->index << " = "; const auto& committed = context->at(var).committed; switch (var->type) { case RandomVariableType::FREE: ss << "FREE [" << joinStr(", ", 20, std::vector<int>(committed.begin(), committed.end())) << "]"; break; case RandomVariableType::CONST: ss << "CONST " << toString(var->value); break; case RandomVariableType::OP: ss << "var" << var->parent1->index << " " << var->op->getName(); if (var->parent2 != nullptr) ss << " var" << var->parent2->index; ss << ", [" << joinStr(", ", 20, std::vector<int>(committed.begin(), committed.end())) << "]"; break; default: NN_FUZZER_CHECK(false); } ss << ", timestamp = " << context->at(var).timestamp; return ss.str(); } // Check if the subnet needs to be re-evaluated by comparing the timestamps. static inline bool needEvaluate(const EvaluationOrder& evalOrder, int subnetTime, EvalContext* context = nullptr) { for (const auto& var : evalOrder) { int timestamp = context == nullptr ? var->timestamp : context->at(var).timestamp; // If we find a node that has been modified since last evaluation, the subnet needs to be // re-evaluated. if (timestamp > subnetTime) return true; } return false; } // Helper function to evaluate the subnet recursively. // Iterate through all combinations of FREE RandomVariables choices. static void evalSubnetHelper(const EvaluationOrder& evalOrder, EvalContext* context, size_t i = 0) { if (i == evalOrder.size()) { // Reach the end of the evaluation, find a valid combination. for (auto& var : evalOrder) context->at(var).stage(); return; } const auto& var = evalOrder[i]; if (var->type == RandomVariableType::FREE) { // For FREE RandomVariable, iterate through all valid choices. for (int val : context->at(var).committed) { var->value = val; evalSubnetHelper(evalOrder, context, i + 1); } return; } else if (var->type == RandomVariableType::OP) { // For OP RandomVariable, evaluate from parents and terminate if the result is invalid. if (!context->at(var).eval()) return; } evalSubnetHelper(evalOrder, context, i + 1); } // Check if the subnet has only one single OP RandomVariable. static inline bool isSingleOpSubnet(const EvaluationOrder& evalOrder) { int numOp = 0; for (const auto& var : evalOrder) { if (var->type == RandomVariableType::OP) numOp++; if (numOp > 1) return false; } return numOp != 0; } // Evaluate with a potentially faster approach provided by IRandomVariableOp. static inline void evalSubnetSingleOpHelper(const EvaluationOrder& evalOrder, EvalContext* context) { NN_FUZZER_LOG << "Identified as single op subnet"; const auto& var = evalOrder.back(); NN_FUZZER_CHECK(var->type == RandomVariableType::OP); var->op->eval(&context->at(var->parent1).committed, var->parent2 == nullptr ? nullptr : &context->at(var->parent2).committed, &context->at(var).committed, &context->at(var->parent1).staging, var->parent2 == nullptr ? nullptr : &context->at(var->parent2).staging, &context->at(var).staging); } // Check if the number of combinations of FREE RandomVariables exceeds the limit. static inline uint64_t getNumCombinations(const EvaluationOrder& evalOrder, EvalContext* context = nullptr) { constexpr uint64_t kLimit = 1e8; uint64_t numCombinations = 1; for (const auto& var : evalOrder) { if (var->type == RandomVariableType::FREE) { size_t size = context == nullptr ? var->range.size() : context->at(var).committed.size(); numCombinations *= size; // To prevent overflow. if (numCombinations > kLimit) return kLimit; } } return numCombinations; } // Evaluate the subnet recursively. Will return fail if the number of combinations of FREE // RandomVariable exceeds the threshold kMaxNumCombinations. static bool evalSubnetWithBruteForce(const EvaluationOrder& evalOrder, EvalContext* context) { constexpr uint64_t kMaxNumCombinations = 1e7; NN_FUZZER_LOG << "Evaluate with brute force"; if (isSingleOpSubnet(evalOrder)) { // If the network only have one single OP, dispatch to a faster evaluation. evalSubnetSingleOpHelper(evalOrder, context); } else { if (getNumCombinations(evalOrder, context) > kMaxNumCombinations) { NN_FUZZER_LOG << "Terminate the evaluation because of large search range"; std::cout << "[ ] Terminate the evaluation because of large search range" << std::endl; return false; } evalSubnetHelper(evalOrder, context); } for (auto& var : evalOrder) { if (context->at(var).staging.empty()) { NN_FUZZER_LOG << "Evaluation failed at " << toString(var, context); return false; } context->at(var).commit(); } return true; } struct LocalNetwork { EvaluationOrder evalOrder; std::vector<RandomVariableNode> bridgeNodes; int timestamp = 0; bool eval(EvalContext* context) { NN_FUZZER_LOG << "Evaluate local network with timestamp = " << timestamp; // Temporarily treat bridge nodes as FREE RandomVariables. for (const auto& var : bridgeNodes) { context->at(var).originalType = var->type; var->type = RandomVariableType::FREE; } for (const auto& var : evalOrder) { context->at(var).staging.clear(); NN_FUZZER_LOG << " - " << toString(var, context); } bool success = evalSubnetWithBruteForce(evalOrder, context); // Reset the RandomVariable types for bridge nodes. for (const auto& var : bridgeNodes) var->type = context->at(var).originalType; return success; } }; // Partition the network further into LocalNetworks based on the result from bridge annotation // algorithm. class GraphPartitioner : public DisjointNetwork { public: GraphPartitioner() = default; std::vector<LocalNetwork> partition(const EvaluationOrder& evalOrder, int timestamp) { annotateBridge(evalOrder); for (const auto& var : evalOrder) add(var); return get(timestamp); } private: GraphPartitioner(const GraphPartitioner&) = delete; GraphPartitioner& operator=(const GraphPartitioner&) = delete; // Find the parent-child relationship between var1 and var2, and reset the bridge. void setBridgeFlag(const RandomVariableNode& var1, const RandomVariableNode& var2) { if (var1->parent1 == var2) { mBridgeInfo[var1].isParent1Bridge = true; } else if (var1->parent2 == var2) { mBridgeInfo[var1].isParent2Bridge = true; } else { setBridgeFlag(var2, var1); } } // Annoate the bridges with DFS -- an edge [u, v] is a bridge if none of u's ancestor is // reachable from a node in the subtree of b. The complexity is O(V + E). // discoveryTime: The timestamp a node is visited // lowTime: The min discovery time of all reachable nodes from the subtree of the node. void annotateBridgeHelper(const RandomVariableNode& var, int* time) { mBridgeInfo[var].visited = true; mBridgeInfo[var].discoveryTime = mBridgeInfo[var].lowTime = (*time)++; // The algorithm operates on undirected graph. First find all adjacent nodes. auto adj = var->children; if (var->parent1 != nullptr) adj.push_back(var->parent1); if (var->parent2 != nullptr) adj.push_back(var->parent2); for (const auto& child : adj) { if (mBridgeInfo.find(child) == mBridgeInfo.end()) continue; if (!mBridgeInfo[child].visited) { mBridgeInfo[child].parent = var; annotateBridgeHelper(child, time); // If none of nodes in the subtree of child is connected to any ancestors of var, // then it is a bridge. mBridgeInfo[var].lowTime = std::min(mBridgeInfo[var].lowTime, mBridgeInfo[child].lowTime); if (mBridgeInfo[child].lowTime > mBridgeInfo[var].discoveryTime) setBridgeFlag(var, child); } else if (mBridgeInfo[var].parent != child) { mBridgeInfo[var].lowTime = std::min(mBridgeInfo[var].lowTime, mBridgeInfo[child].discoveryTime); } } } // Find all bridges in the subnet with DFS. void annotateBridge(const EvaluationOrder& evalOrder) { for (const auto& var : evalOrder) mBridgeInfo[var]; int time = 0; for (const auto& var : evalOrder) { if (!mBridgeInfo[var].visited) annotateBridgeHelper(var, &time); } } // Re-partition the network by treating bridges as no edge. void add(const RandomVariableNode& var) { auto parent1 = var->parent1; auto parent2 = var->parent2; if (mBridgeInfo[var].isParent1Bridge) var->parent1 = nullptr; if (mBridgeInfo[var].isParent2Bridge) var->parent2 = nullptr; DisjointNetwork::add(var); var->parent1 = parent1; var->parent2 = parent2; } // Add bridge nodes to the local network and remove single node subnet. std::vector<LocalNetwork> get(int timestamp) { std::vector<LocalNetwork> res; for (auto& pair : mEvalOrderMap) { // We do not need to evaluate subnet with only a single node. if (pair.second.size() == 1 && pair.second[0]->parent1 == nullptr) continue; res.emplace_back(); for (const auto& var : pair.second) { if (mBridgeInfo[var].isParent1Bridge) { res.back().evalOrder.push_back(var->parent1); res.back().bridgeNodes.push_back(var->parent1); } if (mBridgeInfo[var].isParent2Bridge) { res.back().evalOrder.push_back(var->parent2); res.back().bridgeNodes.push_back(var->parent2); } res.back().evalOrder.push_back(var); } res.back().timestamp = timestamp; } return res; } // For bridge discovery algorithm. struct BridgeInfo { bool isParent1Bridge = false; bool isParent2Bridge = false; int discoveryTime = 0; int lowTime = 0; bool visited = false; std::shared_ptr<RandomVariableBase> parent = nullptr; }; std::unordered_map<RandomVariableNode, BridgeInfo> mBridgeInfo; }; // Evaluate subnets repeatedly until converge. // Class T_Subnet must have member evalOrder, timestamp, and member function eval. template <class T_Subnet> inline bool evalSubnetsRepeatedly(std::vector<T_Subnet>* subnets, EvalContext* context) { bool terminate = false; while (!terminate) { terminate = true; for (auto& subnet : *subnets) { if (needEvaluate(subnet.evalOrder, subnet.timestamp, context)) { if (!subnet.eval(context)) return false; subnet.timestamp = RandomVariableNetwork::get()->getGlobalTime(); terminate = false; } } } return true; } // Evaluate the subnet by first partitioning it further into LocalNetworks. static bool evalSubnetWithLocalNetwork(const EvaluationOrder& evalOrder, int timestamp, EvalContext* context) { NN_FUZZER_LOG << "Evaluate with local network"; auto localNetworks = GraphPartitioner().partition(evalOrder, timestamp); return evalSubnetsRepeatedly(&localNetworks, context); } struct LeafNetwork { EvaluationOrder evalOrder; int timestamp = 0; LeafNetwork(const RandomVariableNode& var, int timestamp) : timestamp(timestamp) { std::set<RandomVariableNode> visited; constructorHelper(var, &visited); } // Construct the leaf network by recursively including parent nodes. void constructorHelper(const RandomVariableNode& var, std::set<RandomVariableNode>* visited) { if (var == nullptr || visited->find(var) != visited->end()) return; constructorHelper(var->parent1, visited); constructorHelper(var->parent2, visited); visited->insert(var); evalOrder.push_back(var); } bool eval(EvalContext* context) { return evalSubnetWithLocalNetwork(evalOrder, timestamp, context); } }; // Evaluate the subnet by leaf network. // NOTE: This algorithm will only produce correct result for *most* of the time (> 99%). // The random graph generator is expected to retry if it fails. static bool evalSubnetWithLeafNetwork(const EvaluationOrder& evalOrder, int timestamp, EvalContext* context) { NN_FUZZER_LOG << "Evaluate with leaf network"; // Construct leaf networks. std::vector<LeafNetwork> leafNetworks; for (const auto& var : evalOrder) { if (var->children.empty()) { NN_FUZZER_LOG << "Found leaf " << toString(var, context); leafNetworks.emplace_back(var, timestamp); } } return evalSubnetsRepeatedly(&leafNetworks, context); } void RandomVariableNetwork::addDimensionProd(const std::vector<RandomVariable>& dims) { if (dims.size() <= 1) return; EvaluationOrder order; for (const auto& dim : dims) order.push_back(dim.get()); mDimProd.push_back(order); } bool enforceDimProd(const std::vector<EvaluationOrder>& mDimProd, const std::unordered_map<RandomVariableNode, int>& indexMap, EvalContext* context, std::unordered_set<int>* dirtySubnets) { for (auto& evalOrder : mDimProd) { NN_FUZZER_LOG << " Dimension product network size = " << evalOrder.size(); // Initialize EvalInfo of each RandomVariable. for (auto& var : evalOrder) { if (context->find(var) == context->end()) context->emplace(var, var); NN_FUZZER_LOG << " - " << toString(var, context); } // Enforce the product of the dimension values below kMaxValue: // max(dimA) = kMaxValue / (min(dimB) * min(dimC) * ...) int prod = 1; for (const auto& var : evalOrder) prod *= (*context->at(var).committed.begin()); for (auto& var : evalOrder) { auto& committed = context->at(var).committed; int maxValue = kMaxValue / (prod / *committed.begin()); auto it = committed.upper_bound(maxValue); // var has empty range -> no solution. if (it == committed.begin()) return false; // The range is not modified -> continue. if (it == committed.end()) continue; // The range is modified -> the subnet of var is dirty, i.e. needs re-evaluation. committed.erase(it, committed.end()); context->at(var).timestamp = RandomVariableNetwork::get()->getGlobalTime(); dirtySubnets->insert(indexMap.at(var)); } } return true; } bool RandomVariableNetwork::evalRange() { constexpr uint64_t kMaxNumCombinationsWithBruteForce = 500; constexpr uint64_t kMaxNumCombinationsWithLocalNetwork = 1e5; NN_FUZZER_LOG << "Evaluate on " << mEvalOrderMap.size() << " sub-networks"; EvalContext context; std::unordered_set<int> dirtySubnets; // Which subnets needs evaluation. for (auto& pair : mEvalOrderMap) { const auto& evalOrder = pair.second; // Decide whether needs evaluation by timestamp -- if no range has changed after the last // evaluation, then the subnet does not need re-evaluation. if (evalOrder.size() == 1 || !needEvaluate(evalOrder, mTimestamp)) continue; dirtySubnets.insert(pair.first); } if (!enforceDimProd(mDimProd, mIndexMap, &context, &dirtySubnets)) return false; // Repeat until the ranges converge. while (!dirtySubnets.empty()) { for (int ind : dirtySubnets) { const auto& evalOrder = mEvalOrderMap[ind]; NN_FUZZER_LOG << " Sub-network #" << ind << " size = " << evalOrder.size(); // Initialize EvalInfo of each RandomVariable. for (auto& var : evalOrder) { if (context.find(var) == context.end()) context.emplace(var, var); NN_FUZZER_LOG << " - " << toString(var, &context); } // Dispatch to different algorithm according to search range. bool success; uint64_t numCombinations = getNumCombinations(evalOrder); if (numCombinations <= kMaxNumCombinationsWithBruteForce) { success = evalSubnetWithBruteForce(evalOrder, &context); } else if (numCombinations <= kMaxNumCombinationsWithLocalNetwork) { success = evalSubnetWithLocalNetwork(evalOrder, mTimestamp, &context); } else { success = evalSubnetWithLeafNetwork(evalOrder, mTimestamp, &context); } if (!success) return false; } dirtySubnets.clear(); if (!enforceDimProd(mDimProd, mIndexMap, &context, &dirtySubnets)) return false; } // A successful evaluation, update RandomVariables from EvalContext. for (auto& pair : context) pair.second.updateRange(); mTimestamp = getGlobalTime(); NN_FUZZER_LOG << "Finish range evaluation"; return true; } static void unsetEqual(const RandomVariableNode& node) { if (node == nullptr) return; NN_FUZZER_LOG << "Unset equality of var" << node->index; RandomVariableNode parent1 = node->parent1, parent2 = node->parent2; parent1->children.erase(std::find(parent1->children.begin(), parent1->children.end(), node)); node->parent1 = nullptr; if (parent2 != nullptr) { // For Equal. parent2->children.erase( std::find(parent2->children.begin(), parent2->children.end(), node)); node->parent2 = nullptr; } else { // For UnaryEqual. node->type = RandomVariableType::FREE; node->op = nullptr; } } // A class to revert all the changes made to RandomVariableNetwork since the Reverter object is // constructed. Only used when setEqualIfCompatible results in incompatible. class RandomVariableNetwork::Reverter { public: // Take a snapshot of RandomVariableNetwork when Reverter is constructed. Reverter() : mSnapshot(*RandomVariableNetwork::get()) {} // Add constraint (Equal) nodes to the reverter. void addNode(const RandomVariableNode& node) { mEqualNodes.push_back(node); } void revert() { NN_FUZZER_LOG << "Revert RandomVariableNetwork"; // Release the constraints. for (const auto& node : mEqualNodes) unsetEqual(node); // Reset all member variables. *RandomVariableNetwork::get() = std::move(mSnapshot); } private: Reverter(const Reverter&) = delete; Reverter& operator=(const Reverter&) = delete; RandomVariableNetwork mSnapshot; std::vector<RandomVariableNode> mEqualNodes; }; bool RandomVariableNetwork::setEqualIfCompatible(const std::vector<RandomVariable>& lhs, const std::vector<RandomVariable>& rhs) { NN_FUZZER_LOG << "Check compatibility of {" << joinStr(", ", lhs) << "} and {" << joinStr(", ", rhs) << "}"; if (lhs.size() != rhs.size()) return false; Reverter reverter; bool result = true; for (size_t i = 0; i < lhs.size(); i++) { auto node = lhs[i].setEqual(rhs[i]).get(); reverter.addNode(node); // Early terminate if there is no common choice between two ranges. if (node != nullptr && node->range.empty()) result = false; } result = result && evalRange(); if (!result) reverter.revert(); NN_FUZZER_LOG << "setEqualIfCompatible: " << (result ? "[COMPATIBLE]" : "[INCOMPATIBLE]"); return result; } bool RandomVariableNetwork::freeze() { NN_FUZZER_LOG << "Freeze the random network"; if (!evalRange()) return false; for (const auto& pair : mEvalOrderMap) { // Find all FREE RandomVariables in the subnet. std::vector<RandomVariableNode> nodes; for (const auto& var : pair.second) { if (var->type == RandomVariableType::FREE) nodes.push_back(var); } // Randomly shuffle the order, this is for a more uniform randomness. randomShuffle(&nodes); // An inefficient algorithm that does freeze -> re-evaluate for every FREE RandomVariable. // TODO: Might be able to optimize this. for (const auto& var : nodes) { size_t size = var->range.size(); NN_FUZZER_LOG << "Freeze " << toString(var); var->freeze(); NN_FUZZER_LOG << " " << toString(var); // There is no need to re-evaluate if the FREE RandomVariable have only one choice. if (size > 1) { var->updateTimestamp(); if (!evalRange()) { NN_FUZZER_LOG << "Freeze failed at " << toString(var); return false; } } } } NN_FUZZER_LOG << "Finish freezing the random network"; return true; } } // namespace fuzzing_test } // namespace nn } // namespace android