/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_OPERATION_SIGNATURE_UTILS_H #define ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_OPERATION_SIGNATURE_UTILS_H #include #include #include #include "TestNeuralNetworksWrapper.h" #include "fuzzing/OperationManager.h" #include "fuzzing/RandomGraphGenerator.h" #include "fuzzing/RandomGraphGeneratorUtils.h" namespace android { namespace nn { namespace fuzzing_test { namespace { // From Type to cpp type. template struct CppType; template <> struct CppType { using type = float; }; template <> struct CppType { using type = float; }; template <> struct CppType { using type = int32_t; }; template <> struct CppType { using type = int32_t; }; template <> struct CppType { using type = uint8_t; }; template <> struct CppType { using type = int8_t; }; template <> struct CppType { using type = uint16_t; }; template <> struct CppType { using type = int16_t; }; template <> struct CppType { using type = bool8; }; template <> struct CppType { using type = bool8; }; template <> struct CppType { using type = _Float16; }; template <> struct CppType { using type = _Float16; }; // The buffer value X is chosen uniformly in the range [kMinFloat32, kMaxFloat32]. kMinFloat32 and // kMaxFloat32 are selected by setting: // * E[X] = 0, so that the sum will less likely to overflow or underflow; // * E[abs(X)] = 1, so that the production will less likely to overflow or underflow. constexpr float kMaxFloat32 = 2.0f; constexpr float kMinFloat32 = -kMaxFloat32; template inline void uniform(T low, T up, RandomOperand* op) { T* data = reinterpret_cast(op->buffer.data()); uint32_t len = op->getNumberOfElements(); for (uint32_t i = 0; i < len; i++) data[i] = getUniform(low, up); } template <> inline void uniform(bool8, bool8, RandomOperand* op) { bool8* data = reinterpret_cast(op->buffer.data()); uint32_t len = op->getNumberOfElements(); for (uint32_t i = 0; i < len; i++) data[i] = getBernoulli(0.5f); } // Generate random buffer values with uniform distribution. // Dispatch to different generators by operand dataType. inline void uniformFinalizer(RandomOperand* op) { switch (op->dataType) { case Type::TENSOR_FLOAT32: uniform(kMinFloat32, kMaxFloat32, op); break; case Type::TENSOR_INT32: uniform(0, 255, op); break; case Type::TENSOR_QUANT8_ASYMM: uniform(0, 255, op); break; case Type::TENSOR_QUANT8_SYMM: uniform(-128, 127, op); break; case Type::TENSOR_BOOL8: uniform(true, false, op); break; case Type::TENSOR_FLOAT16: uniform<_Float16>(kMinFloat32, kMaxFloat32, op); break; default: NN_FUZZER_CHECK(false) << "Unsupported data type."; } } // A helper struct for DEFINE_OPERATION_SIGNATURE macro. struct OperationSignatureHelper { std::string name; OperationSignatureHelper(const std::string& name) : name(name) {} int operator+(const OperationSignature& op) { OperationManager::get()->addSignature(name, op); return 0; } }; } // namespace inline void implicitPadding(const RandomVariable& input, const RandomVariable& filter, const RandomVariable& stride, const RandomVariable& dilation, int32_t paddingScheme, RandomVariable* output) { switch (paddingScheme) { case ANEURALNETWORKS_PADDING_SAME: *output = (input + (stride - 1)) / stride; break; case ANEURALNETWORKS_PADDING_VALID: *output = (input - filter * dilation + (dilation + stride - 1)) / stride; break; default: NN_FUZZER_CHECK(false) << "Unknown padding scheme"; } } inline void explicitPadding(const RandomVariable& input, const RandomVariable& filter, const RandomVariable& stride, const RandomVariable& dilation, const RandomVariable& paddingHead, const RandomVariable& paddingTail, RandomVariable* output) { auto effectiveFilter = (filter - 1) * dilation + 1; *output = (input - effectiveFilter + (stride + paddingHead + paddingTail)) / stride; // TFLite will crash if the filter size is less than or equal to the paddings. effectiveFilter.setGreaterThan(paddingHead); effectiveFilter.setGreaterThan(paddingTail); } inline void implicitPaddingTranspose(const RandomVariable& input, const RandomVariable& filter, const RandomVariable& stride, int32_t paddingScheme, RandomVariable* output) { switch (paddingScheme) { case ANEURALNETWORKS_PADDING_SAME: *output = input * stride; break; case ANEURALNETWORKS_PADDING_VALID: *output = (input - 1) * stride + filter; break; default: NN_FUZZER_CHECK(false) << "Unknown padding scheme"; } } inline void explicitPaddingTranspose(const RandomVariable& input, const RandomVariable& filter, const RandomVariable& stride, const RandomVariable& paddingHead, const RandomVariable& paddingTail, RandomVariable* output) { *output = stride * input + filter - (stride + paddingHead + paddingTail); } inline void setSameQuantization(const std::shared_ptr& to, const std::shared_ptr& from) { NN_FUZZER_CHECK(to->dataType == from->dataType); to->scale = from->scale; to->zeroPoint = from->zeroPoint; } inline void setFreeDimensions(const std::shared_ptr& op, uint32_t rank) { op->dimensions.resize(rank); for (uint32_t i = 0; i < rank; i++) op->dimensions[i] = RandomVariableType::FREE; } inline void setConvFCScale(bool applyOutputScaleBound, RandomOperation* op) { if (op->inputs[0]->dataType == Type::TENSOR_QUANT8_ASYMM) { float biasScale = op->inputs[0]->scale * op->inputs[1]->scale; op->inputs[2]->scale = biasScale; if (applyOutputScaleBound) { op->outputs[0]->scale = getUniform(biasScale, biasScale * 5); } } } // For ops with input0 and output0 of the same dimension. inline void sameDimensionOpConstructor(Type, uint32_t rank, RandomOperation* op) { setFreeDimensions(op->inputs[0], rank); op->outputs[0]->dimensions = op->inputs[0]->dimensions; } // For ops with input0 and output0 of the same shape including scale and zeroPoint. inline void sameShapeOpConstructor(Type dataType, uint32_t rank, RandomOperation* op) { sameDimensionOpConstructor(dataType, rank, op); setSameQuantization(op->outputs[0], op->inputs[0]); } inline void defaultOperandConstructor(Type dataType, uint32_t, RandomOperand* op) { op->dataType = dataType; if (dataType == Type::TENSOR_QUANT8_ASYMM) { op->scale = getUniform(0.1, 2.0); op->zeroPoint = getUniform(0, 255); } else if (dataType == Type::TENSOR_QUANT8_SYMM) { op->scale = getUniform(0.1, 2.0); op->zeroPoint = 0; } else { op->scale = 0.0f; op->zeroPoint = 0; } } // An INPUT operand with uniformly distributed buffer values. The operand's data type is set the // same as the operation's primary data type. In the case of quantized data type, the quantization // parameters are chosen randomly and uniformly. #define INPUT_DEFAULT \ { \ .type = RandomOperandType::INPUT, .constructor = defaultOperandConstructor, \ .finalizer = uniformFinalizer \ } // An INPUT operand with a specified data type and uniformly distributed buffer values. In the case // of quantized data type, the quantization parameters are chosen randomly and uniformly. #define INPUT_TYPED(opType) \ { \ .type = RandomOperandType::INPUT, \ .constructor = [](Type, uint32_t rank, \ RandomOperand* op) { defaultOperandConstructor((opType), rank, op); }, \ .finalizer = uniformFinalizer \ } // For the bias tensor in convolutions and fully connected operator. // An INPUT operand with uniformly distributed buffer values. The operand's data type is set to // TENSOR_INT32 if the operation's primary data type is TENSOR_QUANT8_ASYMM. Otherwise, it is the // same as INPUT_DEFAULT. #define INPUT_BIAS \ { \ .type = RandomOperandType::INPUT, \ .constructor = \ [](Type dataType, uint32_t rank, RandomOperand* op) { \ if (dataType == Type::TENSOR_QUANT8_ASYMM) { \ dataType = Type::TENSOR_INT32; \ } \ defaultOperandConstructor(dataType, rank, op); \ }, \ .finalizer = uniformFinalizer \ } // A helper macro for common code block filling operand buffer with random method. #define PARAMETER_FILL_BUFFER_HELPER(opType, len, method, ...) \ op->dataType = opType; \ int length = (len); \ if (kScalarDataType[static_cast(opType)]) { \ NN_FUZZER_CHECK(length == 1); \ } else { \ op->dimensions = {length}; \ } \ op->resizeBuffer::type>(length); \ auto data = reinterpret_cast::type*>(op->buffer.data()); \ for (int i = 0; i < length; i++) { \ data[i] = method::type>(__VA_ARGS__); \ } // A 1-D vector of CONST parameters of length len, each uniformly selected within range [low, up]. #define PARAMETER_VEC_RANGE(opType, len, low, up) \ { \ .type = RandomOperandType::CONST, .constructor = [](Type, uint32_t, RandomOperand* op) { \ PARAMETER_FILL_BUFFER_HELPER(opType, len, getUniform, low, up); \ } \ } // A CONST scalar uniformly selected within range [low, up]. #define PARAMETER_RANGE(opType, low, up) PARAMETER_VEC_RANGE(opType, 1, low, up) // A CONST floating point scalar uniformly selected within range [low, up]. The operand's data type // is set to FLOAT16 if the operation's primary data type is TENSOR_FLOAT16. Otherwise, the data // type is set to FLOAT32. #define PARAMETER_FLOAT_RANGE(low, up) \ { \ .type = RandomOperandType::CONST, \ .constructor = [](Type dataType, uint32_t, RandomOperand* op) { \ if (dataType == Type::TENSOR_FLOAT16) { \ PARAMETER_FILL_BUFFER_HELPER(Type::FLOAT16, 1, getUniform, low, up); \ } else { \ PARAMETER_FILL_BUFFER_HELPER(Type::FLOAT32, 1, getUniform, low, up); \ } \ } \ } // A CONST scalar uniformly selected from the provided choices. #define PARAMETER_CHOICE(opType, ...) \ { \ .type = RandomOperandType::CONST, .constructor = [](Type, uint32_t, RandomOperand* op) { \ const std::vector::type> choices = {__VA_ARGS__}; \ PARAMETER_FILL_BUFFER_HELPER(opType, 1, getRandomChoice, choices); \ } \ } // A CONST scalar with unintialized buffer value. The buffer values are expected to be filled in the // operation constructor or finalizer. #define PARAMETER_NONE(opType) \ { \ .type = RandomOperandType::CONST, \ .constructor = [](Type, uint32_t, RandomOperand* op) { op->dataType = opType; } \ } // A CONST integer scalar with value set as a FREE RandomVariable within default range. #define RANDOM_INT_FREE \ { \ .type = RandomOperandType::CONST, .constructor = [](Type, uint32_t, RandomOperand* op) { \ op->dataType = Type::INT32; \ op->randomBuffer = {RandomVariableType::FREE}; \ } \ } // A CONST integer scalar with value set as a FREE RandomVariable within range [low, up]. #define RANDOM_INT_RANGE(low, up) \ { \ .type = RandomOperandType::CONST, .constructor = [](Type, uint32_t, RandomOperand* op) { \ op->dataType = Type::INT32; \ op->randomBuffer = {RandomVariable((low), (up))}; \ } \ } // An OUTPUT operand with data type set the same as the operation primary data type. In the case of // quantized data type, the quantization parameters are chosen randomly and uniformly. #define OUTPUT_DEFAULT \ { .type = RandomOperandType::OUTPUT, .constructor = defaultOperandConstructor } // An OUTPUT operand with a specified data type. In the case of quantized data type, the // quantization parameters are chosen randomly and uniformly. #define OUTPUT_TYPED(opType) \ { \ .type = RandomOperandType::OUTPUT, \ .constructor = [](Type, uint32_t rank, RandomOperand* op) { \ defaultOperandConstructor((opType), rank, op); \ } \ } // An OUTPUT operand with data type set the same as the operation primary data type. In the case of // quantized data type, the quantization parameters are set to the specified values. #define OUTPUT_QUANT(fixedScale, fixedZeroPoint) \ { \ .type = RandomOperandType::OUTPUT, \ .constructor = [](Type dataType, uint32_t rank, RandomOperand* op) { \ defaultOperandConstructor(dataType, rank, op); \ if (op->dataType == Type::TENSOR_QUANT8_ASYMM || \ dataType == Type::TENSOR_QUANT8_SYMM) { \ op->scale = (fixedScale); \ op->zeroPoint = (fixedZeroPoint); \ } \ } \ } // DEFINE_OPERATION_SIGNATURE creates a OperationSignature by aggregate initialization and adds it // to the global OperationManager singleton. // // Usage: // DEFINE_OPERATION_SIGNATURE(name) { aggregate_initialization }; // // Example: // DEFINE_OPERATION_SIGNATURE(RELU_V1_0) { // .opType = ANEURALNETWORKS_RELU, // .supportedDataTypes = {Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM}, // .supportedRanks = {1, 2, 3, 4}, // .version = HalVersion::V1_0, // .inputs = {INPUT_DEFAULT}, // .outputs = {OUTPUT_DEFAULT}, // .constructor = sameShapeOpConstructor}; // #define DEFINE_OPERATION_SIGNATURE(name) \ const int dummy_##name = OperationSignatureHelper(#name) + OperationSignature } // namespace fuzzing_test } // namespace nn } // namespace android #endif // ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_OPERATION_SIGNATURE_UTILS_H