// clang-format off // Generated file (from: conv_quant8_2.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 3, 6, 1}, 0.5f, 127); OperandType type1(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.5f, 127); OperandType type2(Type::TENSOR_INT32, {1}, 0.25f, 0); OperandType type3(Type::INT32, {}); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 1.0f, 127); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type1); auto op3 = model->addOperand(&type2); auto pad_valid = model->addOperand(&type3); auto stride3 = model->addOperand(&type3); auto stride1 = model->addOperand(&type3); auto act_none = model->addOperand(&type3); auto op4 = model->addOperand(&type4); // Phase 2, operations static uint8_t op2_init[] = {129, 131, 133, 135}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 4); static int32_t op3_init[] = {-4}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 1); static int32_t pad_valid_init[] = {2}; model->setOperandValue(pad_valid, pad_valid_init, sizeof(int32_t) * 1); static int32_t stride3_init[] = {3}; model->setOperandValue(stride3, stride3_init, sizeof(int32_t) * 1); static int32_t stride1_init[] = {1}; model->setOperandValue(stride1, stride1_init, sizeof(int32_t) * 1); static int32_t act_none_init[] = {0}; model->setOperandValue(act_none, act_none_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad_valid, stride3, stride1, act_none}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 3, 6, 1}, 0.5f, 127); OperandType type1(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.5f, 127); OperandType type2(Type::TENSOR_INT32, {1}, 0.25f, 0); OperandType type3(Type::INT32, {}); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 1.0f, 127); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type1); auto op3 = model->addOperand(&type2); auto pad_valid = model->addOperand(&type3); auto stride3 = model->addOperand(&type3); auto stride1 = model->addOperand(&type3); auto act_none = model->addOperand(&type3); auto op4 = model->addOperand(&type5); // Phase 2, operations static uint8_t op2_init[] = {129, 131, 133, 135}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 4); static int32_t op3_init[] = {-4}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 1); static int32_t pad_valid_init[] = {2}; model->setOperandValue(pad_valid, pad_valid_init, sizeof(int32_t) * 1); static int32_t stride3_init[] = {3}; model->setOperandValue(stride3, stride3_init, sizeof(int32_t) * 1); static int32_t stride1_init[] = {1}; model->setOperandValue(stride1, stride1_init, sizeof(int32_t) * 1); static int32_t act_none_init[] = {0}; model->setOperandValue(act_none, act_none_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad_valid, stride3, stride1, act_none}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }