// clang-format off // Generated file (from: depthwise_conv2d_quant8.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 2}, 0.5f, 0); OperandType type1(Type::TENSOR_INT32, {2}, 0.25f, 0); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 2}, 1.0f, 0); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto op3 = model->addOperand(&type1); auto pad0 = model->addOperand(&type2); auto stride = model->addOperand(&type2); auto channelMultiplier = model->addOperand(&type2); auto act = model->addOperand(&type2); auto op4 = model->addOperand(&type3); // Phase 2, operations static uint8_t op2_init[] = {2, 4, 2, 0, 2, 2, 2, 0}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 8); static int32_t op3_init[] = {0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 2); static int32_t pad0_init[] = {0}; model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1); static int32_t stride_init[] = {1}; model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1); static int32_t channelMultiplier_init[] = {1}; model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 2}, 0.5f, 0); OperandType type1(Type::TENSOR_INT32, {2}, 0.25f, 0); OperandType type2(Type::INT32, {}); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 1.0f, 0); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto op3 = model->addOperand(&type1); auto pad0 = model->addOperand(&type2); auto stride = model->addOperand(&type2); auto channelMultiplier = model->addOperand(&type2); auto act = model->addOperand(&type2); auto op4 = model->addOperand(&type4); // Phase 2, operations static uint8_t op2_init[] = {2, 4, 2, 0, 2, 2, 2, 0}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 8); static int32_t op3_init[] = {0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 2); static int32_t pad0_init[] = {0}; model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1); static int32_t stride_init[] = {1}; model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1); static int32_t channelMultiplier_init[] = {1}; model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }