// clang-format off // Generated file (from: lstm2_relaxed.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2}); OperandType type1(Type::TENSOR_FLOAT32, {4, 2}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type3(Type::TENSOR_FLOAT32, {0}); OperandType type4(Type::TENSOR_FLOAT32, {4}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0}); OperandType type6(Type::TENSOR_FLOAT32, {1, 4}); OperandType type7(Type::INT32, {}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::TENSOR_FLOAT32, {1, 12}); // Phase 1, operands auto input = model->addOperand(&type0); auto input_to_input_weights = model->addOperand(&type1); auto input_to_forget_weights = model->addOperand(&type1); auto input_to_cell_weights = model->addOperand(&type1); auto input_to_output_weights = model->addOperand(&type1); auto recurrent_to_intput_weights = model->addOperand(&type2); auto recurrent_to_forget_weights = model->addOperand(&type2); auto recurrent_to_cell_weights = model->addOperand(&type2); auto recurrent_to_output_weights = model->addOperand(&type2); auto cell_to_input_weights = model->addOperand(&type3); auto cell_to_forget_weights = model->addOperand(&type4); auto cell_to_output_weights = model->addOperand(&type4); auto input_gate_bias = model->addOperand(&type4); auto forget_gate_bias = model->addOperand(&type4); auto cell_gate_bias = model->addOperand(&type4); auto output_gate_bias = model->addOperand(&type4); auto projection_weights = model->addOperand(&type5); auto projection_bias = model->addOperand(&type3); auto output_state_in = model->addOperand(&type6); auto cell_state_in = model->addOperand(&type6); auto activation_param = model->addOperand(&type7); auto cell_clip_param = model->addOperand(&type8); auto proj_clip_param = model->addOperand(&type8); auto scratch_buffer = model->addOperand(&type9); auto output_state_out = model->addOperand(&type6); auto cell_state_out = model->addOperand(&type6); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t activation_param_init[] = {4}; model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1); static float cell_clip_param_init[] = {0.0f}; model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1); static float proj_clip_param_init[] = {0.0f}; model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in}, {scratch_buffer, output_state_out, cell_state_out, output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {0}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2}); OperandType type1(Type::TENSOR_FLOAT32, {4, 2}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type3(Type::TENSOR_FLOAT32, {0}); OperandType type4(Type::TENSOR_FLOAT32, {4}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0}); OperandType type6(Type::TENSOR_FLOAT32, {1, 4}); OperandType type7(Type::INT32, {}); OperandType type8(Type::FLOAT32, {}); // Phase 1, operands auto input = model->addOperand(&type0); auto input_to_input_weights = model->addOperand(&type1); auto input_to_forget_weights = model->addOperand(&type1); auto input_to_cell_weights = model->addOperand(&type1); auto input_to_output_weights = model->addOperand(&type1); auto recurrent_to_intput_weights = model->addOperand(&type2); auto recurrent_to_forget_weights = model->addOperand(&type2); auto recurrent_to_cell_weights = model->addOperand(&type2); auto recurrent_to_output_weights = model->addOperand(&type2); auto cell_to_input_weights = model->addOperand(&type3); auto cell_to_forget_weights = model->addOperand(&type4); auto cell_to_output_weights = model->addOperand(&type4); auto input_gate_bias = model->addOperand(&type4); auto forget_gate_bias = model->addOperand(&type4); auto cell_gate_bias = model->addOperand(&type4); auto output_gate_bias = model->addOperand(&type4); auto projection_weights = model->addOperand(&type5); auto projection_bias = model->addOperand(&type3); auto output_state_in = model->addOperand(&type6); auto cell_state_in = model->addOperand(&type6); auto activation_param = model->addOperand(&type7); auto cell_clip_param = model->addOperand(&type8); auto proj_clip_param = model->addOperand(&type8); auto scratch_buffer = model->addOperand(&type5); auto output_state_out = model->addOperand(&type5); auto cell_state_out = model->addOperand(&type5); auto output = model->addOperand(&type5); // Phase 2, operations static int32_t activation_param_init[] = {4}; model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1); static float cell_clip_param_init[] = {0.0f}; model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1); static float proj_clip_param_init[] = {0.0f}; model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in}, {scratch_buffer, output_state_out, cell_state_out, output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {0}; return ignore.find(i) != ignore.end(); }