// clang-format off // Generated file (from: pad_low_rank.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {3}); OperandType type1(Type::TENSOR_INT32, {1, 2}); OperandType type2(Type::TENSOR_FLOAT32, {7}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto paddings = model->addOperand(&type1); auto output0 = model->addOperand(&type2); // Phase 2, operations static int32_t paddings_init[] = {3, 1}; model->setOperandValue(paddings, paddings_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_PAD, {input0, paddings}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16(Model *model) { OperandType type1(Type::TENSOR_INT32, {1, 2}); OperandType type3(Type::TENSOR_FLOAT16, {3}); OperandType type4(Type::TENSOR_FLOAT16, {7}); // Phase 1, operands auto input0 = model->addOperand(&type3); auto paddings = model->addOperand(&type1); auto output0 = model->addOperand(&type4); // Phase 2, operations static int32_t paddings_init[] = {3, 1}; model->setOperandValue(paddings, paddings_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_PAD, {input0, paddings}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {3}); OperandType type1(Type::TENSOR_INT32, {1, 2}); OperandType type5(Type::TENSOR_FLOAT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto paddings = model->addOperand(&type1); auto output0 = model->addOperand(&type5); // Phase 2, operations static int32_t paddings_init[] = {3, 1}; model->setOperandValue(paddings, paddings_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_PAD, {input0, paddings}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16(Model *model) { OperandType type1(Type::TENSOR_INT32, {1, 2}); OperandType type3(Type::TENSOR_FLOAT16, {3}); OperandType type6(Type::TENSOR_FLOAT16, {0}); // Phase 1, operands auto input0 = model->addOperand(&type3); auto paddings = model->addOperand(&type1); auto output0 = model->addOperand(&type6); // Phase 2, operations static int32_t paddings_init[] = {3, 1}; model->setOperandValue(paddings, paddings_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_PAD, {input0, paddings}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }