// clang-format off // Generated file (from: sub_v1_2.mod.py). Do not edit void CreateModel_none(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_none(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relu(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_relu(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relu1(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {2}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_relu1(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relu6(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {3}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_relu6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_none(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type13); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16_none(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_relu(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type13); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16_relu(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_relu1(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type13); // Phase 2, operations static int32_t act_init[] = {2}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16_relu1(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_relu6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type13); // Phase 2, operations static int32_t act_init[] = {3}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16_relu6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_none(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type14); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_none(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relu(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type14); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relu(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relu1(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type14); // Phase 2, operations static int32_t act_init[] = {2}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relu1(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relu6(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto input1 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type14); // Phase 2, operations static int32_t act_init[] = {3}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relu6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_none(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type15(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type15); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_none(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_relu(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type15(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type15); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_relu(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_relu1(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type15(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type15); // Phase 2, operations static int32_t act_init[] = {2}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_relu1(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_relu6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type15(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto input1 = model->addOperand(&type13); auto act = model->addOperand(&type1); auto output0 = model->addOperand(&type15); // Phase 2, operations static int32_t act_init[] = {3}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_relu6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2, 4, 16, 2}, 0.5f, 0); // Phase 1, operands auto input01 = model->addOperand(&type2); auto input11 = model->addOperand(&type2); auto param = model->addOperand(&type1); auto output01 = model->addOperand(&type2); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input01, input11, param}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01, input11}, {output01}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_dynamic_output_shape(Model *model) { OperandType type1(Type::INT32, {}); OperandType type16(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.5f, 0); OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2, 4, 16, 2}, 0.5f, 0); // Phase 1, operands auto input01 = model->addOperand(&type2); auto input11 = model->addOperand(&type2); auto param = model->addOperand(&type1); auto output01 = model->addOperand(&type16); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SUB, {input01, input11, param}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01, input11}, {output01}); assert(model->isValid()); } inline bool is_ignored_quant8_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 2}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 2}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_FLOAT32, {1, 8}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_FLOAT32, {0, 4}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type3); auto roi = model->addOperand(&type4); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type5); auto roiOut = model->addOperand(&type7); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type11); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto op = model->addOperand(&type0); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type12); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(float) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 2}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 2}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_FLOAT32, {1, 8}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_FLOAT32, {0, 4}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type3); auto roi = model->addOperand(&type4); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type5); auto roiOut = model->addOperand(&type7); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type11); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto op = model->addOperand(&type0); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type12); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(float) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 2}, 0.1f, 128); OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 2}, 0.1f, 128); OperandType type19(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.1f, 128); OperandType type20(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type21(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type22(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type22); auto roi = model->addOperand(&type20); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type23); auto roiOut = model->addOperand(&type21); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type18); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type17); auto op = model->addOperand(&type19); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type17); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static uint8_t op_init[] = {138, 148, 158, 168}; model->setOperandValue(op, op_init, sizeof(uint8_t) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type24(Type::TENSOR_FLOAT16, {0, 2, 2, 2}); OperandType type25(Type::TENSOR_FLOAT16, {1, 1, 1, 2}); OperandType type26(Type::FLOAT16, {}); OperandType type27(Type::TENSOR_FLOAT16, {1, 8}); OperandType type28(Type::TENSOR_FLOAT16, {0, 4}); OperandType type29(Type::TENSOR_FLOAT16, {1, 2}); OperandType type30(Type::TENSOR_FLOAT16, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type8(Type::TENSOR_INT32, {1}); // Phase 1, operands auto scores = model->addOperand(&type29); auto roi = model->addOperand(&type27); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type26); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type26); auto param6 = model->addOperand(&type26); auto param7 = model->addOperand(&type26); auto scoresOut = model->addOperand(&type30); auto roiOut = model->addOperand(&type28); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type25); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type26); auto param11 = model->addOperand(&type26); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type24); auto op = model->addOperand(&type13); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type24); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static _Float16 param2_init[] = {0.30000001192092896f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static _Float16 param5_init[] = {0.4000000059604645f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static _Float16 param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static _Float16 param7_init[] = {0.30000001192092896f}; model->setOperandValue(param7, param7_init, sizeof(_Float16) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static _Float16 op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(_Float16) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 2}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 2}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_FLOAT32, {1, 8}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_FLOAT32, {0, 4}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type3); auto roi = model->addOperand(&type4); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type5); auto roiOut = model->addOperand(&type7); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type11); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto op = model->addOperand(&type0); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type14); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(float) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 2}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 2}); OperandType type14(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_FLOAT32, {1, 8}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_FLOAT32, {0, 4}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type3); auto roi = model->addOperand(&type4); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type5); auto roiOut = model->addOperand(&type7); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type11); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto op = model->addOperand(&type0); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type14); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(float) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 2}, 0.1f, 128); OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 2}, 0.1f, 128); OperandType type19(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.1f, 128); OperandType type20(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type21(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type22(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type31(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.1f, 128); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type8(Type::TENSOR_INT32, {1}); OperandType type9(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type22); auto roi = model->addOperand(&type20); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type9); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto scoresOut = model->addOperand(&type23); auto roiOut = model->addOperand(&type21); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type18); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type17); auto op = model->addOperand(&type19); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type31); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static float param2_init[] = {0.3f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static float param5_init[] = {0.4f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static float param7_init[] = {0.3f}; model->setOperandValue(param7, param7_init, sizeof(float) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static uint8_t op_init[] = {138, 148, 158, 168}; model->setOperandValue(op, op_init, sizeof(uint8_t) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::BOOL, {}); OperandType type13(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type15(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type24(Type::TENSOR_FLOAT16, {0, 2, 2, 2}); OperandType type25(Type::TENSOR_FLOAT16, {1, 1, 1, 2}); OperandType type26(Type::FLOAT16, {}); OperandType type27(Type::TENSOR_FLOAT16, {1, 8}); OperandType type28(Type::TENSOR_FLOAT16, {0, 4}); OperandType type29(Type::TENSOR_FLOAT16, {1, 2}); OperandType type32(Type::TENSOR_FLOAT16, {0}); OperandType type6(Type::TENSOR_INT32, {0}); OperandType type8(Type::TENSOR_INT32, {1}); // Phase 1, operands auto scores = model->addOperand(&type29); auto roi = model->addOperand(&type27); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type26); auto param3 = model->addOperand(&type1); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type26); auto param6 = model->addOperand(&type26); auto param7 = model->addOperand(&type26); auto scoresOut = model->addOperand(&type32); auto roiOut = model->addOperand(&type28); auto classesOut = model->addOperand(&type6); auto batchSplitOut = model->addOperand(&type6); auto in = model->addOperand(&type25); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type1); auto param10 = model->addOperand(&type26); auto param11 = model->addOperand(&type26); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type1); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type24); auto op = model->addOperand(&type13); auto param14 = model->addOperand(&type1); auto out = model->addOperand(&type15); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8); static int32_t param1_init[] = {0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static _Float16 param2_init[] = {0.30000001192092896f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static _Float16 param5_init[] = {0.4000000059604645f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static _Float16 param6_init[] = {1.0f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static _Float16 param7_init[] = {0.30000001192092896f}; model->setOperandValue(param7, param7_init, sizeof(_Float16) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {2}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {2.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static _Float16 op_init[] = {1.0f, 2.0f, 3.0f, 4.0f}; model->setOperandValue(op, op_init, sizeof(_Float16) * 4); static int32_t param14_init[] = {0}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param1, param2, param3, param4, param5, param6, param7}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param8, param9, param10, param11, param12, param13, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_SUB, {featureMap, op, param14}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }