/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "installd" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // TODO: Move everything to base/logging. #include #include #include #include #include #include #include "dexopt.h" #include "dexopt_return_codes.h" #include "globals.h" #include "installd_deps.h" #include "otapreopt_utils.h" #include "utils.h" using android::base::EndsWith; using android::base::GetBoolProperty; using android::base::GetProperty; using android::base::ReadFdToString; using android::base::ReadFully; using android::base::StringPrintf; using android::base::WriteFully; using android::base::unique_fd; namespace android { namespace installd { // Should minidebug info be included in compiled artifacts? Even if this value is // "true," usage might still be conditional to other constraints, e.g., system // property overrides. static constexpr bool kEnableMinidebugInfo = true; static constexpr const char* kMinidebugInfoSystemProperty = "dalvik.vm.dex2oat-minidebuginfo"; static constexpr bool kMinidebugInfoSystemPropertyDefault = false; static constexpr const char* kMinidebugDex2oatFlag = "--generate-mini-debug-info"; static constexpr const char* kDisableCompactDexFlag = "--compact-dex-level=none"; // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. struct FreeDelete { // NOTE: Deleting a const object is valid but free() takes a non-const pointer. void operator()(const void* ptr) const { free(const_cast(ptr)); } }; // Alias for std::unique_ptr<> that uses the C function free() to delete objects. template using UniqueCPtr = std::unique_ptr; static unique_fd invalid_unique_fd() { return unique_fd(-1); } static bool is_debug_runtime() { return android::base::GetProperty("persist.sys.dalvik.vm.lib.2", "") == "libartd.so"; } static bool is_debuggable_build() { return android::base::GetBoolProperty("ro.debuggable", false); } static bool clear_profile(const std::string& profile) { unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (ufd.get() < 0) { if (errno != ENOENT) { PLOG(WARNING) << "Could not open profile " << profile; return false; } else { // Nothing to clear. That's ok. return true; } } if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) { if (errno != EWOULDBLOCK) { PLOG(WARNING) << "Error locking profile " << profile; } // This implies that the app owning this profile is running // (and has acquired the lock). // // If we can't acquire the lock bail out since clearing is useless anyway // (the app will write again to the profile). // // Note: // This does not impact the this is not an issue for the profiling correctness. // In case this is needed because of an app upgrade, profiles will still be // eventually cleared by the app itself due to checksum mismatch. // If this is needed because profman advised, then keeping the data around // until the next run is again not an issue. // // If the app attempts to acquire a lock while we've held one here, // it will simply skip the current write cycle. return false; } bool truncated = ftruncate(ufd.get(), 0) == 0; if (!truncated) { PLOG(WARNING) << "Could not truncate " << profile; } if (flock(ufd.get(), LOCK_UN) != 0) { PLOG(WARNING) << "Error unlocking profile " << profile; } return truncated; } // Clear the reference profile for the given location. // The location is the profile name for primary apks or the dex path for secondary dex files. static bool clear_reference_profile(const std::string& package_name, const std::string& location, bool is_secondary_dex) { return clear_profile(create_reference_profile_path(package_name, location, is_secondary_dex)); } // Clear the reference profile for the given location. // The location is the profile name for primary apks or the dex path for secondary dex files. static bool clear_current_profile(const std::string& package_name, const std::string& location, userid_t user, bool is_secondary_dex) { return clear_profile(create_current_profile_path(user, package_name, location, is_secondary_dex)); } // Clear the reference profile for the primary apk of the given package. // The location is the profile name for primary apks or the dex path for secondary dex files. bool clear_primary_reference_profile(const std::string& package_name, const std::string& location) { return clear_reference_profile(package_name, location, /*is_secondary_dex*/false); } // Clear all current profile for the primary apk of the given package. // The location is the profile name for primary apks or the dex path for secondary dex files. bool clear_primary_current_profiles(const std::string& package_name, const std::string& location) { bool success = true; // For secondary dex files, we don't really need the user but we use it for sanity checks. std::vector users = get_known_users(/*volume_uuid*/ nullptr); for (auto user : users) { success &= clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); } return success; } // Clear the current profile for the primary apk of the given package and user. bool clear_primary_current_profile(const std::string& package_name, const std::string& location, userid_t user) { return clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); } static std::vector SplitBySpaces(const std::string& str) { if (str.empty()) { return {}; } return android::base::Split(str, " "); } static const char* get_location_from_path(const char* path) { static constexpr char kLocationSeparator = '/'; const char *location = strrchr(path, kLocationSeparator); if (location == nullptr) { return path; } else { // Skip the separator character. return location + 1; } } // ExecVHelper prepares and holds pointers to parsed command line arguments so that no allocations // need to be performed between the fork and exec. class ExecVHelper { public: // Store a placeholder for the binary name. ExecVHelper() : args_(1u, std::string()) {} void PrepareArgs(const std::string& bin) { CHECK(!args_.empty()); CHECK(args_[0].empty()); args_[0] = bin; // Write char* into array. for (const std::string& arg : args_) { argv_.push_back(arg.c_str()); } argv_.push_back(nullptr); // Add null terminator. } [[ noreturn ]] void Exec(int exit_code) { execv(argv_[0], (char * const *)&argv_[0]); PLOG(ERROR) << "execv(" << argv_[0] << ") failed"; exit(exit_code); } // Add an arg if it's not empty. void AddArg(const std::string& arg) { if (!arg.empty()) { args_.push_back(arg); } } // Add a runtime arg if it's not empty. void AddRuntimeArg(const std::string& arg) { if (!arg.empty()) { args_.push_back("--runtime-arg"); args_.push_back(arg); } } protected: // Holder arrays for backing arg storage. std::vector args_; // Argument poiners. std::vector argv_; }; static std::string MapPropertyToArg(const std::string& property, const std::string& format, const std::string& default_value = "") { std::string prop = GetProperty(property, default_value); if (!prop.empty()) { return StringPrintf(format.c_str(), prop.c_str()); } return ""; } // Determines which binary we should use for execution (the debug or non-debug version). // e.g. dex2oatd vs dex2oat static const char* select_execution_binary(const char* binary, const char* debug_binary, bool background_job_compile) { return select_execution_binary( binary, debug_binary, background_job_compile, is_debug_runtime(), (android::base::GetProperty("ro.build.version.codename", "") == "REL"), is_debuggable_build()); } // Determines which binary we should use for execution (the debug or non-debug version). // e.g. dex2oatd vs dex2oat // This is convenient method which is much easier to test because it doesn't read // system properties. const char* select_execution_binary( const char* binary, const char* debug_binary, bool background_job_compile, bool is_debug_runtime, bool is_release, bool is_debuggable_build) { // Do not use debug binaries for release candidates (to give more soak time). bool is_debug_bg_job = background_job_compile && is_debuggable_build && !is_release; // If the runtime was requested to use libartd.so, we'll run the debug version - assuming // the file is present (it may not be on images with very little space available). bool useDebug = (is_debug_runtime || is_debug_bg_job) && (access(debug_binary, X_OK) == 0); return useDebug ? debug_binary : binary; } // Namespace for Android Runtime flags applied during boot time. static const char* RUNTIME_NATIVE_BOOT_NAMESPACE = "runtime_native_boot"; // Feature flag name for running the JIT in Zygote experiment, b/119800099. static const char* ENABLE_APEX_IMAGE = "enable_apex_image"; // Location of the apex image. static const char* kApexImage = "/system/framework/apex.art"; class RunDex2Oat : public ExecVHelper { public: RunDex2Oat(int zip_fd, int oat_fd, int input_vdex_fd, int output_vdex_fd, int image_fd, const char* input_file_name, const char* output_file_name, int swap_fd, const char* instruction_set, const char* compiler_filter, bool debuggable, bool post_bootcomplete, bool background_job_compile, int profile_fd, const char* class_loader_context, const std::string& class_loader_context_fds, int target_sdk_version, bool enable_hidden_api_checks, bool generate_compact_dex, int dex_metadata_fd, const char* compilation_reason) { // Get the relative path to the input file. const char* relative_input_file_name = get_location_from_path(input_file_name); std::string dex2oat_Xms_arg = MapPropertyToArg("dalvik.vm.dex2oat-Xms", "-Xms%s"); std::string dex2oat_Xmx_arg = MapPropertyToArg("dalvik.vm.dex2oat-Xmx", "-Xmx%s"); const char* threads_property = post_bootcomplete ? "dalvik.vm.dex2oat-threads" : "dalvik.vm.boot-dex2oat-threads"; std::string dex2oat_threads_arg = MapPropertyToArg(threads_property, "-j%s"); std::string bootclasspath; char* dex2oat_bootclasspath = getenv("DEX2OATBOOTCLASSPATH"); if (dex2oat_bootclasspath != nullptr) { bootclasspath = StringPrintf("-Xbootclasspath:%s", dex2oat_bootclasspath); } // If DEX2OATBOOTCLASSPATH is not in the environment, dex2oat is going to query // BOOTCLASSPATH. const std::string dex2oat_isa_features_key = StringPrintf("dalvik.vm.isa.%s.features", instruction_set); std::string instruction_set_features_arg = MapPropertyToArg(dex2oat_isa_features_key, "--instruction-set-features=%s"); const std::string dex2oat_isa_variant_key = StringPrintf("dalvik.vm.isa.%s.variant", instruction_set); std::string instruction_set_variant_arg = MapPropertyToArg(dex2oat_isa_variant_key, "--instruction-set-variant=%s"); const char* dex2oat_norelocation = "-Xnorelocate"; const std::string dex2oat_flags = GetProperty("dalvik.vm.dex2oat-flags", ""); std::vector dex2oat_flags_args = SplitBySpaces(dex2oat_flags); ALOGV("dalvik.vm.dex2oat-flags=%s\n", dex2oat_flags.c_str()); // If we are booting without the real /data, don't spend time compiling. std::string vold_decrypt = GetProperty("vold.decrypt", ""); bool skip_compilation = vold_decrypt == "trigger_restart_min_framework" || vold_decrypt == "1"; std::string resolve_startup_string_arg = MapPropertyToArg("persist.device_config.runtime.dex2oat_resolve_startup_strings", "--resolve-startup-const-strings=%s"); if (resolve_startup_string_arg.empty()) { // If empty, fall back to system property. resolve_startup_string_arg = MapPropertyToArg("dalvik.vm.dex2oat-resolve-startup-strings", "--resolve-startup-const-strings=%s"); } const std::string image_block_size_arg = MapPropertyToArg("dalvik.vm.dex2oat-max-image-block-size", "--max-image-block-size=%s"); const bool generate_debug_info = GetBoolProperty("debug.generate-debug-info", false); std::string image_format_arg; if (image_fd >= 0) { image_format_arg = MapPropertyToArg("dalvik.vm.appimageformat", "--image-format=%s"); } std::string dex2oat_large_app_threshold_arg = MapPropertyToArg("dalvik.vm.dex2oat-very-large", "--very-large-app-threshold=%s"); const char* dex2oat_bin = select_execution_binary( kDex2oatPath, kDex2oatDebugPath, background_job_compile); bool generate_minidebug_info = kEnableMinidebugInfo && GetBoolProperty(kMinidebugInfoSystemProperty, kMinidebugInfoSystemPropertyDefault); std::string boot_image; std::string use_apex_image = server_configurable_flags::GetServerConfigurableFlag(RUNTIME_NATIVE_BOOT_NAMESPACE, ENABLE_APEX_IMAGE, /*default_value=*/ ""); if (use_apex_image == "true") { boot_image = StringPrintf("-Ximage:%s", kApexImage); } else { boot_image = MapPropertyToArg("dalvik.vm.boot-image", "-Ximage:%s"); } // clang FORTIFY doesn't let us use strlen in constant array bounds, so we // use arraysize instead. std::string zip_fd_arg = StringPrintf("--zip-fd=%d", zip_fd); std::string zip_location_arg = StringPrintf("--zip-location=%s", relative_input_file_name); std::string input_vdex_fd_arg = StringPrintf("--input-vdex-fd=%d", input_vdex_fd); std::string output_vdex_fd_arg = StringPrintf("--output-vdex-fd=%d", output_vdex_fd); std::string oat_fd_arg = StringPrintf("--oat-fd=%d", oat_fd); std::string oat_location_arg = StringPrintf("--oat-location=%s", output_file_name); std::string instruction_set_arg = StringPrintf("--instruction-set=%s", instruction_set); std::string dex2oat_compiler_filter_arg; std::string dex2oat_swap_fd; std::string dex2oat_image_fd; std::string target_sdk_version_arg; if (target_sdk_version != 0) { target_sdk_version_arg = StringPrintf("-Xtarget-sdk-version:%d", target_sdk_version); } std::string class_loader_context_arg; std::string class_loader_context_fds_arg; if (class_loader_context != nullptr) { class_loader_context_arg = StringPrintf("--class-loader-context=%s", class_loader_context); if (!class_loader_context_fds.empty()) { class_loader_context_fds_arg = StringPrintf("--class-loader-context-fds=%s", class_loader_context_fds.c_str()); } } if (swap_fd >= 0) { dex2oat_swap_fd = StringPrintf("--swap-fd=%d", swap_fd); } if (image_fd >= 0) { dex2oat_image_fd = StringPrintf("--app-image-fd=%d", image_fd); } // Compute compiler filter. bool have_dex2oat_relocation_skip_flag = false; if (skip_compilation) { dex2oat_compiler_filter_arg = "--compiler-filter=extract"; have_dex2oat_relocation_skip_flag = true; } else if (compiler_filter != nullptr) { dex2oat_compiler_filter_arg = StringPrintf("--compiler-filter=%s", compiler_filter); } if (dex2oat_compiler_filter_arg.empty()) { dex2oat_compiler_filter_arg = MapPropertyToArg("dalvik.vm.dex2oat-filter", "--compiler-filter=%s"); } // Check whether all apps should be compiled debuggable. if (!debuggable) { debuggable = GetProperty("dalvik.vm.always_debuggable", "") == "1"; } std::string profile_arg; if (profile_fd != -1) { profile_arg = StringPrintf("--profile-file-fd=%d", profile_fd); } // Get the directory of the apk to pass as a base classpath directory. std::string base_dir; std::string apk_dir(input_file_name); unsigned long dir_index = apk_dir.rfind('/'); bool has_base_dir = dir_index != std::string::npos; if (has_base_dir) { apk_dir = apk_dir.substr(0, dir_index); base_dir = StringPrintf("--classpath-dir=%s", apk_dir.c_str()); } std::string dex_metadata_fd_arg = "--dm-fd=" + std::to_string(dex_metadata_fd); std::string compilation_reason_arg = compilation_reason == nullptr ? "" : std::string("--compilation-reason=") + compilation_reason; ALOGV("Running %s in=%s out=%s\n", dex2oat_bin, relative_input_file_name, output_file_name); // Disable cdex if update input vdex is true since this combination of options is not // supported. const bool disable_cdex = !generate_compact_dex || (input_vdex_fd == output_vdex_fd); AddArg(zip_fd_arg); AddArg(zip_location_arg); AddArg(input_vdex_fd_arg); AddArg(output_vdex_fd_arg); AddArg(oat_fd_arg); AddArg(oat_location_arg); AddArg(instruction_set_arg); AddArg(instruction_set_variant_arg); AddArg(instruction_set_features_arg); AddRuntimeArg(boot_image); AddRuntimeArg(bootclasspath); AddRuntimeArg(dex2oat_Xms_arg); AddRuntimeArg(dex2oat_Xmx_arg); AddArg(resolve_startup_string_arg); AddArg(image_block_size_arg); AddArg(dex2oat_compiler_filter_arg); AddArg(dex2oat_threads_arg); AddArg(dex2oat_swap_fd); AddArg(dex2oat_image_fd); if (generate_debug_info) { AddArg("--generate-debug-info"); } if (debuggable) { AddArg("--debuggable"); } AddArg(image_format_arg); AddArg(dex2oat_large_app_threshold_arg); if (have_dex2oat_relocation_skip_flag) { AddRuntimeArg(dex2oat_norelocation); } AddArg(profile_arg); AddArg(base_dir); AddArg(class_loader_context_arg); AddArg(class_loader_context_fds_arg); if (generate_minidebug_info) { AddArg(kMinidebugDex2oatFlag); } if (disable_cdex) { AddArg(kDisableCompactDexFlag); } AddRuntimeArg(target_sdk_version_arg); if (enable_hidden_api_checks) { AddRuntimeArg("-Xhidden-api-policy:enabled"); } if (dex_metadata_fd > -1) { AddArg(dex_metadata_fd_arg); } AddArg(compilation_reason_arg); // Do not add args after dex2oat_flags, they should override others for debugging. args_.insert(args_.end(), dex2oat_flags_args.begin(), dex2oat_flags_args.end()); PrepareArgs(dex2oat_bin); } }; /* * Whether dexopt should use a swap file when compiling an APK. * * If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision * itself, anyways). * * Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true". * * Otherwise, return true if this is a low-mem device. * * Otherwise, return default value. */ static bool kAlwaysProvideSwapFile = false; static bool kDefaultProvideSwapFile = true; static bool ShouldUseSwapFileForDexopt() { if (kAlwaysProvideSwapFile) { return true; } // Check the "override" property. If it exists, return value == "true". std::string dex2oat_prop_buf = GetProperty("dalvik.vm.dex2oat-swap", ""); if (!dex2oat_prop_buf.empty()) { return dex2oat_prop_buf == "true"; } // Shortcut for default value. This is an implementation optimization for the process sketched // above. If the default value is true, we can avoid to check whether this is a low-mem device, // as low-mem is never returning false. The compiler will optimize this away if it can. if (kDefaultProvideSwapFile) { return true; } if (GetBoolProperty("ro.config.low_ram", false)) { return true; } // Default value must be false here. return kDefaultProvideSwapFile; } static void SetDex2OatScheduling(bool set_to_bg) { if (set_to_bg) { if (set_sched_policy(0, SP_BACKGROUND) < 0) { PLOG(ERROR) << "set_sched_policy failed"; exit(DexoptReturnCodes::kSetSchedPolicy); } if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) { PLOG(ERROR) << "setpriority failed"; exit(DexoptReturnCodes::kSetPriority); } } } static unique_fd create_profile(uid_t uid, const std::string& profile, int32_t flags) { unique_fd fd(TEMP_FAILURE_RETRY(open(profile.c_str(), flags, 0600))); if (fd.get() < 0) { if (errno != EEXIST) { PLOG(ERROR) << "Failed to create profile " << profile; return invalid_unique_fd(); } } // Profiles should belong to the app; make sure of that by giving ownership to // the app uid. If we cannot do that, there's no point in returning the fd // since dex2oat/profman will fail with SElinux denials. if (fchown(fd.get(), uid, uid) < 0) { PLOG(ERROR) << "Could not chown profile " << profile; return invalid_unique_fd(); } return fd; } static unique_fd open_profile(uid_t uid, const std::string& profile, int32_t flags) { // Do not follow symlinks when opening a profile: // - primary profiles should not contain symlinks in their paths // - secondary dex paths should have been already resolved and validated flags |= O_NOFOLLOW; // Check if we need to create the profile // Reference profiles and snapshots are created on the fly; so they might not exist beforehand. unique_fd fd; if ((flags & O_CREAT) != 0) { fd = create_profile(uid, profile, flags); } else { fd.reset(TEMP_FAILURE_RETRY(open(profile.c_str(), flags))); } if (fd.get() < 0) { if (errno != ENOENT) { // Profiles might be missing for various reasons. For example, in a // multi-user environment, the profile directory for one user can be created // after we start a merge. In this case the current profile for that user // will not be found. // Also, the secondary dex profiles might be deleted by the app at any time, // so we can't we need to prepare if they are missing. PLOG(ERROR) << "Failed to open profile " << profile; } return invalid_unique_fd(); } return fd; } static unique_fd open_current_profile(uid_t uid, userid_t user, const std::string& package_name, const std::string& location, bool is_secondary_dex) { std::string profile = create_current_profile_path(user, package_name, location, is_secondary_dex); return open_profile(uid, profile, O_RDONLY); } static unique_fd open_reference_profile(uid_t uid, const std::string& package_name, const std::string& location, bool read_write, bool is_secondary_dex) { std::string profile = create_reference_profile_path(package_name, location, is_secondary_dex); return open_profile(uid, profile, read_write ? (O_CREAT | O_RDWR) : O_RDONLY); } static unique_fd open_spnashot_profile(uid_t uid, const std::string& package_name, const std::string& location) { std::string profile = create_snapshot_profile_path(package_name, location); return open_profile(uid, profile, O_CREAT | O_RDWR | O_TRUNC); } static void open_profile_files(uid_t uid, const std::string& package_name, const std::string& location, bool is_secondary_dex, /*out*/ std::vector* profiles_fd, /*out*/ unique_fd* reference_profile_fd) { // Open the reference profile in read-write mode as profman might need to save the merge. *reference_profile_fd = open_reference_profile(uid, package_name, location, /*read_write*/ true, is_secondary_dex); // For secondary dex files, we don't really need the user but we use it for sanity checks. // Note: the user owning the dex file should be the current user. std::vector users; if (is_secondary_dex){ users.push_back(multiuser_get_user_id(uid)); } else { users = get_known_users(/*volume_uuid*/ nullptr); } for (auto user : users) { unique_fd profile_fd = open_current_profile(uid, user, package_name, location, is_secondary_dex); // Add to the lists only if both fds are valid. if (profile_fd.get() >= 0) { profiles_fd->push_back(std::move(profile_fd)); } } } static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 0; static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION = 1; static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 2; static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 3; static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 4; class RunProfman : public ExecVHelper { public: void SetupArgs(const std::vector& profile_fds, const unique_fd& reference_profile_fd, const std::vector& apk_fds, const std::vector& dex_locations, bool copy_and_update, bool store_aggregation_counters) { // TODO(calin): Assume for now we run in the bg compile job (which is in // most of the invocation). With the current data flow, is not very easy or // clean to discover this in RunProfman (it will require quite a messy refactoring). const char* profman_bin = select_execution_binary( kProfmanPath, kProfmanDebugPath, /*background_job_compile=*/ true); if (copy_and_update) { CHECK_EQ(1u, profile_fds.size()); CHECK_EQ(1u, apk_fds.size()); } if (reference_profile_fd != -1) { AddArg("--reference-profile-file-fd=" + std::to_string(reference_profile_fd.get())); } for (const unique_fd& fd : profile_fds) { AddArg("--profile-file-fd=" + std::to_string(fd.get())); } for (const unique_fd& fd : apk_fds) { AddArg("--apk-fd=" + std::to_string(fd.get())); } for (const std::string& dex_location : dex_locations) { AddArg("--dex-location=" + dex_location); } if (copy_and_update) { AddArg("--copy-and-update-profile-key"); } if (store_aggregation_counters) { AddArg("--store-aggregation-counters"); } // Do not add after dex2oat_flags, they should override others for debugging. PrepareArgs(profman_bin); } void SetupMerge(const std::vector& profiles_fd, const unique_fd& reference_profile_fd, const std::vector& apk_fds = std::vector(), const std::vector& dex_locations = std::vector(), bool store_aggregation_counters = false) { SetupArgs(profiles_fd, reference_profile_fd, apk_fds, dex_locations, /*copy_and_update=*/false, store_aggregation_counters); } void SetupCopyAndUpdate(unique_fd&& profile_fd, unique_fd&& reference_profile_fd, unique_fd&& apk_fd, const std::string& dex_location) { // The fds need to stay open longer than the scope of the function, so put them into a local // variable vector. profiles_fd_.push_back(std::move(profile_fd)); apk_fds_.push_back(std::move(apk_fd)); reference_profile_fd_ = std::move(reference_profile_fd); std::vector dex_locations = {dex_location}; SetupArgs(profiles_fd_, reference_profile_fd_, apk_fds_, dex_locations, /*copy_and_update=*/true, /*store_aggregation_counters=*/false); } void SetupDump(const std::vector& profiles_fd, const unique_fd& reference_profile_fd, const std::vector& dex_locations, const std::vector& apk_fds, const unique_fd& output_fd) { AddArg("--dump-only"); AddArg(StringPrintf("--dump-output-to-fd=%d", output_fd.get())); SetupArgs(profiles_fd, reference_profile_fd, apk_fds, dex_locations, /*copy_and_update=*/false, /*store_aggregation_counters=*/false); } void Exec() { ExecVHelper::Exec(DexoptReturnCodes::kProfmanExec); } private: unique_fd reference_profile_fd_; std::vector profiles_fd_; std::vector apk_fds_; }; // Decides if profile guided compilation is needed or not based on existing profiles. // The location is the package name for primary apks or the dex path for secondary dex files. // Returns true if there is enough information in the current profiles that makes it // worth to recompile the given location. // If the return value is true all the current profiles would have been merged into // the reference profiles accessible with open_reference_profile(). static bool analyze_profiles(uid_t uid, const std::string& package_name, const std::string& location, bool is_secondary_dex) { std::vector profiles_fd; unique_fd reference_profile_fd; open_profile_files(uid, package_name, location, is_secondary_dex, &profiles_fd, &reference_profile_fd); if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { // Skip profile guided compilation because no profiles were found. // Or if the reference profile info couldn't be opened. return false; } RunProfman profman_merge; profman_merge.SetupMerge(profiles_fd, reference_profile_fd); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); profman_merge.Exec(); } /* parent */ int return_code = wait_child(pid); bool need_to_compile = false; bool should_clear_current_profiles = false; bool should_clear_reference_profile = false; if (!WIFEXITED(return_code)) { LOG(WARNING) << "profman failed for location " << location << ": " << return_code; } else { return_code = WEXITSTATUS(return_code); switch (return_code) { case PROFMAN_BIN_RETURN_CODE_COMPILE: need_to_compile = true; should_clear_current_profiles = true; should_clear_reference_profile = false; break; case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION: need_to_compile = false; should_clear_current_profiles = false; should_clear_reference_profile = false; break; case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES: LOG(WARNING) << "Bad profiles for location " << location; need_to_compile = false; should_clear_current_profiles = true; should_clear_reference_profile = true; break; case PROFMAN_BIN_RETURN_CODE_ERROR_IO: // fall-through case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING: // Temporary IO problem (e.g. locking). Ignore but log a warning. LOG(WARNING) << "IO error while reading profiles for location " << location; need_to_compile = false; should_clear_current_profiles = false; should_clear_reference_profile = false; break; default: // Unknown return code or error. Unlink profiles. LOG(WARNING) << "Unknown error code while processing profiles for location " << location << ": " << return_code; need_to_compile = false; should_clear_current_profiles = true; should_clear_reference_profile = true; break; } } if (should_clear_current_profiles) { if (is_secondary_dex) { // For secondary dex files, the owning user is the current user. clear_current_profile(package_name, location, multiuser_get_user_id(uid), is_secondary_dex); } else { clear_primary_current_profiles(package_name, location); } } if (should_clear_reference_profile) { clear_reference_profile(package_name, location, is_secondary_dex); } return need_to_compile; } // Decides if profile guided compilation is needed or not based on existing profiles. // The analysis is done for the primary apks of the given package. // Returns true if there is enough information in the current profiles that makes it // worth to recompile the package. // If the return value is true all the current profiles would have been merged into // the reference profiles accessible with open_reference_profile(). bool analyze_primary_profiles(uid_t uid, const std::string& package_name, const std::string& profile_name) { return analyze_profiles(uid, package_name, profile_name, /*is_secondary_dex*/false); } bool dump_profiles(int32_t uid, const std::string& pkgname, const std::string& profile_name, const std::string& code_path) { std::vector profile_fds; unique_fd reference_profile_fd; std::string out_file_name = StringPrintf("/data/misc/profman/%s-%s.txt", pkgname.c_str(), profile_name.c_str()); open_profile_files(uid, pkgname, profile_name, /*is_secondary_dex*/false, &profile_fds, &reference_profile_fd); const bool has_reference_profile = (reference_profile_fd.get() != -1); const bool has_profiles = !profile_fds.empty(); if (!has_reference_profile && !has_profiles) { LOG(ERROR) << "profman dump: no profiles to dump for " << pkgname; return false; } unique_fd output_fd(open(out_file_name.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0644)); if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) { LOG(ERROR) << "installd cannot chmod file for dump_profile" << out_file_name; return false; } std::vector dex_locations; std::vector apk_fds; unique_fd apk_fd(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW)); if (apk_fd == -1) { PLOG(ERROR) << "installd cannot open " << code_path.c_str(); return false; } dex_locations.push_back(get_location_from_path(code_path.c_str())); apk_fds.push_back(std::move(apk_fd)); RunProfman profman_dump; profman_dump.SetupDump(profile_fds, reference_profile_fd, dex_locations, apk_fds, output_fd); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); profman_dump.Exec(); } /* parent */ int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code; return false; } return true; } bool copy_system_profile(const std::string& system_profile, uid_t packageUid, const std::string& package_name, const std::string& profile_name) { unique_fd in_fd(open(system_profile.c_str(), O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); unique_fd out_fd(open_reference_profile(packageUid, package_name, profile_name, /*read_write*/ true, /*secondary*/ false)); if (in_fd.get() < 0) { PLOG(WARNING) << "Could not open profile " << system_profile; return false; } if (out_fd.get() < 0) { PLOG(WARNING) << "Could not open profile " << package_name; return false; } // As a security measure we want to write the profile information with the reduced capabilities // of the package user id. So we fork and drop capabilities in the child. pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(packageUid); if (flock(out_fd.get(), LOCK_EX | LOCK_NB) != 0) { if (errno != EWOULDBLOCK) { PLOG(WARNING) << "Error locking profile " << package_name; } // This implies that the app owning this profile is running // (and has acquired the lock). // // The app never acquires the lock for the reference profiles of primary apks. // Only dex2oat from installd will do that. Since installd is single threaded // we should not see this case. Nevertheless be prepared for it. PLOG(WARNING) << "Failed to flock " << package_name; return false; } bool truncated = ftruncate(out_fd.get(), 0) == 0; if (!truncated) { PLOG(WARNING) << "Could not truncate " << package_name; } // Copy over data. static constexpr size_t kBufferSize = 4 * 1024; char buffer[kBufferSize]; while (true) { ssize_t bytes = read(in_fd.get(), buffer, kBufferSize); if (bytes == 0) { break; } write(out_fd.get(), buffer, bytes); } if (flock(out_fd.get(), LOCK_UN) != 0) { PLOG(WARNING) << "Error unlocking profile " << package_name; } // Use _exit since we don't want to run the global destructors in the child. // b/62597429 _exit(0); } /* parent */ int return_code = wait_child(pid); return return_code == 0; } static std::string replace_file_extension(const std::string& oat_path, const std::string& new_ext) { // A standard dalvik-cache entry. Replace ".dex" with `new_ext`. if (EndsWith(oat_path, ".dex")) { std::string new_path = oat_path; new_path.replace(new_path.length() - strlen(".dex"), strlen(".dex"), new_ext); CHECK(EndsWith(new_path, new_ext)); return new_path; } // An odex entry. Not that this may not be an extension, e.g., in the OTA // case (where the base name will have an extension for the B artifact). size_t odex_pos = oat_path.rfind(".odex"); if (odex_pos != std::string::npos) { std::string new_path = oat_path; new_path.replace(odex_pos, strlen(".odex"), new_ext); CHECK_NE(new_path.find(new_ext), std::string::npos); return new_path; } // Don't know how to handle this. return ""; } // Translate the given oat path to an art (app image) path. An empty string // denotes an error. static std::string create_image_filename(const std::string& oat_path) { return replace_file_extension(oat_path, ".art"); } // Translate the given oat path to a vdex path. An empty string denotes an error. static std::string create_vdex_filename(const std::string& oat_path) { return replace_file_extension(oat_path, ".vdex"); } static int open_output_file(const char* file_name, bool recreate, int permissions) { int flags = O_RDWR | O_CREAT; if (recreate) { if (unlink(file_name) < 0) { if (errno != ENOENT) { PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name; } } flags |= O_EXCL; } return open(file_name, flags, permissions); } static bool set_permissions_and_ownership( int fd, bool is_public, int uid, const char* path, bool is_secondary_dex) { // Primary apks are owned by the system. Secondary dex files are owned by the app. int owning_uid = is_secondary_dex ? uid : AID_SYSTEM; if (fchmod(fd, S_IRUSR|S_IWUSR|S_IRGRP | (is_public ? S_IROTH : 0)) < 0) { ALOGE("installd cannot chmod '%s' during dexopt\n", path); return false; } else if (fchown(fd, owning_uid, uid) < 0) { ALOGE("installd cannot chown '%s' during dexopt\n", path); return false; } return true; } static bool IsOutputDalvikCache(const char* oat_dir) { // InstallerConnection.java (which invokes installd) transforms Java null arguments // into '!'. Play it safe by handling it both. // TODO: ensure we never get null. // TODO: pass a flag instead of inferring if the output is dalvik cache. return oat_dir == nullptr || oat_dir[0] == '!'; } // Best-effort check whether we can fit the the path into our buffers. // Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run // without a swap file, if necessary. Reference profiles file also add an extra ".prof" // extension to the cache path (5 bytes). // TODO(calin): move away from char* buffers and PKG_PATH_MAX. static bool validate_dex_path_size(const std::string& dex_path) { if (dex_path.size() >= (PKG_PATH_MAX - 8)) { LOG(ERROR) << "dex_path too long: " << dex_path; return false; } return true; } static bool create_oat_out_path(const char* apk_path, const char* instruction_set, const char* oat_dir, bool is_secondary_dex, /*out*/ char* out_oat_path) { if (!validate_dex_path_size(apk_path)) { return false; } if (!IsOutputDalvikCache(oat_dir)) { // Oat dirs for secondary dex files are already validated. if (!is_secondary_dex && validate_apk_path(oat_dir)) { ALOGE("cannot validate apk path with oat_dir '%s'\n", oat_dir); return false; } if (!calculate_oat_file_path(out_oat_path, oat_dir, apk_path, instruction_set)) { return false; } } else { if (!create_cache_path(out_oat_path, apk_path, instruction_set)) { return false; } } return true; } // Helper for fd management. This is similar to a unique_fd in that it closes the file descriptor // on destruction. It will also run the given cleanup (unless told not to) after closing. // // Usage example: // // Dex2oatFileWrapper file(open(...), // [name]() { // unlink(name.c_str()); // }); // // Note: care needs to be taken about name, as it needs to have a lifetime longer than the // wrapper if captured as a reference. // // if (file.get() == -1) { // // Error opening... // } // // ... // if (error) { // // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will run // // and delete the file (after the fd is closed). // return -1; // } // // (Success case) // file.SetCleanup(false); // // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will not run // // (leaving the file around; after the fd is closed). // class Dex2oatFileWrapper { public: Dex2oatFileWrapper() : value_(-1), cleanup_(), do_cleanup_(true), auto_close_(true) { } Dex2oatFileWrapper(int value, std::function cleanup) : value_(value), cleanup_(cleanup), do_cleanup_(true), auto_close_(true) {} Dex2oatFileWrapper(Dex2oatFileWrapper&& other) { value_ = other.value_; cleanup_ = other.cleanup_; do_cleanup_ = other.do_cleanup_; auto_close_ = other.auto_close_; other.release(); } Dex2oatFileWrapper& operator=(Dex2oatFileWrapper&& other) { value_ = other.value_; cleanup_ = other.cleanup_; do_cleanup_ = other.do_cleanup_; auto_close_ = other.auto_close_; other.release(); return *this; } ~Dex2oatFileWrapper() { reset(-1); } int get() { return value_; } void SetCleanup(bool cleanup) { do_cleanup_ = cleanup; } void reset(int new_value) { if (auto_close_ && value_ >= 0) { close(value_); } if (do_cleanup_ && cleanup_ != nullptr) { cleanup_(); } value_ = new_value; } void reset(int new_value, std::function new_cleanup) { if (auto_close_ && value_ >= 0) { close(value_); } if (do_cleanup_ && cleanup_ != nullptr) { cleanup_(); } value_ = new_value; cleanup_ = new_cleanup; } void DisableAutoClose() { auto_close_ = false; } private: void release() { value_ = -1; do_cleanup_ = false; cleanup_ = nullptr; } int value_; std::function cleanup_; bool do_cleanup_; bool auto_close_; }; // (re)Creates the app image if needed. Dex2oatFileWrapper maybe_open_app_image(const char* out_oat_path, bool generate_app_image, bool is_public, int uid, bool is_secondary_dex) { // We don't create an image for secondary dex files. if (is_secondary_dex) { return Dex2oatFileWrapper(); } const std::string image_path = create_image_filename(out_oat_path); if (image_path.empty()) { // Happens when the out_oat_path has an unknown extension. return Dex2oatFileWrapper(); } // In case there is a stale image, remove it now. Ignore any error. unlink(image_path.c_str()); // Not enabled, exit. if (!generate_app_image) { return Dex2oatFileWrapper(); } std::string app_image_format = GetProperty("dalvik.vm.appimageformat", ""); if (app_image_format.empty()) { return Dex2oatFileWrapper(); } // Recreate is true since we do not want to modify a mapped image. If the app is // already running and we modify the image file, it can cause crashes (b/27493510). Dex2oatFileWrapper wrapper_fd( open_output_file(image_path.c_str(), true /*recreate*/, 0600 /*permissions*/), [image_path]() { unlink(image_path.c_str()); }); if (wrapper_fd.get() < 0) { // Could not create application image file. Go on since we can compile without it. LOG(ERROR) << "installd could not create '" << image_path << "' for image file during dexopt"; // If we have a valid image file path but no image fd, explicitly erase the image file. if (unlink(image_path.c_str()) < 0) { if (errno != ENOENT) { PLOG(ERROR) << "Couldn't unlink image file " << image_path; } } } else if (!set_permissions_and_ownership( wrapper_fd.get(), is_public, uid, image_path.c_str(), is_secondary_dex)) { ALOGE("installd cannot set owner '%s' for image during dexopt\n", image_path.c_str()); wrapper_fd.reset(-1); } return wrapper_fd; } // Creates the dexopt swap file if necessary and return its fd. // Returns -1 if there's no need for a swap or in case of errors. unique_fd maybe_open_dexopt_swap_file(const char* out_oat_path) { if (!ShouldUseSwapFileForDexopt()) { return invalid_unique_fd(); } auto swap_file_name = std::string(out_oat_path) + ".swap"; unique_fd swap_fd(open_output_file( swap_file_name.c_str(), /*recreate*/true, /*permissions*/0600)); if (swap_fd.get() < 0) { // Could not create swap file. Optimistically go on and hope that we can compile // without it. ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name.c_str()); } else { // Immediately unlink. We don't really want to hit flash. if (unlink(swap_file_name.c_str()) < 0) { PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name; } } return swap_fd; } // Opens the reference profiles if needed. // Note that the reference profile might not exist so it's OK if the fd will be -1. Dex2oatFileWrapper maybe_open_reference_profile(const std::string& pkgname, const std::string& dex_path, const char* profile_name, bool profile_guided, bool is_public, int uid, bool is_secondary_dex) { // If we are not profile guided compilation, or we are compiling system server // do not bother to open the profiles; we won't be using them. if (!profile_guided || (pkgname[0] == '*')) { return Dex2oatFileWrapper(); } // If this is a secondary dex path which is public do not open the profile. // We cannot compile public secondary dex paths with profiles. That's because // it will expose how the dex files are used by their owner. // // Note that the PackageManager is responsible to set the is_public flag for // primary apks and we do not check it here. In some cases, e.g. when // compiling with a public profile from the .dm file the PackageManager will // set is_public toghether with the profile guided compilation. if (is_secondary_dex && is_public) { return Dex2oatFileWrapper(); } // Open reference profile in read only mode as dex2oat does not get write permissions. std::string location; if (is_secondary_dex) { location = dex_path; } else { if (profile_name == nullptr) { // This path is taken for system server re-compilation lunched from ZygoteInit. return Dex2oatFileWrapper(); } else { location = profile_name; } } unique_fd ufd = open_reference_profile(uid, pkgname, location, /*read_write*/false, is_secondary_dex); const auto& cleanup = [pkgname, location, is_secondary_dex]() { clear_reference_profile(pkgname, location, is_secondary_dex); }; return Dex2oatFileWrapper(ufd.release(), cleanup); } // Opens the vdex files and assigns the input fd to in_vdex_wrapper_fd and the output fd to // out_vdex_wrapper_fd. Returns true for success or false in case of errors. bool open_vdex_files_for_dex2oat(const char* apk_path, const char* out_oat_path, int dexopt_needed, const char* instruction_set, bool is_public, int uid, bool is_secondary_dex, bool profile_guided, Dex2oatFileWrapper* in_vdex_wrapper_fd, Dex2oatFileWrapper* out_vdex_wrapper_fd) { CHECK(in_vdex_wrapper_fd != nullptr); CHECK(out_vdex_wrapper_fd != nullptr); // Open the existing VDEX. We do this before creating the new output VDEX, which will // unlink the old one. char in_odex_path[PKG_PATH_MAX]; int dexopt_action = abs(dexopt_needed); bool is_odex_location = dexopt_needed < 0; std::string in_vdex_path_str; // Infer the name of the output VDEX. const std::string out_vdex_path_str = create_vdex_filename(out_oat_path); if (out_vdex_path_str.empty()) { return false; } bool update_vdex_in_place = false; if (dexopt_action != DEX2OAT_FROM_SCRATCH) { // Open the possibly existing vdex. If none exist, we pass -1 to dex2oat for input-vdex-fd. const char* path = nullptr; if (is_odex_location) { if (calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) { path = in_odex_path; } else { ALOGE("installd cannot compute input vdex location for '%s'\n", apk_path); return false; } } else { path = out_oat_path; } in_vdex_path_str = create_vdex_filename(path); if (in_vdex_path_str.empty()) { ALOGE("installd cannot compute input vdex location for '%s'\n", path); return false; } // We can update in place when all these conditions are met: // 1) The vdex location to write to is the same as the vdex location to read (vdex files // on /system typically cannot be updated in place). // 2) We dex2oat due to boot image change, because we then know the existing vdex file // cannot be currently used by a running process. // 3) We are not doing a profile guided compilation, because dexlayout requires two // different vdex files to operate. update_vdex_in_place = (in_vdex_path_str == out_vdex_path_str) && (dexopt_action == DEX2OAT_FOR_BOOT_IMAGE) && !profile_guided; if (update_vdex_in_place) { // Open the file read-write to be able to update it. in_vdex_wrapper_fd->reset(open(in_vdex_path_str.c_str(), O_RDWR, 0)); if (in_vdex_wrapper_fd->get() == -1) { // If we failed to open the file, we cannot update it in place. update_vdex_in_place = false; } } else { in_vdex_wrapper_fd->reset(open(in_vdex_path_str.c_str(), O_RDONLY, 0)); } } // If we are updating the vdex in place, we do not need to recreate a vdex, // and can use the same existing one. if (update_vdex_in_place) { // We unlink the file in case the invocation of dex2oat fails, to ensure we don't // have bogus stale vdex files. out_vdex_wrapper_fd->reset( in_vdex_wrapper_fd->get(), [out_vdex_path_str]() { unlink(out_vdex_path_str.c_str()); }); // Disable auto close for the in wrapper fd (it will be done when destructing the out // wrapper). in_vdex_wrapper_fd->DisableAutoClose(); } else { out_vdex_wrapper_fd->reset( open_output_file(out_vdex_path_str.c_str(), /*recreate*/true, /*permissions*/0644), [out_vdex_path_str]() { unlink(out_vdex_path_str.c_str()); }); if (out_vdex_wrapper_fd->get() < 0) { ALOGE("installd cannot open vdex'%s' during dexopt\n", out_vdex_path_str.c_str()); return false; } } if (!set_permissions_and_ownership(out_vdex_wrapper_fd->get(), is_public, uid, out_vdex_path_str.c_str(), is_secondary_dex)) { ALOGE("installd cannot set owner '%s' for vdex during dexopt\n", out_vdex_path_str.c_str()); return false; } // If we got here we successfully opened the vdex files. return true; } // Opens the output oat file for the given apk. // If successful it stores the output path into out_oat_path and returns true. Dex2oatFileWrapper open_oat_out_file(const char* apk_path, const char* oat_dir, bool is_public, int uid, const char* instruction_set, bool is_secondary_dex, char* out_oat_path) { if (!create_oat_out_path(apk_path, instruction_set, oat_dir, is_secondary_dex, out_oat_path)) { return Dex2oatFileWrapper(); } const std::string out_oat_path_str(out_oat_path); Dex2oatFileWrapper wrapper_fd( open_output_file(out_oat_path, /*recreate*/true, /*permissions*/0644), [out_oat_path_str]() { unlink(out_oat_path_str.c_str()); }); if (wrapper_fd.get() < 0) { PLOG(ERROR) << "installd cannot open output during dexopt" << out_oat_path; } else if (!set_permissions_and_ownership( wrapper_fd.get(), is_public, uid, out_oat_path, is_secondary_dex)) { ALOGE("installd cannot set owner '%s' for output during dexopt\n", out_oat_path); wrapper_fd.reset(-1); } return wrapper_fd; } // Creates RDONLY fds for oat and vdex files, if exist. // Returns false if it fails to create oat out path for the given apk path. // Note that the method returns true even if the files could not be opened. bool maybe_open_oat_and_vdex_file(const std::string& apk_path, const std::string& oat_dir, const std::string& instruction_set, bool is_secondary_dex, unique_fd* oat_file_fd, unique_fd* vdex_file_fd) { char oat_path[PKG_PATH_MAX]; if (!create_oat_out_path(apk_path.c_str(), instruction_set.c_str(), oat_dir.c_str(), is_secondary_dex, oat_path)) { LOG(ERROR) << "Could not create oat out path for " << apk_path << " with oat dir " << oat_dir; return false; } oat_file_fd->reset(open(oat_path, O_RDONLY)); if (oat_file_fd->get() < 0) { PLOG(INFO) << "installd cannot open oat file during dexopt" << oat_path; } std::string vdex_filename = create_vdex_filename(oat_path); vdex_file_fd->reset(open(vdex_filename.c_str(), O_RDONLY)); if (vdex_file_fd->get() < 0) { PLOG(INFO) << "installd cannot open vdex file during dexopt" << vdex_filename; } return true; } // Updates the access times of out_oat_path based on those from apk_path. void update_out_oat_access_times(const char* apk_path, const char* out_oat_path) { struct stat input_stat; memset(&input_stat, 0, sizeof(input_stat)); if (stat(apk_path, &input_stat) != 0) { PLOG(ERROR) << "Could not stat " << apk_path << " during dexopt"; return; } struct utimbuf ut; ut.actime = input_stat.st_atime; ut.modtime = input_stat.st_mtime; if (utime(out_oat_path, &ut) != 0) { PLOG(WARNING) << "Could not update access times for " << apk_path << " during dexopt"; } } // Runs (execv) dexoptanalyzer on the given arguments. // The analyzer will check if the dex_file needs to be (re)compiled to match the compiler_filter. // If this is for a profile guided compilation, profile_was_updated will tell whether or not // the profile has changed. class RunDexoptAnalyzer : public ExecVHelper { public: RunDexoptAnalyzer(const std::string& dex_file, int vdex_fd, int oat_fd, int zip_fd, const std::string& instruction_set, const std::string& compiler_filter, bool profile_was_updated, bool downgrade, const char* class_loader_context, const std::string& class_loader_context_fds) { CHECK_GE(zip_fd, 0); // We always run the analyzer in the background job. const char* dexoptanalyzer_bin = select_execution_binary( kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true); std::string dex_file_arg = "--dex-file=" + dex_file; std::string oat_fd_arg = "--oat-fd=" + std::to_string(oat_fd); std::string vdex_fd_arg = "--vdex-fd=" + std::to_string(vdex_fd); std::string zip_fd_arg = "--zip-fd=" + std::to_string(zip_fd); std::string isa_arg = "--isa=" + instruction_set; std::string compiler_filter_arg = "--compiler-filter=" + compiler_filter; const char* assume_profile_changed = "--assume-profile-changed"; const char* downgrade_flag = "--downgrade"; std::string class_loader_context_arg = "--class-loader-context="; if (class_loader_context != nullptr) { class_loader_context_arg += class_loader_context; } std::string class_loader_context_fds_arg = "--class-loader-context-fds="; if (!class_loader_context_fds.empty()) { class_loader_context_fds_arg += class_loader_context_fds; } // program name, dex file, isa, filter AddArg(dex_file_arg); AddArg(isa_arg); AddArg(compiler_filter_arg); if (oat_fd >= 0) { AddArg(oat_fd_arg); } if (vdex_fd >= 0) { AddArg(vdex_fd_arg); } AddArg(zip_fd_arg); if (profile_was_updated) { AddArg(assume_profile_changed); } if (downgrade) { AddArg(downgrade_flag); } if (class_loader_context != nullptr) { AddArg(class_loader_context_arg); if (!class_loader_context_fds.empty()) { AddArg(class_loader_context_fds_arg); } } PrepareArgs(dexoptanalyzer_bin); } // Dexoptanalyzer mode which flattens the given class loader context and // prints a list of its dex files in that flattened order. RunDexoptAnalyzer(const char* class_loader_context) { CHECK(class_loader_context != nullptr); // We always run the analyzer in the background job. const char* dexoptanalyzer_bin = select_execution_binary( kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true); AddArg("--flatten-class-loader-context"); AddArg(std::string("--class-loader-context=") + class_loader_context); PrepareArgs(dexoptanalyzer_bin); } }; // Prepares the oat dir for the secondary dex files. static bool prepare_secondary_dex_oat_dir(const std::string& dex_path, int uid, const char* instruction_set) { unsigned long dirIndex = dex_path.rfind('/'); if (dirIndex == std::string::npos) { LOG(ERROR ) << "Unexpected dir structure for secondary dex " << dex_path; return false; } std::string dex_dir = dex_path.substr(0, dirIndex); // Create oat file output directory. mode_t oat_dir_mode = S_IRWXU | S_IRWXG | S_IXOTH; if (prepare_app_cache_dir(dex_dir, "oat", oat_dir_mode, uid, uid) != 0) { LOG(ERROR) << "Could not prepare oat dir for secondary dex: " << dex_path; return false; } char oat_dir[PKG_PATH_MAX]; snprintf(oat_dir, PKG_PATH_MAX, "%s/oat", dex_dir.c_str()); if (prepare_app_cache_dir(oat_dir, instruction_set, oat_dir_mode, uid, uid) != 0) { LOG(ERROR) << "Could not prepare oat/isa dir for secondary dex: " << dex_path; return false; } return true; } // Return codes for identifying the reason why dexoptanalyzer was not invoked when processing // secondary dex files. This return codes are returned by the child process created for // analyzing secondary dex files in process_secondary_dex_dexopt. enum DexoptAnalyzerSkipCodes { // The dexoptanalyzer was not invoked because of validation or IO errors. // Specific errors are encoded in the name. kSecondaryDexDexoptAnalyzerSkippedValidatePath = 200, kSecondaryDexDexoptAnalyzerSkippedOpenZip = 201, kSecondaryDexDexoptAnalyzerSkippedPrepareDir = 202, kSecondaryDexDexoptAnalyzerSkippedOpenOutput = 203, kSecondaryDexDexoptAnalyzerSkippedFailExec = 204, // The dexoptanalyzer was not invoked because the dex file does not exist anymore. kSecondaryDexDexoptAnalyzerSkippedNoFile = 205, }; // Verifies the result of analyzing secondary dex files from process_secondary_dex_dexopt. // If the result is valid returns true and sets dexopt_needed_out to a valid value. // Returns false for errors or unexpected result values. // The result is expected to be either one of SECONDARY_DEX_* codes or a valid exit code // of dexoptanalyzer. static bool process_secondary_dexoptanalyzer_result(const std::string& dex_path, int result, int* dexopt_needed_out, std::string* error_msg) { // The result values are defined in dexoptanalyzer. switch (result) { case 0: // dexoptanalyzer: no_dexopt_needed *dexopt_needed_out = NO_DEXOPT_NEEDED; return true; case 1: // dexoptanalyzer: dex2oat_from_scratch *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; return true; case 4: // dexoptanalyzer: dex2oat_for_bootimage_odex *dexopt_needed_out = -DEX2OAT_FOR_BOOT_IMAGE; return true; case 5: // dexoptanalyzer: dex2oat_for_filter_odex *dexopt_needed_out = -DEX2OAT_FOR_FILTER; return true; case 2: // dexoptanalyzer: dex2oat_for_bootimage_oat case 3: // dexoptanalyzer: dex2oat_for_filter_oat *error_msg = StringPrintf("Dexoptanalyzer return the status of an oat file." " Expected odex file status for secondary dex %s" " : dexoptanalyzer result=%d", dex_path.c_str(), result); return false; } // Use a second switch for enum switch-case analysis. switch (static_cast(result)) { case kSecondaryDexDexoptAnalyzerSkippedNoFile: // If the file does not exist there's no need for dexopt. *dexopt_needed_out = NO_DEXOPT_NEEDED; return true; case kSecondaryDexDexoptAnalyzerSkippedValidatePath: *error_msg = "Dexoptanalyzer path validation failed"; return false; case kSecondaryDexDexoptAnalyzerSkippedOpenZip: *error_msg = "Dexoptanalyzer open zip failed"; return false; case kSecondaryDexDexoptAnalyzerSkippedPrepareDir: *error_msg = "Dexoptanalyzer dir preparation failed"; return false; case kSecondaryDexDexoptAnalyzerSkippedOpenOutput: *error_msg = "Dexoptanalyzer open output failed"; return false; case kSecondaryDexDexoptAnalyzerSkippedFailExec: *error_msg = "Dexoptanalyzer failed to execute"; return false; } *error_msg = StringPrintf("Unexpected result from analyzing secondary dex %s result=%d", dex_path.c_str(), result); return false; } enum SecondaryDexAccess { kSecondaryDexAccessReadOk = 0, kSecondaryDexAccessDoesNotExist = 1, kSecondaryDexAccessPermissionError = 2, kSecondaryDexAccessIOError = 3 }; static SecondaryDexAccess check_secondary_dex_access(const std::string& dex_path) { // Check if the path exists and can be read. If not, there's nothing to do. if (access(dex_path.c_str(), R_OK) == 0) { return kSecondaryDexAccessReadOk; } else { if (errno == ENOENT) { LOG(INFO) << "Secondary dex does not exist: " << dex_path; return kSecondaryDexAccessDoesNotExist; } else { PLOG(ERROR) << "Could not access secondary dex " << dex_path; return errno == EACCES ? kSecondaryDexAccessPermissionError : kSecondaryDexAccessIOError; } } } static bool is_file_public(const std::string& filename) { struct stat file_stat; if (stat(filename.c_str(), &file_stat) == 0) { return (file_stat.st_mode & S_IROTH) != 0; } return false; } // Create the oat file structure for the secondary dex 'dex_path' and assign // the individual path component to the 'out_' parameters. static bool create_secondary_dex_oat_layout(const std::string& dex_path, const std::string& isa, char* out_oat_dir, char* out_oat_isa_dir, char* out_oat_path, std::string* error_msg) { size_t dirIndex = dex_path.rfind('/'); if (dirIndex == std::string::npos) { *error_msg = std::string("Unexpected dir structure for dex file ").append(dex_path); return false; } // TODO(calin): we have similar computations in at lest 3 other places // (InstalldNativeService, otapropt and dexopt). Unify them and get rid of snprintf by // using string append. std::string apk_dir = dex_path.substr(0, dirIndex); snprintf(out_oat_dir, PKG_PATH_MAX, "%s/oat", apk_dir.c_str()); snprintf(out_oat_isa_dir, PKG_PATH_MAX, "%s/%s", out_oat_dir, isa.c_str()); if (!create_oat_out_path(dex_path.c_str(), isa.c_str(), out_oat_dir, /*is_secondary_dex*/true, out_oat_path)) { *error_msg = std::string("Could not create oat path for secondary dex ").append(dex_path); return false; } return true; } // Validate that the dexopt_flags contain a valid storage flag and convert that to an installd // recognized storage flags (FLAG_STORAGE_CE or FLAG_STORAGE_DE). static bool validate_dexopt_storage_flags(int dexopt_flags, int* out_storage_flag, std::string* error_msg) { if ((dexopt_flags & DEXOPT_STORAGE_CE) != 0) { *out_storage_flag = FLAG_STORAGE_CE; if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { *error_msg = "Ambiguous secondary dex storage flag. Both, CE and DE, flags are set"; return false; } } else if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { *out_storage_flag = FLAG_STORAGE_DE; } else { *error_msg = "Secondary dex storage flag must be set"; return false; } return true; } static bool get_class_loader_context_dex_paths(const char* class_loader_context, int uid, /* out */ std::vector* context_dex_paths) { if (class_loader_context == nullptr) { return true; } LOG(DEBUG) << "Getting dex paths for context " << class_loader_context; // Pipe to get the hash result back from our child process. unique_fd pipe_read, pipe_write; if (!Pipe(&pipe_read, &pipe_write)) { PLOG(ERROR) << "Failed to create pipe"; return false; } pid_t pid = fork(); if (pid == 0) { // child -- drop privileges before continuing. drop_capabilities(uid); // Route stdout to `pipe_write` while ((dup2(pipe_write, STDOUT_FILENO) == -1) && (errno == EINTR)) {} pipe_write.reset(); pipe_read.reset(); RunDexoptAnalyzer run_dexopt_analyzer(class_loader_context); run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec); } /* parent */ pipe_write.reset(); std::string str_dex_paths; if (!ReadFdToString(pipe_read, &str_dex_paths)) { PLOG(ERROR) << "Failed to read from pipe"; return false; } pipe_read.reset(); int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { PLOG(ERROR) << "Error waiting for child dexoptanalyzer process"; return false; } constexpr int kFlattenClassLoaderContextSuccess = 50; return_code = WEXITSTATUS(return_code); if (return_code != kFlattenClassLoaderContextSuccess) { LOG(ERROR) << "Dexoptanalyzer could not flatten class loader context, code=" << return_code; return false; } if (!str_dex_paths.empty()) { *context_dex_paths = android::base::Split(str_dex_paths, ":"); } return true; } static int open_dex_paths(const std::vector& dex_paths, /* out */ std::vector* zip_fds, /* out */ std::string* error_msg) { for (const std::string& dex_path : dex_paths) { zip_fds->emplace_back(open(dex_path.c_str(), O_RDONLY)); if (zip_fds->back().get() < 0) { *error_msg = StringPrintf( "installd cannot open '%s' for input during dexopt", dex_path.c_str()); if (errno == ENOENT) { return kSecondaryDexDexoptAnalyzerSkippedNoFile; } else { return kSecondaryDexDexoptAnalyzerSkippedOpenZip; } } } return 0; } static std::string join_fds(const std::vector& fds) { std::stringstream ss; bool is_first = true; for (const unique_fd& fd : fds) { if (is_first) { is_first = false; } else { ss << ":"; } ss << fd.get(); } return ss.str(); } // Processes the dex_path as a secondary dex files and return true if the path dex file should // be compiled. Returns false for errors (logged) or true if the secondary dex path was process // successfully. // When returning true, the output parameters will be: // - is_public_out: whether or not the oat file should not be made public // - dexopt_needed_out: valid OatFileAsssitant::DexOptNeeded // - oat_dir_out: the oat dir path where the oat file should be stored static bool process_secondary_dex_dexopt(const std::string& dex_path, const char* pkgname, int dexopt_flags, const char* volume_uuid, int uid, const char* instruction_set, const char* compiler_filter, bool* is_public_out, int* dexopt_needed_out, std::string* oat_dir_out, bool downgrade, const char* class_loader_context, const std::vector& context_dex_paths, /* out */ std::string* error_msg) { LOG(DEBUG) << "Processing secondary dex path " << dex_path; int storage_flag; if (!validate_dexopt_storage_flags(dexopt_flags, &storage_flag, error_msg)) { LOG(ERROR) << *error_msg; return false; } // Compute the oat dir as it's not easy to extract it from the child computation. char oat_path[PKG_PATH_MAX]; char oat_dir[PKG_PATH_MAX]; char oat_isa_dir[PKG_PATH_MAX]; if (!create_secondary_dex_oat_layout( dex_path, instruction_set, oat_dir, oat_isa_dir, oat_path, error_msg)) { LOG(ERROR) << "Could not create secondary odex layout: " << *error_msg; return false; } oat_dir_out->assign(oat_dir); pid_t pid = fork(); if (pid == 0) { // child -- drop privileges before continuing. drop_capabilities(uid); // Validate the path structure. if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid, uid, storage_flag)) { LOG(ERROR) << "Could not validate secondary dex path " << dex_path; _exit(kSecondaryDexDexoptAnalyzerSkippedValidatePath); } // Open the dex file. unique_fd zip_fd; zip_fd.reset(open(dex_path.c_str(), O_RDONLY)); if (zip_fd.get() < 0) { if (errno == ENOENT) { _exit(kSecondaryDexDexoptAnalyzerSkippedNoFile); } else { _exit(kSecondaryDexDexoptAnalyzerSkippedOpenZip); } } // Open class loader context dex files. std::vector context_zip_fds; int open_dex_paths_rc = open_dex_paths(context_dex_paths, &context_zip_fds, error_msg); if (open_dex_paths_rc != 0) { _exit(open_dex_paths_rc); } // Prepare the oat directories. if (!prepare_secondary_dex_oat_dir(dex_path, uid, instruction_set)) { _exit(kSecondaryDexDexoptAnalyzerSkippedPrepareDir); } // Open the vdex/oat files if any. unique_fd oat_file_fd; unique_fd vdex_file_fd; if (!maybe_open_oat_and_vdex_file(dex_path, *oat_dir_out, instruction_set, true /* is_secondary_dex */, &oat_file_fd, &vdex_file_fd)) { _exit(kSecondaryDexDexoptAnalyzerSkippedOpenOutput); } // Analyze profiles. bool profile_was_updated = analyze_profiles(uid, pkgname, dex_path, /*is_secondary_dex*/true); // Run dexoptanalyzer to get dexopt_needed code. This is not expected to return. // Note that we do not do it before the fork since opening the files is required to happen // after forking. RunDexoptAnalyzer run_dexopt_analyzer(dex_path, vdex_file_fd.get(), oat_file_fd.get(), zip_fd.get(), instruction_set, compiler_filter, profile_was_updated, downgrade, class_loader_context, join_fds(context_zip_fds)); run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec); } /* parent */ int result = wait_child(pid); if (!WIFEXITED(result)) { *error_msg = StringPrintf("dexoptanalyzer failed for path %s: 0x%04x", dex_path.c_str(), result); LOG(ERROR) << *error_msg; return false; } result = WEXITSTATUS(result); // Check that we successfully executed dexoptanalyzer. bool success = process_secondary_dexoptanalyzer_result(dex_path, result, dexopt_needed_out, error_msg); if (!success) { LOG(ERROR) << *error_msg; } LOG(DEBUG) << "Processed secondary dex file " << dex_path << " result=" << result; // Run dexopt only if needed or forced. // Note that dexoptanalyzer is executed even if force compilation is enabled (because it // makes the code simpler; force compilation is only needed during tests). if (success && (result != kSecondaryDexDexoptAnalyzerSkippedNoFile) && ((dexopt_flags & DEXOPT_FORCE) != 0)) { *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; } // Check if we should make the oat file public. // Note that if the dex file is not public the compiled code cannot be made public. // It is ok to check this flag outside in the parent process. *is_public_out = ((dexopt_flags & DEXOPT_PUBLIC) != 0) && is_file_public(dex_path); return success; } static std::string format_dexopt_error(int status, const char* dex_path) { if (WIFEXITED(status)) { int int_code = WEXITSTATUS(status); const char* code_name = get_return_code_name(static_cast(int_code)); if (code_name != nullptr) { return StringPrintf("Dex2oat invocation for %s failed: %s", dex_path, code_name); } } return StringPrintf("Dex2oat invocation for %s failed with 0x%04x", dex_path, status); } int dexopt(const char* dex_path, uid_t uid, const char* pkgname, const char* instruction_set, int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter, const char* volume_uuid, const char* class_loader_context, const char* se_info, bool downgrade, int target_sdk_version, const char* profile_name, const char* dex_metadata_path, const char* compilation_reason, std::string* error_msg) { CHECK(pkgname != nullptr); CHECK(pkgname[0] != 0); CHECK(error_msg != nullptr); CHECK_EQ(dexopt_flags & ~DEXOPT_MASK, 0) << "dexopt flags contains unknown fields: " << dexopt_flags; if (!validate_dex_path_size(dex_path)) { *error_msg = StringPrintf("Failed to validate %s", dex_path); return -1; } if (class_loader_context != nullptr && strlen(class_loader_context) > PKG_PATH_MAX) { *error_msg = StringPrintf("Class loader context exceeds the allowed size: %s", class_loader_context); LOG(ERROR) << *error_msg; return -1; } bool is_public = (dexopt_flags & DEXOPT_PUBLIC) != 0; bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0; bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0; bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0; bool is_secondary_dex = (dexopt_flags & DEXOPT_SECONDARY_DEX) != 0; bool background_job_compile = (dexopt_flags & DEXOPT_IDLE_BACKGROUND_JOB) != 0; bool enable_hidden_api_checks = (dexopt_flags & DEXOPT_ENABLE_HIDDEN_API_CHECKS) != 0; bool generate_compact_dex = (dexopt_flags & DEXOPT_GENERATE_COMPACT_DEX) != 0; bool generate_app_image = (dexopt_flags & DEXOPT_GENERATE_APP_IMAGE) != 0; // Check if we're dealing with a secondary dex file and if we need to compile it. std::string oat_dir_str; std::vector context_dex_paths; if (is_secondary_dex) { if (!get_class_loader_context_dex_paths(class_loader_context, uid, &context_dex_paths)) { *error_msg = "Failed acquiring context dex paths"; return -1; // We had an error, logged in the process method. } if (process_secondary_dex_dexopt(dex_path, pkgname, dexopt_flags, volume_uuid, uid, instruction_set, compiler_filter, &is_public, &dexopt_needed, &oat_dir_str, downgrade, class_loader_context, context_dex_paths, error_msg)) { oat_dir = oat_dir_str.c_str(); if (dexopt_needed == NO_DEXOPT_NEEDED) { return 0; // Nothing to do, report success. } } else { if (error_msg->empty()) { // TODO: Make this a CHECK. *error_msg = "Failed processing secondary."; } return -1; // We had an error, logged in the process method. } } else { // Currently these flags are only used for secondary dex files. // Verify that they are not set for primary apks. CHECK((dexopt_flags & DEXOPT_STORAGE_CE) == 0); CHECK((dexopt_flags & DEXOPT_STORAGE_DE) == 0); } // Open the input file. unique_fd input_fd(open(dex_path, O_RDONLY, 0)); if (input_fd.get() < 0) { *error_msg = StringPrintf("installd cannot open '%s' for input during dexopt", dex_path); LOG(ERROR) << *error_msg; return -1; } // Open class loader context dex files. std::vector context_input_fds; if (open_dex_paths(context_dex_paths, &context_input_fds, error_msg) != 0) { LOG(ERROR) << *error_msg; return -1; } // Create the output OAT file. char out_oat_path[PKG_PATH_MAX]; Dex2oatFileWrapper out_oat_fd = open_oat_out_file(dex_path, oat_dir, is_public, uid, instruction_set, is_secondary_dex, out_oat_path); if (out_oat_fd.get() < 0) { *error_msg = "Could not open out oat file."; return -1; } // Open vdex files. Dex2oatFileWrapper in_vdex_fd; Dex2oatFileWrapper out_vdex_fd; if (!open_vdex_files_for_dex2oat(dex_path, out_oat_path, dexopt_needed, instruction_set, is_public, uid, is_secondary_dex, profile_guided, &in_vdex_fd, &out_vdex_fd)) { *error_msg = "Could not open vdex files."; return -1; } // Ensure that the oat dir and the compiler artifacts of secondary dex files have the correct // selinux context (we generate them on the fly during the dexopt invocation and they don't // fully inherit their parent context). // Note that for primary apk the oat files are created before, in a separate installd // call which also does the restorecon. TODO(calin): unify the paths. if (is_secondary_dex) { if (selinux_android_restorecon_pkgdir(oat_dir, se_info, uid, SELINUX_ANDROID_RESTORECON_RECURSE)) { *error_msg = std::string("Failed to restorecon ").append(oat_dir); LOG(ERROR) << *error_msg; return -1; } } // Create a swap file if necessary. unique_fd swap_fd = maybe_open_dexopt_swap_file(out_oat_path); // Create the app image file if needed. Dex2oatFileWrapper image_fd = maybe_open_app_image( out_oat_path, generate_app_image, is_public, uid, is_secondary_dex); // Open the reference profile if needed. Dex2oatFileWrapper reference_profile_fd = maybe_open_reference_profile( pkgname, dex_path, profile_name, profile_guided, is_public, uid, is_secondary_dex); unique_fd dex_metadata_fd; if (dex_metadata_path != nullptr) { dex_metadata_fd.reset(TEMP_FAILURE_RETRY(open(dex_metadata_path, O_RDONLY | O_NOFOLLOW))); if (dex_metadata_fd.get() < 0) { PLOG(ERROR) << "Failed to open dex metadata file " << dex_metadata_path; } } LOG(VERBOSE) << "DexInv: --- BEGIN '" << dex_path << "' ---"; RunDex2Oat runner(input_fd.get(), out_oat_fd.get(), in_vdex_fd.get(), out_vdex_fd.get(), image_fd.get(), dex_path, out_oat_path, swap_fd.get(), instruction_set, compiler_filter, debuggable, boot_complete, background_job_compile, reference_profile_fd.get(), class_loader_context, join_fds(context_input_fds), target_sdk_version, enable_hidden_api_checks, generate_compact_dex, dex_metadata_fd.get(), compilation_reason); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); SetDex2OatScheduling(boot_complete); if (flock(out_oat_fd.get(), LOCK_EX | LOCK_NB) != 0) { PLOG(ERROR) << "flock(" << out_oat_path << ") failed"; _exit(DexoptReturnCodes::kFlock); } runner.Exec(DexoptReturnCodes::kDex2oatExec); } else { int res = wait_child(pid); if (res == 0) { LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' (success) ---"; } else { LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- status=0x" << std::hex << std::setw(4) << res << ", process failed"; *error_msg = format_dexopt_error(res, dex_path); return res; } } update_out_oat_access_times(dex_path, out_oat_path); // We've been successful, don't delete output. out_oat_fd.SetCleanup(false); out_vdex_fd.SetCleanup(false); image_fd.SetCleanup(false); reference_profile_fd.SetCleanup(false); return 0; } // Try to remove the given directory. Log an error if the directory exists // and is empty but could not be removed. static bool rmdir_if_empty(const char* dir) { if (rmdir(dir) == 0) { return true; } if (errno == ENOENT || errno == ENOTEMPTY) { return true; } PLOG(ERROR) << "Failed to remove dir: " << dir; return false; } // Try to unlink the given file. Log an error if the file exists and could not // be unlinked. static bool unlink_if_exists(const std::string& file) { if (unlink(file.c_str()) == 0) { return true; } if (errno == ENOENT) { return true; } PLOG(ERROR) << "Could not unlink: " << file; return false; } enum ReconcileSecondaryDexResult { kReconcileSecondaryDexExists = 0, kReconcileSecondaryDexCleanedUp = 1, kReconcileSecondaryDexValidationError = 2, kReconcileSecondaryDexCleanUpError = 3, kReconcileSecondaryDexAccessIOError = 4, }; // Reconcile the secondary dex 'dex_path' and its generated oat files. // Return true if all the parameters are valid and the secondary dex file was // processed successfully (i.e. the dex_path either exists, or if not, its corresponding // oat/vdex/art files where deleted successfully). In this case, out_secondary_dex_exists // will be true if the secondary dex file still exists. If the secondary dex file does not exist, // the method cleans up any previously generated compiler artifacts (oat, vdex, art). // Return false if there were errors during processing. In this case // out_secondary_dex_exists will be set to false. bool reconcile_secondary_dex_file(const std::string& dex_path, const std::string& pkgname, int uid, const std::vector& isas, const std::unique_ptr& volume_uuid, int storage_flag, /*out*/bool* out_secondary_dex_exists) { *out_secondary_dex_exists = false; // start by assuming the file does not exist. if (isas.size() == 0) { LOG(ERROR) << "reconcile_secondary_dex_file called with empty isas vector"; return false; } if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { LOG(ERROR) << "reconcile_secondary_dex_file called with invalid storage_flag: " << storage_flag; return false; } // As a security measure we want to unlink art artifacts with the reduced capabilities // of the package user id. So we fork and drop capabilities in the child. pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); const char* volume_uuid_cstr = volume_uuid == nullptr ? nullptr : volume_uuid->c_str(); if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, uid, storage_flag)) { LOG(ERROR) << "Could not validate secondary dex path " << dex_path; _exit(kReconcileSecondaryDexValidationError); } SecondaryDexAccess access_check = check_secondary_dex_access(dex_path); switch (access_check) { case kSecondaryDexAccessDoesNotExist: // File does not exist. Proceed with cleaning. break; case kSecondaryDexAccessReadOk: _exit(kReconcileSecondaryDexExists); case kSecondaryDexAccessIOError: _exit(kReconcileSecondaryDexAccessIOError); case kSecondaryDexAccessPermissionError: _exit(kReconcileSecondaryDexValidationError); default: LOG(ERROR) << "Unexpected result from check_secondary_dex_access: " << access_check; _exit(kReconcileSecondaryDexValidationError); } // The secondary dex does not exist anymore or it's. Clear any generated files. char oat_path[PKG_PATH_MAX]; char oat_dir[PKG_PATH_MAX]; char oat_isa_dir[PKG_PATH_MAX]; bool result = true; for (size_t i = 0; i < isas.size(); i++) { std::string error_msg; if (!create_secondary_dex_oat_layout( dex_path,isas[i], oat_dir, oat_isa_dir, oat_path, &error_msg)) { LOG(ERROR) << error_msg; _exit(kReconcileSecondaryDexValidationError); } // Delete oat/vdex/art files. result = unlink_if_exists(oat_path) && result; result = unlink_if_exists(create_vdex_filename(oat_path)) && result; result = unlink_if_exists(create_image_filename(oat_path)) && result; // Delete profiles. std::string current_profile = create_current_profile_path( multiuser_get_user_id(uid), pkgname, dex_path, /*is_secondary*/true); std::string reference_profile = create_reference_profile_path( pkgname, dex_path, /*is_secondary*/true); result = unlink_if_exists(current_profile) && result; result = unlink_if_exists(reference_profile) && result; // We upgraded once the location of current profile for secondary dex files. // Check for any previous left-overs and remove them as well. std::string old_current_profile = dex_path + ".prof"; result = unlink_if_exists(old_current_profile); // Try removing the directories as well, they might be empty. result = rmdir_if_empty(oat_isa_dir) && result; result = rmdir_if_empty(oat_dir) && result; } if (!result) { PLOG(ERROR) << "Failed to clean secondary dex artifacts for location " << dex_path; } _exit(result ? kReconcileSecondaryDexCleanedUp : kReconcileSecondaryDexAccessIOError); } int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { LOG(WARNING) << "reconcile dex failed for location " << dex_path << ": " << return_code; } else { return_code = WEXITSTATUS(return_code); } LOG(DEBUG) << "Reconcile secondary dex path " << dex_path << " result=" << return_code; switch (return_code) { case kReconcileSecondaryDexCleanedUp: case kReconcileSecondaryDexValidationError: // If we couldn't validate assume the dex file does not exist. // This will purge the entry from the PM records. *out_secondary_dex_exists = false; return true; case kReconcileSecondaryDexExists: *out_secondary_dex_exists = true; return true; case kReconcileSecondaryDexAccessIOError: // We had an access IO error. // Return false so that we can try again. // The value of out_secondary_dex_exists does not matter in this case and by convention // is set to false. *out_secondary_dex_exists = false; return false; default: LOG(ERROR) << "Unexpected code from reconcile_secondary_dex_file: " << return_code; *out_secondary_dex_exists = false; return false; } } // Compute and return the hash (SHA-256) of the secondary dex file at dex_path. // Returns true if all parameters are valid and the hash successfully computed and stored in // out_secondary_dex_hash. // Also returns true with an empty hash if the file does not currently exist or is not accessible to // the app. // For any other errors (e.g. if any of the parameters are invalid) returns false. bool hash_secondary_dex_file(const std::string& dex_path, const std::string& pkgname, int uid, const std::unique_ptr& volume_uuid, int storage_flag, std::vector* out_secondary_dex_hash) { out_secondary_dex_hash->clear(); const char* volume_uuid_cstr = volume_uuid == nullptr ? nullptr : volume_uuid->c_str(); if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { LOG(ERROR) << "hash_secondary_dex_file called with invalid storage_flag: " << storage_flag; return false; } // Pipe to get the hash result back from our child process. unique_fd pipe_read, pipe_write; if (!Pipe(&pipe_read, &pipe_write)) { PLOG(ERROR) << "Failed to create pipe"; return false; } // Fork so that actual access to the files is done in the app's own UID, to ensure we only // access data the app itself can access. pid_t pid = fork(); if (pid == 0) { // child -- drop privileges before continuing drop_capabilities(uid); pipe_read.reset(); if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, uid, storage_flag)) { LOG(ERROR) << "Could not validate secondary dex path " << dex_path; _exit(DexoptReturnCodes::kHashValidatePath); } unique_fd fd(TEMP_FAILURE_RETRY(open(dex_path.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW))); if (fd == -1) { if (errno == EACCES || errno == ENOENT) { // Not treated as an error. _exit(0); } PLOG(ERROR) << "Failed to open secondary dex " << dex_path; _exit(DexoptReturnCodes::kHashOpenPath); } SHA256_CTX ctx; SHA256_Init(&ctx); std::vector buffer(65536); while (true) { ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer.data(), buffer.size())); if (bytes_read == 0) { break; } else if (bytes_read == -1) { PLOG(ERROR) << "Failed to read secondary dex " << dex_path; _exit(DexoptReturnCodes::kHashReadDex); } SHA256_Update(&ctx, buffer.data(), bytes_read); } std::array hash; SHA256_Final(hash.data(), &ctx); if (!WriteFully(pipe_write, hash.data(), hash.size())) { _exit(DexoptReturnCodes::kHashWrite); } _exit(0); } // parent pipe_write.reset(); out_secondary_dex_hash->resize(SHA256_DIGEST_LENGTH); if (!ReadFully(pipe_read, out_secondary_dex_hash->data(), out_secondary_dex_hash->size())) { out_secondary_dex_hash->clear(); } return wait_child(pid) == 0; } // Helper for move_ab, so that we can have common failure-case cleanup. static bool unlink_and_rename(const char* from, const char* to) { // Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise, // return a failure. struct stat s; if (stat(to, &s) == 0) { if (!S_ISREG(s.st_mode)) { LOG(ERROR) << from << " is not a regular file to replace for A/B."; return false; } if (unlink(to) != 0) { LOG(ERROR) << "Could not unlink " << to << " to move A/B."; return false; } } else { // This may be a permission problem. We could investigate the error code, but we'll just // let the rename failure do the work for us. } // Try to rename "to" to "from." if (rename(from, to) != 0) { PLOG(ERROR) << "Could not rename " << from << " to " << to; return false; } return true; } // Move/rename a B artifact (from) to an A artifact (to). static bool move_ab_path(const std::string& b_path, const std::string& a_path) { // Check whether B exists. { struct stat s; if (stat(b_path.c_str(), &s) != 0) { // Silently ignore for now. The service calling this isn't smart enough to understand // lack of artifacts at the moment. return false; } if (!S_ISREG(s.st_mode)) { LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file."; // Try to unlink, but swallow errors. unlink(b_path.c_str()); return false; } } // Rename B to A. if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) { // Delete the b_path so we don't try again (or fail earlier). if (unlink(b_path.c_str()) != 0) { PLOG(ERROR) << "Could not unlink " << b_path; } return false; } return true; } bool move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) { // Get the current slot suffix. No suffix, no A/B. const std::string slot_suffix = GetProperty("ro.boot.slot_suffix", ""); if (slot_suffix.empty()) { return false; } if (!ValidateTargetSlotSuffix(slot_suffix)) { LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix; return false; } // Validate other inputs. if (validate_apk_path(apk_path) != 0) { LOG(ERROR) << "Invalid apk_path: " << apk_path; return false; } if (validate_apk_path(oat_dir) != 0) { LOG(ERROR) << "Invalid oat_dir: " << oat_dir; return false; } char a_path[PKG_PATH_MAX]; if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) { return false; } const std::string a_vdex_path = create_vdex_filename(a_path); const std::string a_image_path = create_image_filename(a_path); // B path = A path + slot suffix. const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str()); const std::string b_vdex_path = StringPrintf("%s.%s", a_vdex_path.c_str(), slot_suffix.c_str()); const std::string b_image_path = StringPrintf("%s.%s", a_image_path.c_str(), slot_suffix.c_str()); bool success = true; if (move_ab_path(b_path, a_path)) { if (move_ab_path(b_vdex_path, a_vdex_path)) { // Note: we can live without an app image. As such, ignore failure to move the image file. // If we decide to require the app image, or the app image being moved correctly, // then change accordingly. constexpr bool kIgnoreAppImageFailure = true; if (!a_image_path.empty()) { if (!move_ab_path(b_image_path, a_image_path)) { unlink(a_image_path.c_str()); if (!kIgnoreAppImageFailure) { success = false; } } } } else { // Cleanup: delete B image, ignore errors. unlink(b_image_path.c_str()); success = false; } } else { // Cleanup: delete B image, ignore errors. unlink(b_vdex_path.c_str()); unlink(b_image_path.c_str()); success = false; } return success; } bool delete_odex(const char* apk_path, const char* instruction_set, const char* oat_dir) { // Delete the oat/odex file. char out_path[PKG_PATH_MAX]; if (!create_oat_out_path(apk_path, instruction_set, oat_dir, /*is_secondary_dex*/false, out_path)) { return false; } // In case of a permission failure report the issue. Otherwise just print a warning. auto unlink_and_check = [](const char* path) -> bool { int result = unlink(path); if (result != 0) { if (errno == EACCES || errno == EPERM) { PLOG(ERROR) << "Could not unlink " << path; return false; } PLOG(WARNING) << "Could not unlink " << path; } return true; }; // Delete the oat/odex file. bool return_value_oat = unlink_and_check(out_path); // Derive and delete the app image. bool return_value_art = unlink_and_check(create_image_filename(out_path).c_str()); // Derive and delete the vdex file. bool return_value_vdex = unlink_and_check(create_vdex_filename(out_path).c_str()); // Report success. return return_value_oat && return_value_art && return_value_vdex; } static bool is_absolute_path(const std::string& path) { if (path.find('/') != 0 || path.find("..") != std::string::npos) { LOG(ERROR) << "Invalid absolute path " << path; return false; } else { return true; } } static bool is_valid_instruction_set(const std::string& instruction_set) { // TODO: add explicit whitelisting of instruction sets if (instruction_set.find('/') != std::string::npos) { LOG(ERROR) << "Invalid instruction set " << instruction_set; return false; } else { return true; } } bool calculate_oat_file_path_default(char path[PKG_PATH_MAX], const char *oat_dir, const char *apk_path, const char *instruction_set) { std::string oat_dir_ = oat_dir; std::string apk_path_ = apk_path; std::string instruction_set_ = instruction_set; if (!is_absolute_path(oat_dir_)) return false; if (!is_absolute_path(apk_path_)) return false; if (!is_valid_instruction_set(instruction_set_)) return false; std::string::size_type end = apk_path_.rfind('.'); std::string::size_type start = apk_path_.rfind('/', end); if (end == std::string::npos || start == std::string::npos) { LOG(ERROR) << "Invalid apk_path " << apk_path_; return false; } std::string res_ = oat_dir_ + '/' + instruction_set + '/' + apk_path_.substr(start + 1, end - start - 1) + ".odex"; const char* res = res_.c_str(); if (strlen(res) >= PKG_PATH_MAX) { LOG(ERROR) << "Result too large"; return false; } else { strlcpy(path, res, PKG_PATH_MAX); return true; } } bool calculate_odex_file_path_default(char path[PKG_PATH_MAX], const char *apk_path, const char *instruction_set) { std::string apk_path_ = apk_path; std::string instruction_set_ = instruction_set; if (!is_absolute_path(apk_path_)) return false; if (!is_valid_instruction_set(instruction_set_)) return false; std::string::size_type end = apk_path_.rfind('.'); std::string::size_type start = apk_path_.rfind('/', end); if (end == std::string::npos || start == std::string::npos) { LOG(ERROR) << "Invalid apk_path " << apk_path_; return false; } std::string oat_dir = apk_path_.substr(0, start + 1) + "oat"; return calculate_oat_file_path_default(path, oat_dir.c_str(), apk_path, instruction_set); } bool create_cache_path_default(char path[PKG_PATH_MAX], const char *src, const char *instruction_set) { std::string src_ = src; std::string instruction_set_ = instruction_set; if (!is_absolute_path(src_)) return false; if (!is_valid_instruction_set(instruction_set_)) return false; for (auto it = src_.begin() + 1; it < src_.end(); ++it) { if (*it == '/') { *it = '@'; } } std::string res_ = android_data_dir + DALVIK_CACHE + '/' + instruction_set_ + src_ + DALVIK_CACHE_POSTFIX; const char* res = res_.c_str(); if (strlen(res) >= PKG_PATH_MAX) { LOG(ERROR) << "Result too large"; return false; } else { strlcpy(path, res, PKG_PATH_MAX); return true; } } bool open_classpath_files(const std::string& classpath, std::vector* apk_fds, std::vector* dex_locations) { std::vector classpaths_elems = base::Split(classpath, ":"); for (const std::string& elem : classpaths_elems) { unique_fd fd(TEMP_FAILURE_RETRY(open(elem.c_str(), O_RDONLY))); if (fd < 0) { PLOG(ERROR) << "Could not open classpath elem " << elem; return false; } else { apk_fds->push_back(std::move(fd)); dex_locations->push_back(elem); } } return true; } static bool create_app_profile_snapshot(int32_t app_id, const std::string& package_name, const std::string& profile_name, const std::string& classpath) { int app_shared_gid = multiuser_get_shared_gid(/*user_id*/ 0, app_id); unique_fd snapshot_fd = open_spnashot_profile(AID_SYSTEM, package_name, profile_name); if (snapshot_fd < 0) { return false; } std::vector profiles_fd; unique_fd reference_profile_fd; open_profile_files(app_shared_gid, package_name, profile_name, /*is_secondary_dex*/ false, &profiles_fd, &reference_profile_fd); if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { return false; } profiles_fd.push_back(std::move(reference_profile_fd)); // Open the class paths elements. These will be used to filter out profile data that does // not belong to the classpath during merge. std::vector apk_fds; std::vector dex_locations; if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { return false; } RunProfman args; args.SetupMerge(profiles_fd, snapshot_fd, apk_fds, dex_locations); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(app_shared_gid); args.Exec(); } /* parent */ int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { LOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; return false; } return true; } static bool create_boot_image_profile_snapshot(const std::string& package_name, const std::string& profile_name, const std::string& classpath) { // The reference profile directory for the android package might not be prepared. Do it now. const std::string ref_profile_dir = create_primary_reference_profile_package_dir_path(package_name); if (fs_prepare_dir(ref_profile_dir.c_str(), 0770, AID_SYSTEM, AID_SYSTEM) != 0) { PLOG(ERROR) << "Failed to prepare " << ref_profile_dir; return false; } // Return false for empty class path since it may otherwise return true below if profiles is // empty. if (classpath.empty()) { PLOG(ERROR) << "Class path is empty"; return false; } // Open and create the snapshot profile. unique_fd snapshot_fd = open_spnashot_profile(AID_SYSTEM, package_name, profile_name); // Collect all non empty profiles. // The collection will traverse all applications profiles and find the non empty files. // This has the potential of inspecting a large number of files and directories (depending // on the number of applications and users). So there is a slight increase in the chance // to get get occasionally I/O errors (e.g. for opening the file). When that happens do not // fail the snapshot and aggregate whatever profile we could open. // // The profile snapshot is a best effort based on available data it's ok if some data // from some apps is missing. It will be counter productive for the snapshot to fail // because we could not open or read some of the files. std::vector profiles; if (!collect_profiles(&profiles)) { LOG(WARNING) << "There were errors while collecting the profiles for the boot image."; } // If we have no profiles return early. if (profiles.empty()) { return true; } // Open the classpath elements. These will be used to filter out profile data that does // not belong to the classpath during merge. std::vector apk_fds; std::vector dex_locations; if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { return false; } // If we could not open any files from the classpath return an error. if (apk_fds.empty()) { LOG(ERROR) << "Could not open any of the classpath elements."; return false; } // Aggregate the profiles in batches of kAggregationBatchSize. // We do this to avoid opening a huge a amount of files. static constexpr size_t kAggregationBatchSize = 10; std::vector profiles_fd; for (size_t i = 0; i < profiles.size(); ) { for (size_t k = 0; k < kAggregationBatchSize && i < profiles.size(); k++, i++) { unique_fd fd = open_profile(AID_SYSTEM, profiles[i], O_RDONLY); if (fd.get() >= 0) { profiles_fd.push_back(std::move(fd)); } } RunProfman args; args.SetupMerge(profiles_fd, snapshot_fd, apk_fds, dex_locations, /*store_aggregation_counters=*/true); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(AID_SYSTEM); // The introduction of new access flags into boot jars causes them to // fail dex file verification. args.Exec(); } /* parent */ int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; return false; } return true; } return true; } bool create_profile_snapshot(int32_t app_id, const std::string& package_name, const std::string& profile_name, const std::string& classpath) { if (app_id == -1) { return create_boot_image_profile_snapshot(package_name, profile_name, classpath); } else { return create_app_profile_snapshot(app_id, package_name, profile_name, classpath); } } bool prepare_app_profile(const std::string& package_name, userid_t user_id, appid_t app_id, const std::string& profile_name, const std::string& code_path, const std::unique_ptr& dex_metadata) { // Prepare the current profile. std::string cur_profile = create_current_profile_path(user_id, package_name, profile_name, /*is_secondary_dex*/ false); uid_t uid = multiuser_get_uid(user_id, app_id); if (fs_prepare_file_strict(cur_profile.c_str(), 0600, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << cur_profile; return false; } // Check if we need to install the profile from the dex metadata. if (dex_metadata == nullptr) { return true; } // We have a dex metdata. Merge the profile into the reference profile. unique_fd ref_profile_fd = open_reference_profile(uid, package_name, profile_name, /*read_write*/ true, /*is_secondary_dex*/ false); unique_fd dex_metadata_fd(TEMP_FAILURE_RETRY( open(dex_metadata->c_str(), O_RDONLY | O_NOFOLLOW))); unique_fd apk_fd(TEMP_FAILURE_RETRY(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW))); if (apk_fd < 0) { PLOG(ERROR) << "Could not open code path " << code_path; return false; } RunProfman args; args.SetupCopyAndUpdate(std::move(dex_metadata_fd), std::move(ref_profile_fd), std::move(apk_fd), code_path); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ gid_t app_shared_gid = multiuser_get_shared_gid(user_id, app_id); drop_capabilities(app_shared_gid); // The copy and update takes ownership over the fds. args.Exec(); } /* parent */ int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; return false; } return true; } } // namespace installd } // namespace android