/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @addtogroup Sensor * @{ */ /** * @file sensor.h */ #ifndef ANDROID_SENSOR_H #define ANDROID_SENSOR_H /****************************************************************** * * IMPORTANT NOTICE: * * This file is part of Android's set of stable system headers * exposed by the Android NDK (Native Development Kit). * * Third-party source AND binary code relies on the definitions * here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES. * * - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES) * - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS * - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY * - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES */ /** * Structures and functions to receive and process sensor events in * native code. * */ #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef struct AHardwareBuffer AHardwareBuffer; #define ASENSOR_RESOLUTION_INVALID (nanf("")) #define ASENSOR_FIFO_COUNT_INVALID (-1) #define ASENSOR_DELAY_INVALID INT32_MIN #define ASENSOR_INVALID (-1) /* (Keep in sync with hardware/sensors-base.h and Sensor.java.) */ /** * Sensor types. * * See * [android.hardware.SensorEvent#values](https://developer.android.com/reference/android/hardware/SensorEvent.html#values) * for detailed explanations of the data returned for each of these types. */ enum { /** * Invalid sensor type. Returned by {@link ASensor_getType} as error value. */ ASENSOR_TYPE_INVALID = -1, /** * {@link ASENSOR_TYPE_ACCELEROMETER} * reporting-mode: continuous * * All values are in SI units (m/s^2) and measure the acceleration of the * device minus the force of gravity. */ ASENSOR_TYPE_ACCELEROMETER = 1, /** * {@link ASENSOR_TYPE_MAGNETIC_FIELD} * reporting-mode: continuous * * All values are in micro-Tesla (uT) and measure the geomagnetic * field in the X, Y and Z axis. */ ASENSOR_TYPE_MAGNETIC_FIELD = 2, /** * {@link ASENSOR_TYPE_GYROSCOPE} * reporting-mode: continuous * * All values are in radians/second and measure the rate of rotation * around the X, Y and Z axis. */ ASENSOR_TYPE_GYROSCOPE = 4, /** * {@link ASENSOR_TYPE_LIGHT} * reporting-mode: on-change * * The light sensor value is returned in SI lux units. */ ASENSOR_TYPE_LIGHT = 5, /** * {@link ASENSOR_TYPE_PRESSURE} * * The pressure sensor value is returned in hPa (millibar). */ ASENSOR_TYPE_PRESSURE = 6, /** * {@link ASENSOR_TYPE_PROXIMITY} * reporting-mode: on-change * * The proximity sensor which turns the screen off and back on during calls is the * wake-up proximity sensor. Implement wake-up proximity sensor before implementing * a non wake-up proximity sensor. For the wake-up proximity sensor set the flag * SENSOR_FLAG_WAKE_UP. * The value corresponds to the distance to the nearest object in centimeters. */ ASENSOR_TYPE_PROXIMITY = 8, /** * {@link ASENSOR_TYPE_GRAVITY} * * All values are in SI units (m/s^2) and measure the direction and * magnitude of gravity. When the device is at rest, the output of * the gravity sensor should be identical to that of the accelerometer. */ ASENSOR_TYPE_GRAVITY = 9, /** * {@link ASENSOR_TYPE_LINEAR_ACCELERATION} * reporting-mode: continuous * * All values are in SI units (m/s^2) and measure the acceleration of the * device not including the force of gravity. */ ASENSOR_TYPE_LINEAR_ACCELERATION = 10, /** * {@link ASENSOR_TYPE_ROTATION_VECTOR} */ ASENSOR_TYPE_ROTATION_VECTOR = 11, /** * {@link ASENSOR_TYPE_RELATIVE_HUMIDITY} * * The relative humidity sensor value is returned in percent. */ ASENSOR_TYPE_RELATIVE_HUMIDITY = 12, /** * {@link ASENSOR_TYPE_AMBIENT_TEMPERATURE} * * The ambient temperature sensor value is returned in Celcius. */ ASENSOR_TYPE_AMBIENT_TEMPERATURE = 13, /** * {@link ASENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED} */ ASENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED = 14, /** * {@link ASENSOR_TYPE_GAME_ROTATION_VECTOR} */ ASENSOR_TYPE_GAME_ROTATION_VECTOR = 15, /** * {@link ASENSOR_TYPE_GYROSCOPE_UNCALIBRATED} */ ASENSOR_TYPE_GYROSCOPE_UNCALIBRATED = 16, /** * {@link ASENSOR_TYPE_SIGNIFICANT_MOTION} */ ASENSOR_TYPE_SIGNIFICANT_MOTION = 17, /** * {@link ASENSOR_TYPE_STEP_DETECTOR} */ ASENSOR_TYPE_STEP_DETECTOR = 18, /** * {@link ASENSOR_TYPE_STEP_COUNTER} */ ASENSOR_TYPE_STEP_COUNTER = 19, /** * {@link ASENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR} */ ASENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR = 20, /** * {@link ASENSOR_TYPE_HEART_RATE} */ ASENSOR_TYPE_HEART_RATE = 21, /** * {@link ASENSOR_TYPE_POSE_6DOF} */ ASENSOR_TYPE_POSE_6DOF = 28, /** * {@link ASENSOR_TYPE_STATIONARY_DETECT} */ ASENSOR_TYPE_STATIONARY_DETECT = 29, /** * {@link ASENSOR_TYPE_MOTION_DETECT} */ ASENSOR_TYPE_MOTION_DETECT = 30, /** * {@link ASENSOR_TYPE_HEART_BEAT} */ ASENSOR_TYPE_HEART_BEAT = 31, /** * This sensor type is for delivering additional sensor information aside * from sensor event data. * * Additional information may include: * - {@link ASENSOR_ADDITIONAL_INFO_INTERNAL_TEMPERATURE} * - {@link ASENSOR_ADDITIONAL_INFO_SAMPLING} * - {@link ASENSOR_ADDITIONAL_INFO_SENSOR_PLACEMENT} * - {@link ASENSOR_ADDITIONAL_INFO_UNTRACKED_DELAY} * - {@link ASENSOR_ADDITIONAL_INFO_VEC3_CALIBRATION} * * This type will never bind to a sensor. In other words, no sensor in the * sensor list can have the type {@link ASENSOR_TYPE_ADDITIONAL_INFO}. * * If a device supports the sensor additional information feature, it will * report additional information events via {@link ASensorEvent} and will * have {@link ASensorEvent#type} set to * {@link ASENSOR_TYPE_ADDITIONAL_INFO} and {@link ASensorEvent#sensor} set * to the handle of the reporting sensor. * * Additional information reports consist of multiple frames ordered by * {@link ASensorEvent#timestamp}. The first frame in the report will have * a {@link AAdditionalInfoEvent#type} of * {@link ASENSOR_ADDITIONAL_INFO_BEGIN}, and the last frame in the report * will have a {@link AAdditionalInfoEvent#type} of * {@link ASENSOR_ADDITIONAL_INFO_END}. * */ ASENSOR_TYPE_ADDITIONAL_INFO = 33, /** * {@link ASENSOR_TYPE_LOW_LATENCY_OFFBODY_DETECT} */ ASENSOR_TYPE_LOW_LATENCY_OFFBODY_DETECT = 34, /** * {@link ASENSOR_TYPE_ACCELEROMETER_UNCALIBRATED} */ ASENSOR_TYPE_ACCELEROMETER_UNCALIBRATED = 35, }; /** * Sensor accuracy measure. */ enum { /** no contact */ ASENSOR_STATUS_NO_CONTACT = -1, /** unreliable */ ASENSOR_STATUS_UNRELIABLE = 0, /** low accuracy */ ASENSOR_STATUS_ACCURACY_LOW = 1, /** medium accuracy */ ASENSOR_STATUS_ACCURACY_MEDIUM = 2, /** high accuracy */ ASENSOR_STATUS_ACCURACY_HIGH = 3 }; /** * Sensor Reporting Modes. */ enum { /** invalid reporting mode */ AREPORTING_MODE_INVALID = -1, /** continuous reporting */ AREPORTING_MODE_CONTINUOUS = 0, /** reporting on change */ AREPORTING_MODE_ON_CHANGE = 1, /** on shot reporting */ AREPORTING_MODE_ONE_SHOT = 2, /** special trigger reporting */ AREPORTING_MODE_SPECIAL_TRIGGER = 3 }; /** * Sensor Direct Report Rates. */ enum { /** stopped */ ASENSOR_DIRECT_RATE_STOP = 0, /** nominal 50Hz */ ASENSOR_DIRECT_RATE_NORMAL = 1, /** nominal 200Hz */ ASENSOR_DIRECT_RATE_FAST = 2, /** nominal 800Hz */ ASENSOR_DIRECT_RATE_VERY_FAST = 3 }; /** * Sensor Direct Channel Type. */ enum { /** shared memory created by ASharedMemory_create */ ASENSOR_DIRECT_CHANNEL_TYPE_SHARED_MEMORY = 1, /** AHardwareBuffer */ ASENSOR_DIRECT_CHANNEL_TYPE_HARDWARE_BUFFER = 2 }; /** * Sensor Additional Info Types. * * Used to populate {@link AAdditionalInfoEvent#type}. */ enum { /** Marks the beginning of additional information frames */ ASENSOR_ADDITIONAL_INFO_BEGIN = 0, /** Marks the end of additional information frames */ ASENSOR_ADDITIONAL_INFO_END = 1, /** * Estimation of the delay that is not tracked by sensor timestamps. This * includes delay introduced by sensor front-end filtering, data transport, * etc. * float[2]: delay in seconds, standard deviation of estimated value */ ASENSOR_ADDITIONAL_INFO_UNTRACKED_DELAY = 0x10000, /** float: Celsius temperature */ ASENSOR_ADDITIONAL_INFO_INTERNAL_TEMPERATURE, /** * First three rows of a homogeneous matrix, which represents calibration to * a three-element vector raw sensor reading. * float[12]: 3x4 matrix in row major order */ ASENSOR_ADDITIONAL_INFO_VEC3_CALIBRATION, /** * Location and orientation of sensor element in the device frame: origin is * the geometric center of the mobile device screen surface; the axis * definition corresponds to Android sensor definitions. * float[12]: 3x4 matrix in row major order */ ASENSOR_ADDITIONAL_INFO_SENSOR_PLACEMENT, /** * float[2]: raw sample period in seconds, * standard deviation of sampling period */ ASENSOR_ADDITIONAL_INFO_SAMPLING, }; /* * A few useful constants */ /** Earth's gravity in m/s^2 */ #define ASENSOR_STANDARD_GRAVITY (9.80665f) /** Maximum magnetic field on Earth's surface in uT */ #define ASENSOR_MAGNETIC_FIELD_EARTH_MAX (60.0f) /** Minimum magnetic field on Earth's surface in uT*/ #define ASENSOR_MAGNETIC_FIELD_EARTH_MIN (30.0f) /** * A sensor event. */ /* NOTE: changes to these structs have to be backward compatible */ typedef struct ASensorVector { union { float v[3]; struct { float x; float y; float z; }; struct { float azimuth; float pitch; float roll; }; }; int8_t status; uint8_t reserved[3]; } ASensorVector; typedef struct AMetaDataEvent { int32_t what; int32_t sensor; } AMetaDataEvent; typedef struct AUncalibratedEvent { union { float uncalib[3]; struct { float x_uncalib; float y_uncalib; float z_uncalib; }; }; union { float bias[3]; struct { float x_bias; float y_bias; float z_bias; }; }; } AUncalibratedEvent; typedef struct AHeartRateEvent { float bpm; int8_t status; } AHeartRateEvent; typedef struct ADynamicSensorEvent { int32_t connected; int32_t handle; } ADynamicSensorEvent; typedef struct AAdditionalInfoEvent { int32_t type; int32_t serial; union { int32_t data_int32[14]; float data_float[14]; }; } AAdditionalInfoEvent; /* NOTE: changes to this struct has to be backward compatible */ typedef struct ASensorEvent { int32_t version; /* sizeof(struct ASensorEvent) */ int32_t sensor; int32_t type; int32_t reserved0; int64_t timestamp; union { union { float data[16]; ASensorVector vector; ASensorVector acceleration; ASensorVector magnetic; float temperature; float distance; float light; float pressure; float relative_humidity; AUncalibratedEvent uncalibrated_gyro; AUncalibratedEvent uncalibrated_magnetic; AMetaDataEvent meta_data; AHeartRateEvent heart_rate; ADynamicSensorEvent dynamic_sensor_meta; AAdditionalInfoEvent additional_info; }; union { uint64_t data[8]; uint64_t step_counter; } u64; }; uint32_t flags; int32_t reserved1[3]; } ASensorEvent; struct ASensorManager; /** * {@link ASensorManager} is an opaque type to manage sensors and * events queues. * * {@link ASensorManager} is a singleton that can be obtained using * ASensorManager_getInstance(). * * This file provides a set of functions that uses {@link * ASensorManager} to access and list hardware sensors, and * create and destroy event queues: * - ASensorManager_getSensorList() * - ASensorManager_getDefaultSensor() * - ASensorManager_getDefaultSensorEx() * - ASensorManager_createEventQueue() * - ASensorManager_destroyEventQueue() */ typedef struct ASensorManager ASensorManager; struct ASensorEventQueue; /** * {@link ASensorEventQueue} is an opaque type that provides access to * {@link ASensorEvent} from hardware sensors. * * A new {@link ASensorEventQueue} can be obtained using ASensorManager_createEventQueue(). * * This file provides a set of functions to enable and disable * sensors, check and get events, and set event rates on a {@link * ASensorEventQueue}. * - ASensorEventQueue_enableSensor() * - ASensorEventQueue_disableSensor() * - ASensorEventQueue_hasEvents() * - ASensorEventQueue_getEvents() * - ASensorEventQueue_setEventRate() * - ASensorEventQueue_requestAdditionalInfoEvents() */ typedef struct ASensorEventQueue ASensorEventQueue; struct ASensor; /** * {@link ASensor} is an opaque type that provides information about * an hardware sensors. * * A {@link ASensor} pointer can be obtained using * ASensorManager_getDefaultSensor(), * ASensorManager_getDefaultSensorEx() or from a {@link ASensorList}. * * This file provides a set of functions to access properties of a * {@link ASensor}: * - ASensor_getName() * - ASensor_getVendor() * - ASensor_getType() * - ASensor_getResolution() * - ASensor_getMinDelay() * - ASensor_getFifoMaxEventCount() * - ASensor_getFifoReservedEventCount() * - ASensor_getStringType() * - ASensor_getReportingMode() * - ASensor_isWakeUpSensor() * - ASensor_getHandle() */ typedef struct ASensor ASensor; /** * {@link ASensorRef} is a type for constant pointers to {@link ASensor}. * * This is used to define entry in {@link ASensorList} arrays. */ typedef ASensor const* ASensorRef; /** * {@link ASensorList} is an array of reference to {@link ASensor}. * * A {@link ASensorList} can be initialized using ASensorManager_getSensorList(). */ typedef ASensorRef const* ASensorList; /*****************************************************************************/ /** * Get a reference to the sensor manager. ASensorManager is a singleton * per package as different packages may have access to different sensors. * * Deprecated: Use ASensorManager_getInstanceForPackage(const char*) instead. * * Example: * * ASensorManager* sensorManager = ASensorManager_getInstance(); * */ #if __ANDROID_API__ >= 26 __attribute__ ((deprecated)) ASensorManager* ASensorManager_getInstance(); #else ASensorManager* ASensorManager_getInstance(); #endif #if __ANDROID_API__ >= 26 /** * Get a reference to the sensor manager. ASensorManager is a singleton * per package as different packages may have access to different sensors. * * Example: * * ASensorManager* sensorManager = ASensorManager_getInstanceForPackage("foo.bar.baz"); * */ ASensorManager* ASensorManager_getInstanceForPackage(const char* packageName) __INTRODUCED_IN(26); #endif /** * Returns the list of available sensors. */ int ASensorManager_getSensorList(ASensorManager* manager, ASensorList* list); /** * Returns the default sensor for the given type, or NULL if no sensor * of that type exists. */ ASensor const* ASensorManager_getDefaultSensor(ASensorManager* manager, int type); #if __ANDROID_API__ >= 21 /** * Returns the default sensor with the given type and wakeUp properties or NULL if no sensor * of this type and wakeUp properties exists. */ ASensor const* ASensorManager_getDefaultSensorEx(ASensorManager* manager, int type, bool wakeUp) __INTRODUCED_IN(21); #endif /** * Creates a new sensor event queue and associate it with a looper. * * "ident" is a identifier for the events that will be returned when * calling ALooper_pollOnce(). The identifier must be >= 0, or * ALOOPER_POLL_CALLBACK if providing a non-NULL callback. */ ASensorEventQueue* ASensorManager_createEventQueue(ASensorManager* manager, ALooper* looper, int ident, ALooper_callbackFunc callback, void* data); /** * Destroys the event queue and free all resources associated to it. */ int ASensorManager_destroyEventQueue(ASensorManager* manager, ASensorEventQueue* queue); #if __ANDROID_API__ >= 26 /** * Create direct channel based on shared memory * * Create a direct channel of {@link ASENSOR_DIRECT_CHANNEL_TYPE_SHARED_MEMORY} to be used * for configuring sensor direct report. * * \param manager the {@link ASensorManager} instance obtained from * {@link ASensorManager_getInstanceForPackage}. * \param fd file descriptor representing a shared memory created by * {@link ASharedMemory_create} * \param size size to be used, must be less or equal to size of shared memory. * * \return a positive integer as a channel id to be used in * {@link ASensorManager_destroyDirectChannel} and * {@link ASensorManager_configureDirectReport}, or value less or equal to 0 for failures. */ int ASensorManager_createSharedMemoryDirectChannel(ASensorManager* manager, int fd, size_t size) __INTRODUCED_IN(26); /** * Create direct channel based on AHardwareBuffer * * Create a direct channel of {@link ASENSOR_DIRECT_CHANNEL_TYPE_HARDWARE_BUFFER} type to be used * for configuring sensor direct report. * * \param manager the {@link ASensorManager} instance obtained from * {@link ASensorManager_getInstanceForPackage}. * \param buffer {@link AHardwareBuffer} instance created by {@link AHardwareBuffer_allocate}. * \param size the intended size to be used, must be less or equal to size of buffer. * * \return a positive integer as a channel id to be used in * {@link ASensorManager_destroyDirectChannel} and * {@link ASensorManager_configureDirectReport}, or value less or equal to 0 for failures. */ int ASensorManager_createHardwareBufferDirectChannel( ASensorManager* manager, AHardwareBuffer const * buffer, size_t size) __INTRODUCED_IN(26); /** * Destroy a direct channel * * Destroy a direct channel previously created using {@link ASensorManager_createDirectChannel}. * The buffer used for creating direct channel does not get destroyed with * {@link ASensorManager_destroy} and has to be close or released separately. * * \param manager the {@link ASensorManager} instance obtained from * {@link ASensorManager_getInstanceForPackage}. * \param channelId channel id (a positive integer) returned from * {@link ASensorManager_createSharedMemoryDirectChannel} or * {@link ASensorManager_createHardwareBufferDirectChannel}. */ void ASensorManager_destroyDirectChannel(ASensorManager* manager, int channelId) __INTRODUCED_IN(26); /** * Configure direct report on channel * * Configure sensor direct report on a direct channel: set rate to value other than * {@link ASENSOR_DIRECT_RATE_STOP} so that sensor event can be directly * written into the shared memory region used for creating the buffer. It returns a positive token * which can be used for identify sensor events from different sensors on success. Calling with rate * {@link ASENSOR_DIRECT_RATE_STOP} will stop direct report of the sensor specified in the channel. * * To stop all active sensor direct report configured to a channel, set sensor to NULL and rate to * {@link ASENSOR_DIRECT_RATE_STOP}. * * In order to successfully configure a direct report, the sensor has to support the specified rate * and the channel type, which can be checked by {@link ASensor_getHighestDirectReportRateLevel} and * {@link ASensor_isDirectChannelTypeSupported}, respectively. * * Example: * * ASensorManager *manager = ...; * ASensor *sensor = ...; * int channelId = ...; * * ASensorManager_configureDirectReport(manager, sensor, channel_id, ASENSOR_DIRECT_RATE_FAST); * * \param manager the {@link ASensorManager} instance obtained from * {@link ASensorManager_getInstanceForPackage}. * \param sensor a {@link ASensor} to denote which sensor to be operate. It can be NULL if rate * is {@link ASENSOR_DIRECT_RATE_STOP}, denoting stopping of all active sensor * direct report. * \param channelId channel id (a positive integer) returned from * {@link ASensorManager_createSharedMemoryDirectChannel} or * {@link ASensorManager_createHardwareBufferDirectChannel}. * * \return positive token for success or negative error code. */ int ASensorManager_configureDirectReport(ASensorManager* manager, ASensor const* sensor, int channelId, int rate) __INTRODUCED_IN(26); #endif /* __ANDROID_API__ >= 26 */ /*****************************************************************************/ /** * Enable the selected sensor with sampling and report parameters * * Enable the selected sensor at a specified sampling period and max batch report latency. * To disable sensor, use {@link ASensorEventQueue_disableSensor}. * * \param queue {@link ASensorEventQueue} for sensor event to be report to. * \param sensor {@link ASensor} to be enabled. * \param samplingPeriodUs sampling period of sensor in microseconds. * \param maxBatchReportLatencyus maximum time interval between two batch of sensor events are * delievered in microseconds. For sensor streaming, set to 0. * \return 0 on success or a negative error code on failure. */ int ASensorEventQueue_registerSensor(ASensorEventQueue* queue, ASensor const* sensor, int32_t samplingPeriodUs, int64_t maxBatchReportLatencyUs); /** * Enable the selected sensor at default sampling rate. * * Start event reports of a sensor to specified sensor event queue at a default rate. * * \param queue {@link ASensorEventQueue} for sensor event to be report to. * \param sensor {@link ASensor} to be enabled. * * \return 0 on success or a negative error code on failure. */ int ASensorEventQueue_enableSensor(ASensorEventQueue* queue, ASensor const* sensor); /** * Disable the selected sensor. * * Stop event reports from the sensor to specified sensor event queue. * * \param queue {@link ASensorEventQueue} to be changed * \param sensor {@link ASensor} to be disabled * \return 0 on success or a negative error code on failure. */ int ASensorEventQueue_disableSensor(ASensorEventQueue* queue, ASensor const* sensor); /** * Sets the delivery rate of events in microseconds for the given sensor. * * This function has to be called after {@link ASensorEventQueue_enableSensor}. * Note that this is a hint only, generally event will arrive at a higher * rate. It is an error to set a rate inferior to the value returned by * ASensor_getMinDelay(). * * \param queue {@link ASensorEventQueue} to which sensor event is delivered. * \param sensor {@link ASensor} of which sampling rate to be updated. * \param usec sensor sampling period (1/sampling rate) in microseconds * \return 0 on sucess or a negative error code on failure. */ int ASensorEventQueue_setEventRate(ASensorEventQueue* queue, ASensor const* sensor, int32_t usec); /** * Determine if a sensor event queue has pending event to be processed. * * \param queue {@link ASensorEventQueue} to be queried * \return 1 if the queue has events; 0 if it does not have events; * or a negative value if there is an error. */ int ASensorEventQueue_hasEvents(ASensorEventQueue* queue); /** * Retrieve pending events in sensor event queue * * Retrieve next available events from the queue to a specified event array. * * \param queue {@link ASensorEventQueue} to get events from * \param events pointer to an array of {@link ASensorEvents}. * \param count max number of event that can be filled into array event. * \return number of events returned on success; negative error code when * no events are pending or an error has occurred. * * Examples: * * ASensorEvent event; * ssize_t numEvent = ASensorEventQueue_getEvents(queue, &event, 1); * * ASensorEvent eventBuffer[8]; * ssize_t numEvent = ASensorEventQueue_getEvents(queue, eventBuffer, 8); * */ ssize_t ASensorEventQueue_getEvents(ASensorEventQueue* queue, ASensorEvent* events, size_t count); #if __ANDROID_API__ >= __ANDROID_API_Q__ /** * Request that {@link ASENSOR_TYPE_ADDITIONAL_INFO} events to be delivered on * the given {@link ASensorEventQueue}. * * Sensor data events are always delivered to the {@ASensorEventQueue}. * * The {@link ASENSOR_TYPE_ADDITIONAL_INFO} events will be returned through * {@link ASensorEventQueue_getEvents}. The client is responsible for checking * {@link ASensorEvent#type} to determine the event type prior to handling of * the event. * * The client must be tolerant of any value for * {@link AAdditionalInfoEvent#type}, as new values may be defined in the future * and may delivered to the client. * * \param queue {@link ASensorEventQueue} to configure * \param enable true to request {@link ASENSOR_TYPE_ADDITIONAL_INFO} events, * false to stop receiving events * \return 0 on success or a negative error code on failure */ int ASensorEventQueue_requestAdditionalInfoEvents(ASensorEventQueue* queue, bool enable); #endif /* __ANDROID_API__ >= __ANDRDOID_API_Q__ */ /*****************************************************************************/ /** * Returns this sensor's name (non localized) */ const char* ASensor_getName(ASensor const* sensor); /** * Returns this sensor's vendor's name (non localized) */ const char* ASensor_getVendor(ASensor const* sensor); /** * Return this sensor's type */ int ASensor_getType(ASensor const* sensor); /** * Returns this sensors's resolution */ float ASensor_getResolution(ASensor const* sensor); /** * Returns the minimum delay allowed between events in microseconds. * A value of zero means that this sensor doesn't report events at a * constant rate, but rather only when a new data is available. */ int ASensor_getMinDelay(ASensor const* sensor); #if __ANDROID_API__ >= 21 /** * Returns the maximum size of batches for this sensor. Batches will often be * smaller, as the hardware fifo might be used for other sensors. */ int ASensor_getFifoMaxEventCount(ASensor const* sensor) __INTRODUCED_IN(21); /** * Returns the hardware batch fifo size reserved to this sensor. */ int ASensor_getFifoReservedEventCount(ASensor const* sensor) __INTRODUCED_IN(21); /** * Returns this sensor's string type. */ const char* ASensor_getStringType(ASensor const* sensor) __INTRODUCED_IN(21); /** * Returns the reporting mode for this sensor. One of AREPORTING_MODE_* constants. */ int ASensor_getReportingMode(ASensor const* sensor) __INTRODUCED_IN(21); /** * Returns true if this is a wake up sensor, false otherwise. */ bool ASensor_isWakeUpSensor(ASensor const* sensor) __INTRODUCED_IN(21); #endif /* __ANDROID_API__ >= 21 */ #if __ANDROID_API__ >= 26 /** * Test if sensor supports a certain type of direct channel. * * \param sensor a {@link ASensor} to denote the sensor to be checked. * \param channelType Channel type constant, either * {@ASENSOR_DIRECT_CHANNEL_TYPE_SHARED_MEMORY} * or {@link ASENSOR_DIRECT_CHANNEL_TYPE_HARDWARE_BUFFER}. * \returns true if sensor supports the specified direct channel type. */ bool ASensor_isDirectChannelTypeSupported(ASensor const* sensor, int channelType) __INTRODUCED_IN(26); /** * Get the highest direct rate level that a sensor support. * * \param sensor a {@link ASensor} to denote the sensor to be checked. * * \return a ASENSOR_DIRECT_RATE_... enum denoting the highest rate level supported by the sensor. * If return value is {@link ASENSOR_DIRECT_RATE_STOP}, it means the sensor * does not support direct report. */ int ASensor_getHighestDirectReportRateLevel(ASensor const* sensor) __INTRODUCED_IN(26); #endif /* __ANDROID_API__ >= 26 */ #if __ANDROID_API__ >= __ANDROID_API_Q__ /** * Returns the sensor's handle. * * The handle identifies the sensor within the system and is included in the * {@link ASensorEvent#sensor} field of sensor events, including those sent with type * {@link ASENSOR_TYPE_ADDITIONAL_INFO}. * * A sensor's handle is able to be used to map {@link ASENSOR_TYPE_ADDITIONAL_INFO} events to the * sensor that generated the event. * * It is important to note that the value returned by {@link ASensor_getHandle} is not the same as * the value returned by the Java API {@link android.hardware.Sensor#getId} and no mapping exists * between the values. */ int ASensor_getHandle(ASensor const* sensor) __INTRODUCED_IN(__ANDROID_API_Q__); #endif /* __ANDROID_API__ >= ANDROID_API_Q__ */ #ifdef __cplusplus }; #endif #endif // ANDROID_SENSOR_H /** @} */