/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include namespace android { namespace ui { Transform::Transform() { reset(); } Transform::Transform(const Transform& other) : mMatrix(other.mMatrix), mType(other.mType) { } Transform::Transform(uint32_t orientation) { set(orientation, 0, 0); } Transform::~Transform() = default; static const float EPSILON = 0.0f; bool Transform::isZero(float f) { return fabs(f) <= EPSILON; } bool Transform::absIsOne(float f) { return isZero(fabs(f) - 1.0f); } Transform Transform::operator * (const Transform& rhs) const { if (CC_LIKELY(mType == IDENTITY)) return rhs; Transform r(*this); if (rhs.mType == IDENTITY) return r; // TODO: we could use mType to optimize the matrix multiply const mat33& A(mMatrix); const mat33& B(rhs.mMatrix); mat33& D(r.mMatrix); for (size_t i = 0; i < 3; i++) { const float v0 = A[0][i]; const float v1 = A[1][i]; const float v2 = A[2][i]; D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; } r.mType |= rhs.mType; // TODO: we could recompute this value from r and rhs r.mType &= 0xFF; r.mType |= UNKNOWN_TYPE; return r; } Transform& Transform::operator=(const Transform& other) { mMatrix = other.mMatrix; mType = other.mType; return *this; } const vec3& Transform::operator [] (size_t i) const { return mMatrix[i]; } float Transform::tx() const { return mMatrix[2][0]; } float Transform::ty() const { return mMatrix[2][1]; } float Transform::sx() const { return mMatrix[0][0]; } float Transform::sy() const { return mMatrix[1][1]; } void Transform::reset() { mType = IDENTITY; for(size_t i = 0; i < 3; i++) { vec3& v(mMatrix[i]); for (size_t j = 0; j < 3; j++) v[j] = ((i == j) ? 1.0f : 0.0f); } } void Transform::set(float tx, float ty) { mMatrix[2][0] = tx; mMatrix[2][1] = ty; mMatrix[2][2] = 1.0f; if (isZero(tx) && isZero(ty)) { mType &= ~TRANSLATE; } else { mType |= TRANSLATE; } } void Transform::set(float a, float b, float c, float d) { mat33& M(mMatrix); M[0][0] = a; M[1][0] = b; M[0][1] = c; M[1][1] = d; M[0][2] = 0; M[1][2] = 0; mType = UNKNOWN_TYPE; } status_t Transform::set(uint32_t flags, float w, float h) { if (flags & ROT_INVALID) { // that's not allowed! reset(); return BAD_VALUE; } Transform H, V, R; if (flags & ROT_90) { // w & h are inverted when rotating by 90 degrees std::swap(w, h); } if (flags & FLIP_H) { H.mType = (FLIP_H << 8) | SCALE; H.mType |= isZero(w) ? IDENTITY : TRANSLATE; mat33& M(H.mMatrix); M[0][0] = -1; M[2][0] = w; } if (flags & FLIP_V) { V.mType = (FLIP_V << 8) | SCALE; V.mType |= isZero(h) ? IDENTITY : TRANSLATE; mat33& M(V.mMatrix); M[1][1] = -1; M[2][1] = h; } if (flags & ROT_90) { const float original_w = h; R.mType = (ROT_90 << 8) | ROTATE; R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; mat33& M(R.mMatrix); M[0][0] = 0; M[1][0] =-1; M[2][0] = original_w; M[0][1] = 1; M[1][1] = 0; } *this = (R*(H*V)); return NO_ERROR; } vec2 Transform::transform(const vec2& v) const { vec2 r; const mat33& M(mMatrix); r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; return r; } vec3 Transform::transform(const vec3& v) const { vec3 r; const mat33& M(mMatrix); r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; return r; } vec2 Transform::transform(int x, int y) const { return transform(vec2(x,y)); } Rect Transform::makeBounds(int w, int h) const { return transform( Rect(w, h) ); } Rect Transform::transform(const Rect& bounds, bool roundOutwards) const { Rect r; vec2 lt( bounds.left, bounds.top ); vec2 rt( bounds.right, bounds.top ); vec2 lb( bounds.left, bounds.bottom ); vec2 rb( bounds.right, bounds.bottom ); lt = transform(lt); rt = transform(rt); lb = transform(lb); rb = transform(rb); if (roundOutwards) { r.left = static_cast(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}))); r.top = static_cast(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}))); r.right = static_cast(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]}))); r.bottom = static_cast(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]}))); } else { r.left = static_cast(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); r.top = static_cast(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); r.right = static_cast(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); r.bottom = static_cast(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); } return r; } FloatRect Transform::transform(const FloatRect& bounds) const { vec2 lt(bounds.left, bounds.top); vec2 rt(bounds.right, bounds.top); vec2 lb(bounds.left, bounds.bottom); vec2 rb(bounds.right, bounds.bottom); lt = transform(lt); rt = transform(rt); lb = transform(lb); rb = transform(rb); FloatRect r; r.left = std::min({lt[0], rt[0], lb[0], rb[0]}); r.top = std::min({lt[1], rt[1], lb[1], rb[1]}); r.right = std::max({lt[0], rt[0], lb[0], rb[0]}); r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]}); return r; } Region Transform::transform(const Region& reg) const { Region out; if (CC_UNLIKELY(type() > TRANSLATE)) { if (CC_LIKELY(preserveRects())) { Region::const_iterator it = reg.begin(); Region::const_iterator const end = reg.end(); while (it != end) { out.orSelf(transform(*it++)); } } else { out.set(transform(reg.bounds())); } } else { int xpos = static_cast(floorf(tx() + 0.5f)); int ypos = static_cast(floorf(ty() + 0.5f)); out = reg.translate(xpos, ypos); } return out; } uint32_t Transform::type() const { if (mType & UNKNOWN_TYPE) { // recompute what this transform is const mat33& M(mMatrix); const float a = M[0][0]; const float b = M[1][0]; const float c = M[0][1]; const float d = M[1][1]; const float x = M[2][0]; const float y = M[2][1]; bool scale = false; uint32_t flags = ROT_0; if (isZero(b) && isZero(c)) { if (a<0) flags |= FLIP_H; if (d<0) flags |= FLIP_V; if (!absIsOne(a) || !absIsOne(d)) { scale = true; } } else if (isZero(a) && isZero(d)) { flags |= ROT_90; if (b>0) flags |= FLIP_V; if (c<0) flags |= FLIP_H; if (!absIsOne(b) || !absIsOne(c)) { scale = true; } } else { // there is a skew component and/or a non 90 degrees rotation flags = ROT_INVALID; } mType = flags << 8; if (flags & ROT_INVALID) { mType |= UNKNOWN; } else { if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) mType |= ROTATE; if (flags & FLIP_H) mType ^= SCALE; if (flags & FLIP_V) mType ^= SCALE; if (scale) mType |= SCALE; } if (!isZero(x) || !isZero(y)) mType |= TRANSLATE; } return mType; } Transform Transform::inverse() const { // our 3x3 matrix is always of the form of a 2x2 transformation // followed by a translation: T*M, therefore: // (T*M)^-1 = M^-1 * T^-1 Transform result; if (mType <= TRANSLATE) { // 1 0 0 // 0 1 0 // x y 1 result = *this; result.mMatrix[2][0] = -result.mMatrix[2][0]; result.mMatrix[2][1] = -result.mMatrix[2][1]; } else { // a c 0 // b d 0 // x y 1 const mat33& M(mMatrix); const float a = M[0][0]; const float b = M[1][0]; const float c = M[0][1]; const float d = M[1][1]; const float x = M[2][0]; const float y = M[2][1]; const float idet = 1.0f / (a*d - b*c); result.mMatrix[0][0] = d*idet; result.mMatrix[0][1] = -c*idet; result.mMatrix[1][0] = -b*idet; result.mMatrix[1][1] = a*idet; result.mType = mType; vec2 T(-x, -y); T = result.transform(T); result.mMatrix[2][0] = T[0]; result.mMatrix[2][1] = T[1]; } return result; } uint32_t Transform::getType() const { return type() & 0xFF; } uint32_t Transform::getOrientation() const { return (type() >> 8) & 0xFF; } bool Transform::preserveRects() const { return (getOrientation() & ROT_INVALID) ? false : true; } mat4 Transform::asMatrix4() const { // Internally Transform uses a 3x3 matrix since the transform is meant for // two-dimensional values. An equivalent 4x4 matrix means inserting an extra // row and column which adds as an identity transform on the third // dimension. mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element m[0][0] = mMatrix[0][0]; m[0][1] = mMatrix[0][1]; m[0][2] = 0.f; m[0][3] = mMatrix[0][2]; m[1][0] = mMatrix[1][0]; m[1][1] = mMatrix[1][1]; m[1][2] = 0.f; m[1][3] = mMatrix[1][2]; m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = 1.f; m[2][3] = 0.f; m[3][0] = mMatrix[2][0]; m[3][1] = mMatrix[2][1]; m[3][2] = 0.f; m[3][3] = mMatrix[2][2]; return m; } void Transform::dump(std::string& out, const char* name) const { using android::base::StringAppendF; type(); // Ensure the information in mType is up to date const uint32_t type = mType; const uint32_t orient = type >> 8; StringAppendF(&out, "%s 0x%08x (", name, orient); if (orient & ROT_INVALID) { out.append("ROT_INVALID "); } else { if (orient & ROT_90) { out.append("ROT_90 "); } else { out.append("ROT_0 "); } if (orient & FLIP_V) out.append("FLIP_V "); if (orient & FLIP_H) out.append("FLIP_H "); } StringAppendF(&out, ") 0x%02x (", type); if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY "); if (type & SCALE) out.append("SCALE "); if (type & ROTATE) out.append("ROTATE "); if (type & TRANSLATE) out.append("TRANSLATE "); out.append(")\n"); for (size_t i = 0; i < 3; i++) { StringAppendF(&out, " %.4f %.4f %.4f\n", static_cast(mMatrix[0][i]), static_cast(mMatrix[1][i]), static_cast(mMatrix[2][i])); } } void Transform::dump(const char* name) const { std::string out; dump(out, name); ALOGD("%s", out.c_str()); } } // namespace ui } // namespace android