#include "hardware_composer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::hardware::Return; using android::hardware::Void; using android::pdx::ErrorStatus; using android::pdx::LocalHandle; using android::pdx::Status; using android::pdx::rpc::EmptyVariant; using android::pdx::rpc::IfAnyOf; using namespace std::chrono_literals; namespace android { namespace dvr { namespace { const char kDvrPerformanceProperty[] = "sys.dvr.performance"; const char kDvrStandaloneProperty[] = "ro.boot.vr"; const char kRightEyeOffsetProperty[] = "dvr.right_eye_offset_ns"; const char kUseExternalDisplayProperty[] = "persist.vr.use_external_display"; // Surface flinger uses "VSYNC-sf" and "VSYNC-app" for its version of these // events. Name ours similarly. const char kVsyncTraceEventName[] = "VSYNC-vrflinger"; // How long to wait after boot finishes before we turn the display off. constexpr int kBootFinishedDisplayOffTimeoutSec = 10; constexpr int kDefaultDisplayWidth = 1920; constexpr int kDefaultDisplayHeight = 1080; constexpr int64_t kDefaultVsyncPeriodNs = 16666667; // Hardware composer reports dpi as dots per thousand inches (dpi * 1000). constexpr int kDefaultDpi = 400000; // Get time offset from a vsync to when the pose for that vsync should be // predicted out to. For example, if scanout gets halfway through the frame // at the halfway point between vsyncs, then this could be half the period. // With global shutter displays, this should be changed to the offset to when // illumination begins. Low persistence adds a frame of latency, so we predict // to the center of the next frame. inline int64_t GetPosePredictionTimeOffset(int64_t vsync_period_ns) { return (vsync_period_ns * 150) / 100; } // Attempts to set the scheduler class and partiton for the current thread. // Returns true on success or false on failure. bool SetThreadPolicy(const std::string& scheduler_class, const std::string& partition) { int error = dvrSetSchedulerClass(0, scheduler_class.c_str()); if (error < 0) { ALOGE( "SetThreadPolicy: Failed to set scheduler class \"%s\" for " "thread_id=%d: %s", scheduler_class.c_str(), gettid(), strerror(-error)); return false; } error = dvrSetCpuPartition(0, partition.c_str()); if (error < 0) { ALOGE( "SetThreadPolicy: Failed to set cpu partiton \"%s\" for thread_id=%d: " "%s", partition.c_str(), gettid(), strerror(-error)); return false; } return true; } // Utility to generate scoped tracers with arguments. // TODO(eieio): Move/merge this into utils/Trace.h? class TraceArgs { public: template explicit TraceArgs(const char* format, Args&&... args) { std::array buffer; snprintf(buffer.data(), buffer.size(), format, std::forward(args)...); atrace_begin(ATRACE_TAG, buffer.data()); } ~TraceArgs() { atrace_end(ATRACE_TAG); } private: TraceArgs(const TraceArgs&) = delete; void operator=(const TraceArgs&) = delete; }; // Macro to define a scoped tracer with arguments. Uses PASTE(x, y) macro // defined in utils/Trace.h. #define TRACE_FORMAT(format, ...) \ TraceArgs PASTE(__tracer, __LINE__) { format, ##__VA_ARGS__ } // Returns "primary" or "external". Useful for writing more readable logs. const char* GetDisplayName(bool is_primary) { return is_primary ? "primary" : "external"; } } // anonymous namespace HardwareComposer::HardwareComposer() : initialized_(false), request_display_callback_(nullptr) {} HardwareComposer::~HardwareComposer(void) { UpdatePostThreadState(PostThreadState::Quit, true); if (post_thread_.joinable()) post_thread_.join(); composer_callback_->SetVsyncService(nullptr); } bool HardwareComposer::Initialize( Hwc2::Composer* composer, hwc2_display_t primary_display_id, RequestDisplayCallback request_display_callback) { if (initialized_) { ALOGE("HardwareComposer::Initialize: already initialized."); return false; } is_standalone_device_ = property_get_bool(kDvrStandaloneProperty, false); request_display_callback_ = request_display_callback; primary_display_ = GetDisplayParams(composer, primary_display_id, true); vsync_service_ = new VsyncService; sp sm(defaultServiceManager()); auto result = sm->addService(String16(VsyncService::GetServiceName()), vsync_service_, false); LOG_ALWAYS_FATAL_IF(result != android::OK, "addService(%s) failed", VsyncService::GetServiceName()); post_thread_event_fd_.Reset(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); LOG_ALWAYS_FATAL_IF( !post_thread_event_fd_, "HardwareComposer: Failed to create interrupt event fd : %s", strerror(errno)); post_thread_ = std::thread(&HardwareComposer::PostThread, this); initialized_ = true; return initialized_; } void HardwareComposer::Enable() { UpdatePostThreadState(PostThreadState::Suspended, false); } void HardwareComposer::Disable() { UpdatePostThreadState(PostThreadState::Suspended, true); std::unique_lock lock(post_thread_mutex_); post_thread_ready_.wait(lock, [this] { return !post_thread_resumed_; }); } void HardwareComposer::OnBootFinished() { std::lock_guard lock(post_thread_mutex_); if (boot_finished_) return; boot_finished_ = true; post_thread_wait_.notify_one(); if (is_standalone_device_) request_display_callback_(true); } // Update the post thread quiescent state based on idle and suspended inputs. void HardwareComposer::UpdatePostThreadState(PostThreadStateType state, bool suspend) { std::unique_lock lock(post_thread_mutex_); // Update the votes in the state variable before evaluating the effective // quiescent state. Any bits set in post_thread_state_ indicate that the post // thread should be suspended. if (suspend) { post_thread_state_ |= state; } else { post_thread_state_ &= ~state; } const bool quit = post_thread_state_ & PostThreadState::Quit; const bool effective_suspend = post_thread_state_ != PostThreadState::Active; if (quit) { post_thread_quiescent_ = true; eventfd_write(post_thread_event_fd_.Get(), 1); post_thread_wait_.notify_one(); } else if (effective_suspend && !post_thread_quiescent_) { post_thread_quiescent_ = true; eventfd_write(post_thread_event_fd_.Get(), 1); } else if (!effective_suspend && post_thread_quiescent_) { post_thread_quiescent_ = false; eventfd_t value; eventfd_read(post_thread_event_fd_.Get(), &value); post_thread_wait_.notify_one(); } } void HardwareComposer::CreateComposer() { if (composer_) return; composer_.reset(new Hwc2::impl::Composer("default")); composer_callback_ = new ComposerCallback; composer_->registerCallback(composer_callback_); LOG_ALWAYS_FATAL_IF(!composer_callback_->GotFirstHotplug(), "Registered composer callback but didn't get hotplug for primary" " display"); composer_callback_->SetVsyncService(vsync_service_); } void HardwareComposer::OnPostThreadResumed() { ALOGI("OnPostThreadResumed"); EnableDisplay(*target_display_, true); // Trigger target-specific performance mode change. property_set(kDvrPerformanceProperty, "performance"); } void HardwareComposer::OnPostThreadPaused() { ALOGI("OnPostThreadPaused"); retire_fence_fds_.clear(); layers_.clear(); // Phones create a new composer client on resume and destroy it on pause. // Standalones only create the composer client once and then use SetPowerMode // to control the screen on pause/resume. if (!is_standalone_device_) { if (composer_callback_ != nullptr) { composer_callback_->SetVsyncService(nullptr); composer_callback_ = nullptr; } composer_.reset(nullptr); } else { EnableDisplay(*target_display_, false); } // Trigger target-specific performance mode change. property_set(kDvrPerformanceProperty, "idle"); } bool HardwareComposer::PostThreadCondWait(std::unique_lock& lock, int timeout_sec, const std::function& pred) { auto pred_with_quit = [&] { return pred() || (post_thread_state_ & PostThreadState::Quit); }; if (timeout_sec >= 0) { post_thread_wait_.wait_for(lock, std::chrono::seconds(timeout_sec), pred_with_quit); } else { post_thread_wait_.wait(lock, pred_with_quit); } if (post_thread_state_ & PostThreadState::Quit) { ALOGI("HardwareComposer::PostThread: Quitting."); return true; } return false; } HWC::Error HardwareComposer::Validate(hwc2_display_t display) { uint32_t num_types; uint32_t num_requests; HWC::Error error = composer_->validateDisplay(display, &num_types, &num_requests); if (error == HWC2_ERROR_HAS_CHANGES) { ALOGE("Hardware composer has requested composition changes, " "which we don't support."); // Accept the changes anyway and see if we can get something on the screen. error = composer_->acceptDisplayChanges(display); } return error; } bool HardwareComposer::EnableVsync(const DisplayParams& display, bool enabled) { HWC::Error error = composer_->setVsyncEnabled(display.id, (Hwc2::IComposerClient::Vsync)(enabled ? HWC2_VSYNC_ENABLE : HWC2_VSYNC_DISABLE)); if (error != HWC::Error::None) { ALOGE("Error attempting to %s vsync on %s display: %s", enabled ? "enable" : "disable", GetDisplayName(display.is_primary), error.to_string().c_str()); } return error == HWC::Error::None; } bool HardwareComposer::SetPowerMode(const DisplayParams& display, bool active) { ALOGI("Turning %s display %s", GetDisplayName(display.is_primary), active ? "on" : "off"); HWC::PowerMode power_mode = active ? HWC::PowerMode::On : HWC::PowerMode::Off; HWC::Error error = composer_->setPowerMode(display.id, power_mode.cast()); if (error != HWC::Error::None) { ALOGE("Error attempting to turn %s display %s: %s", GetDisplayName(display.is_primary), active ? "on" : "off", error.to_string().c_str()); } return error == HWC::Error::None; } bool HardwareComposer::EnableDisplay(const DisplayParams& display, bool enabled) { bool power_result; bool vsync_result; // When turning a display on, we set the power state then set vsync. When // turning a display off we do it in the opposite order. if (enabled) { power_result = SetPowerMode(display, enabled); vsync_result = EnableVsync(display, enabled); } else { vsync_result = EnableVsync(display, enabled); power_result = SetPowerMode(display, enabled); } return power_result && vsync_result; } HWC::Error HardwareComposer::Present(hwc2_display_t display) { int32_t present_fence; HWC::Error error = composer_->presentDisplay(display, &present_fence); // According to the documentation, this fence is signaled at the time of // vsync/DMA for physical displays. if (error == HWC::Error::None) { retire_fence_fds_.emplace_back(present_fence); } else { ATRACE_INT("HardwareComposer: PresentResult", error); } return error; } DisplayParams HardwareComposer::GetDisplayParams( Hwc2::Composer* composer, hwc2_display_t display, bool is_primary) { DisplayParams params; params.id = display; params.is_primary = is_primary; Hwc2::Config config; HWC::Error error = composer->getActiveConfig(display, &config); if (error == HWC::Error::None) { auto get_attr = [&](hwc2_attribute_t attr, const char* attr_name) -> std::optional { int32_t val; HWC::Error error = composer->getDisplayAttribute( display, config, (Hwc2::IComposerClient::Attribute)attr, &val); if (error != HWC::Error::None) { ALOGE("Failed to get %s display attr %s: %s", GetDisplayName(is_primary), attr_name, error.to_string().c_str()); return std::nullopt; } return val; }; auto width = get_attr(HWC2_ATTRIBUTE_WIDTH, "width"); auto height = get_attr(HWC2_ATTRIBUTE_HEIGHT, "height"); if (width && height) { params.width = *width; params.height = *height; } else { ALOGI("Failed to get width and/or height for %s display. Using default" " size %dx%d.", GetDisplayName(is_primary), kDefaultDisplayWidth, kDefaultDisplayHeight); params.width = kDefaultDisplayWidth; params.height = kDefaultDisplayHeight; } auto vsync_period = get_attr(HWC2_ATTRIBUTE_VSYNC_PERIOD, "vsync period"); if (vsync_period) { params.vsync_period_ns = *vsync_period; } else { ALOGI("Failed to get vsync period for %s display. Using default vsync" " period %.2fms", GetDisplayName(is_primary), static_cast(kDefaultVsyncPeriodNs) / 1000000); params.vsync_period_ns = kDefaultVsyncPeriodNs; } auto dpi_x = get_attr(HWC2_ATTRIBUTE_DPI_X, "DPI X"); auto dpi_y = get_attr(HWC2_ATTRIBUTE_DPI_Y, "DPI Y"); if (dpi_x && dpi_y) { params.dpi.x = *dpi_x; params.dpi.y = *dpi_y; } else { ALOGI("Failed to get dpi_x and/or dpi_y for %s display. Using default" " dpi %d.", GetDisplayName(is_primary), kDefaultDpi); params.dpi.x = kDefaultDpi; params.dpi.y = kDefaultDpi; } } else { ALOGE("HardwareComposer: Failed to get current %s display config: %d." " Using default display values.", GetDisplayName(is_primary), error.value); params.width = kDefaultDisplayWidth; params.height = kDefaultDisplayHeight; params.dpi.x = kDefaultDpi; params.dpi.y = kDefaultDpi; params.vsync_period_ns = kDefaultVsyncPeriodNs; } ALOGI( "HardwareComposer: %s display attributes: width=%d height=%d " "vsync_period_ns=%d DPI=%dx%d", GetDisplayName(is_primary), params.width, params.height, params.vsync_period_ns, params.dpi.x, params.dpi.y); return params; } std::string HardwareComposer::Dump() { std::unique_lock lock(post_thread_mutex_); std::ostringstream stream; auto print_display_metrics = [&](const DisplayParams& params) { stream << GetDisplayName(params.is_primary) << " display metrics: " << params.width << "x" << params.height << " " << (params.dpi.x / 1000.0) << "x" << (params.dpi.y / 1000.0) << " dpi @ " << (1000000000.0 / params.vsync_period_ns) << " Hz" << std::endl; }; print_display_metrics(primary_display_); if (external_display_) print_display_metrics(*external_display_); stream << "Post thread resumed: " << post_thread_resumed_ << std::endl; stream << "Active layers: " << layers_.size() << std::endl; stream << std::endl; for (size_t i = 0; i < layers_.size(); i++) { stream << "Layer " << i << ":"; stream << " type=" << layers_[i].GetCompositionType().to_string(); stream << " surface_id=" << layers_[i].GetSurfaceId(); stream << " buffer_id=" << layers_[i].GetBufferId(); stream << std::endl; } stream << std::endl; if (post_thread_resumed_) { stream << "Hardware Composer Debug Info:" << std::endl; stream << composer_->dumpDebugInfo(); } return stream.str(); } void HardwareComposer::PostLayers(hwc2_display_t display) { ATRACE_NAME("HardwareComposer::PostLayers"); // Setup the hardware composer layers with current buffers. for (auto& layer : layers_) { layer.Prepare(); } // Now that we have taken in a frame from the application, we have a chance // to drop the frame before passing the frame along to HWC. // If the display driver has become backed up, we detect it here and then // react by skipping this frame to catch up latency. while (!retire_fence_fds_.empty() && (!retire_fence_fds_.front() || sync_wait(retire_fence_fds_.front().Get(), 0) == 0)) { // There are only 2 fences in here, no performance problem to shift the // array of ints. retire_fence_fds_.erase(retire_fence_fds_.begin()); } const bool is_fence_pending = static_cast(retire_fence_fds_.size()) > post_thread_config_.allowed_pending_fence_count; if (is_fence_pending) { ATRACE_INT("frame_skip_count", ++frame_skip_count_); ALOGW_IF(is_fence_pending, "Warning: dropping a frame to catch up with HWC (pending = %zd)", retire_fence_fds_.size()); for (auto& layer : layers_) { layer.Drop(); } return; } else { // Make the transition more obvious in systrace when the frame skip happens // above. ATRACE_INT("frame_skip_count", 0); } #if TRACE > 1 for (size_t i = 0; i < layers_.size(); i++) { ALOGI("HardwareComposer::PostLayers: layer=%zu buffer_id=%d composition=%s", i, layers_[i].GetBufferId(), layers_[i].GetCompositionType().to_string().c_str()); } #endif HWC::Error error = Validate(display); if (error != HWC::Error::None) { ALOGE("HardwareComposer::PostLayers: Validate failed: %s display=%" PRIu64, error.to_string().c_str(), display); return; } error = Present(display); if (error != HWC::Error::None) { ALOGE("HardwareComposer::PostLayers: Present failed: %s", error.to_string().c_str()); return; } std::vector out_layers; std::vector out_fences; error = composer_->getReleaseFences(display, &out_layers, &out_fences); ALOGE_IF(error != HWC::Error::None, "HardwareComposer::PostLayers: Failed to get release fences: %s", error.to_string().c_str()); // Perform post-frame bookkeeping. uint32_t num_elements = out_layers.size(); for (size_t i = 0; i < num_elements; ++i) { for (auto& layer : layers_) { if (layer.GetLayerHandle() == out_layers[i]) { layer.Finish(out_fences[i]); } } } } void HardwareComposer::SetDisplaySurfaces( std::vector> surfaces) { ALOGI("HardwareComposer::SetDisplaySurfaces: surface count=%zd", surfaces.size()); const bool display_idle = surfaces.size() == 0; { std::unique_lock lock(post_thread_mutex_); surfaces_ = std::move(surfaces); surfaces_changed_ = true; } if (request_display_callback_ && !is_standalone_device_) request_display_callback_(!display_idle); // Set idle state based on whether there are any surfaces to handle. UpdatePostThreadState(PostThreadState::Idle, display_idle); } int HardwareComposer::OnNewGlobalBuffer(DvrGlobalBufferKey key, IonBuffer& ion_buffer) { if (key == DvrGlobalBuffers::kVsyncBuffer) { vsync_ring_ = std::make_unique>( &ion_buffer, CPUUsageMode::WRITE_OFTEN); if (vsync_ring_->IsMapped() == false) { return -EPERM; } } if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { return MapConfigBuffer(ion_buffer); } return 0; } void HardwareComposer::OnDeletedGlobalBuffer(DvrGlobalBufferKey key) { if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { ConfigBufferDeleted(); } } int HardwareComposer::MapConfigBuffer(IonBuffer& ion_buffer) { std::lock_guard lock(shared_config_mutex_); shared_config_ring_ = DvrConfigRing(); if (ion_buffer.width() < DvrConfigRing::MemorySize()) { ALOGE("HardwareComposer::MapConfigBuffer: invalid buffer size."); return -EINVAL; } void* buffer_base = 0; int result = ion_buffer.Lock(ion_buffer.usage(), 0, 0, ion_buffer.width(), ion_buffer.height(), &buffer_base); if (result != 0) { ALOGE( "HardwareComposer::MapConfigBuffer: Failed to map vrflinger config " "buffer."); return -EPERM; } shared_config_ring_ = DvrConfigRing::Create(buffer_base, ion_buffer.width()); ion_buffer.Unlock(); return 0; } void HardwareComposer::ConfigBufferDeleted() { std::lock_guard lock(shared_config_mutex_); shared_config_ring_ = DvrConfigRing(); } void HardwareComposer::UpdateConfigBuffer() { std::lock_guard lock(shared_config_mutex_); if (!shared_config_ring_.is_valid()) return; // Copy from latest record in shared_config_ring_ to local copy. DvrConfig record; if (shared_config_ring_.GetNewest(&shared_config_ring_sequence_, &record)) { ALOGI("DvrConfig updated: sequence %u, post offset %d", shared_config_ring_sequence_, record.frame_post_offset_ns); ++shared_config_ring_sequence_; post_thread_config_ = record; } } int HardwareComposer::PostThreadPollInterruptible( const pdx::LocalHandle& event_fd, int requested_events, int timeout_ms) { pollfd pfd[2] = { { .fd = event_fd.Get(), .events = static_cast(requested_events), .revents = 0, }, { .fd = post_thread_event_fd_.Get(), .events = POLLPRI | POLLIN, .revents = 0, }, }; int ret, error; do { ret = poll(pfd, 2, timeout_ms); error = errno; ALOGW_IF(ret < 0, "HardwareComposer::PostThreadPollInterruptible: Error during " "poll(): %s (%d)", strerror(error), error); } while (ret < 0 && error == EINTR); if (ret < 0) { return -error; } else if (ret == 0) { return -ETIMEDOUT; } else if (pfd[0].revents != 0) { return 0; } else if (pfd[1].revents != 0) { ALOGI("VrHwcPost thread interrupted: revents=%x", pfd[1].revents); return kPostThreadInterrupted; } else { return 0; } } // Sleep until the next predicted vsync, returning the predicted vsync // timestamp. Status HardwareComposer::WaitForPredictedVSync() { const int64_t predicted_vsync_time = last_vsync_timestamp_ + (target_display_->vsync_period_ns * vsync_prediction_interval_); const int error = SleepUntil(predicted_vsync_time); if (error < 0) { ALOGE("HardwareComposer::WaifForVSync:: Failed to sleep: %s", strerror(-error)); return error; } return {predicted_vsync_time}; } int HardwareComposer::SleepUntil(int64_t wakeup_timestamp) { const int timer_fd = vsync_sleep_timer_fd_.Get(); const itimerspec wakeup_itimerspec = { .it_interval = {.tv_sec = 0, .tv_nsec = 0}, .it_value = NsToTimespec(wakeup_timestamp), }; int ret = timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &wakeup_itimerspec, nullptr); int error = errno; if (ret < 0) { ALOGE("HardwareComposer::SleepUntil: Failed to set timerfd: %s", strerror(error)); return -error; } return PostThreadPollInterruptible(vsync_sleep_timer_fd_, POLLIN, /*timeout_ms*/ -1); } void HardwareComposer::PostThread() { // NOLINTNEXTLINE(runtime/int) prctl(PR_SET_NAME, reinterpret_cast("VrHwcPost"), 0, 0, 0); // Set the scheduler to SCHED_FIFO with high priority. If this fails here // there may have been a startup timing issue between this thread and // performanced. Try again later when this thread becomes active. bool thread_policy_setup = SetThreadPolicy("graphics:high", "/system/performance"); // Create a timerfd based on CLOCK_MONOTINIC. vsync_sleep_timer_fd_.Reset(timerfd_create(CLOCK_MONOTONIC, 0)); LOG_ALWAYS_FATAL_IF( !vsync_sleep_timer_fd_, "HardwareComposer: Failed to create vsync sleep timerfd: %s", strerror(errno)); struct VsyncEyeOffsets { int64_t left_ns, right_ns; }; bool was_running = false; auto get_vsync_eye_offsets = [this]() -> VsyncEyeOffsets { VsyncEyeOffsets offsets; offsets.left_ns = GetPosePredictionTimeOffset(target_display_->vsync_period_ns); // TODO(jbates) Query vblank time from device, when such an API is // available. This value (6.3%) was measured on A00 in low persistence mode. int64_t vblank_ns = target_display_->vsync_period_ns * 63 / 1000; offsets.right_ns = (target_display_->vsync_period_ns - vblank_ns) / 2; // Check property for overriding right eye offset value. offsets.right_ns = property_get_int64(kRightEyeOffsetProperty, offsets.right_ns); return offsets; }; VsyncEyeOffsets vsync_eye_offsets = get_vsync_eye_offsets(); if (is_standalone_device_) { // First, wait until boot finishes. std::unique_lock lock(post_thread_mutex_); if (PostThreadCondWait(lock, -1, [this] { return boot_finished_; })) { return; } // Then, wait until we're either leaving the quiescent state, or the boot // finished display off timeout expires. if (PostThreadCondWait(lock, kBootFinishedDisplayOffTimeoutSec, [this] { return !post_thread_quiescent_; })) { return; } LOG_ALWAYS_FATAL_IF(post_thread_state_ & PostThreadState::Suspended, "Vr flinger should own the display by now."); post_thread_resumed_ = true; post_thread_ready_.notify_all(); if (!composer_) CreateComposer(); } while (1) { ATRACE_NAME("HardwareComposer::PostThread"); // Check for updated config once per vsync. UpdateConfigBuffer(); while (post_thread_quiescent_) { std::unique_lock lock(post_thread_mutex_); ALOGI("HardwareComposer::PostThread: Entering quiescent state."); if (was_running) { vsync_trace_parity_ = false; ATRACE_INT(kVsyncTraceEventName, 0); } // Tear down resources. OnPostThreadPaused(); was_running = false; post_thread_resumed_ = false; post_thread_ready_.notify_all(); if (PostThreadCondWait(lock, -1, [this] { return !post_thread_quiescent_; })) { // A true return value means we've been asked to quit. return; } post_thread_resumed_ = true; post_thread_ready_.notify_all(); ALOGI("HardwareComposer::PostThread: Exiting quiescent state."); } if (!composer_) CreateComposer(); bool target_display_changed = UpdateTargetDisplay(); bool just_resumed_running = !was_running; was_running = true; if (target_display_changed) vsync_eye_offsets = get_vsync_eye_offsets(); if (just_resumed_running) { OnPostThreadResumed(); // Try to setup the scheduler policy if it failed during startup. Only // attempt to do this on transitions from inactive to active to avoid // spamming the system with RPCs and log messages. if (!thread_policy_setup) { thread_policy_setup = SetThreadPolicy("graphics:high", "/system/performance"); } } if (target_display_changed || just_resumed_running) { // Initialize the last vsync timestamp with the current time. The // predictor below uses this time + the vsync interval in absolute time // units for the initial delay. Once the driver starts reporting vsync the // predictor will sync up with the real vsync. last_vsync_timestamp_ = GetSystemClockNs(); vsync_prediction_interval_ = 1; retire_fence_fds_.clear(); } int64_t vsync_timestamp = 0; { TRACE_FORMAT("wait_vsync|vsync=%u;last_timestamp=%" PRId64 ";prediction_interval=%d|", vsync_count_ + 1, last_vsync_timestamp_, vsync_prediction_interval_); auto status = WaitForPredictedVSync(); ALOGE_IF( !status, "HardwareComposer::PostThread: Failed to wait for vsync event: %s", status.GetErrorMessage().c_str()); // If there was an error either sleeping was interrupted due to pausing or // there was an error getting the latest timestamp. if (!status) continue; // Predicted vsync timestamp for this interval. This is stable because we // use absolute time for the wakeup timer. vsync_timestamp = status.get(); } vsync_trace_parity_ = !vsync_trace_parity_; ATRACE_INT(kVsyncTraceEventName, vsync_trace_parity_ ? 1 : 0); // Advance the vsync counter only if the system is keeping up with hardware // vsync to give clients an indication of the delays. if (vsync_prediction_interval_ == 1) ++vsync_count_; UpdateLayerConfig(); // Publish the vsync event. if (vsync_ring_) { DvrVsync vsync; vsync.vsync_count = vsync_count_; vsync.vsync_timestamp_ns = vsync_timestamp; vsync.vsync_left_eye_offset_ns = vsync_eye_offsets.left_ns; vsync.vsync_right_eye_offset_ns = vsync_eye_offsets.right_ns; vsync.vsync_period_ns = target_display_->vsync_period_ns; vsync_ring_->Publish(vsync); } { // Sleep until shortly before vsync. ATRACE_NAME("sleep"); const int64_t display_time_est_ns = vsync_timestamp + target_display_->vsync_period_ns; const int64_t now_ns = GetSystemClockNs(); const int64_t sleep_time_ns = display_time_est_ns - now_ns - post_thread_config_.frame_post_offset_ns; const int64_t wakeup_time_ns = display_time_est_ns - post_thread_config_.frame_post_offset_ns; ATRACE_INT64("sleep_time_ns", sleep_time_ns); if (sleep_time_ns > 0) { int error = SleepUntil(wakeup_time_ns); ALOGE_IF(error < 0 && error != kPostThreadInterrupted, "HardwareComposer::PostThread: Failed to sleep: %s", strerror(-error)); // If the sleep was interrupted (error == kPostThreadInterrupted), // we still go through and present this frame because we may have set // layers earlier and we want to flush the Composer's internal command // buffer by continuing through to validate and present. } } { auto status = composer_callback_->GetVsyncTime(target_display_->id); // If we failed to read vsync there might be a problem with the driver. // Since there's nothing we can do just behave as though we didn't get an // updated vsync time and let the prediction continue. const int64_t current_vsync_timestamp = status ? status.get() : last_vsync_timestamp_; const bool vsync_delayed = last_vsync_timestamp_ == current_vsync_timestamp; ATRACE_INT("vsync_delayed", vsync_delayed); // If vsync was delayed advance the prediction interval and allow the // fence logic in PostLayers() to skip the frame. if (vsync_delayed) { ALOGW( "HardwareComposer::PostThread: VSYNC timestamp did not advance " "since last frame: timestamp=%" PRId64 " prediction_interval=%d", current_vsync_timestamp, vsync_prediction_interval_); vsync_prediction_interval_++; } else { // We have an updated vsync timestamp, reset the prediction interval. last_vsync_timestamp_ = current_vsync_timestamp; vsync_prediction_interval_ = 1; } } PostLayers(target_display_->id); } } bool HardwareComposer::UpdateTargetDisplay() { bool target_display_changed = false; auto displays = composer_callback_->GetDisplays(); if (displays.external_display_was_hotplugged) { bool was_using_external_display = !target_display_->is_primary; if (was_using_external_display) { // The external display was hotplugged, so make sure to ignore any bad // display errors as we destroy the layers. for (auto& layer: layers_) layer.IgnoreBadDisplayErrorsOnDestroy(true); } if (displays.external_display) { // External display was connected external_display_ = GetDisplayParams(composer_.get(), *displays.external_display, /*is_primary*/ false); if (property_get_bool(kUseExternalDisplayProperty, false)) { ALOGI("External display connected. Switching to external display."); target_display_ = &(*external_display_); target_display_changed = true; } else { ALOGI("External display connected, but sysprop %s is unset, so" " using primary display.", kUseExternalDisplayProperty); if (was_using_external_display) { target_display_ = &primary_display_; target_display_changed = true; } } } else { // External display was disconnected external_display_ = std::nullopt; if (was_using_external_display) { ALOGI("External display disconnected. Switching to primary display."); target_display_ = &primary_display_; target_display_changed = true; } } } if (target_display_changed) { // If we're switching to the external display, turn the primary display off. if (!target_display_->is_primary) { EnableDisplay(primary_display_, false); } // If we're switching to the primary display, and the external display is // still connected, turn the external display off. else if (target_display_->is_primary && external_display_) { EnableDisplay(*external_display_, false); } // Turn the new target display on. EnableDisplay(*target_display_, true); // When we switch displays we need to recreate all the layers, so clear the // current list, which will trigger layer recreation. layers_.clear(); } return target_display_changed; } // Checks for changes in the surface stack and updates the layer config to // accomodate the new stack. void HardwareComposer::UpdateLayerConfig() { std::vector> surfaces; { std::unique_lock lock(post_thread_mutex_); if (!surfaces_changed_ && (!layers_.empty() || surfaces_.empty())) return; surfaces = surfaces_; surfaces_changed_ = false; } ATRACE_NAME("UpdateLayerConfig_HwLayers"); // Sort the new direct surface list by z-order to determine the relative order // of the surfaces. This relative order is used for the HWC z-order value to // insulate VrFlinger and HWC z-order semantics from each other. std::sort(surfaces.begin(), surfaces.end(), [](const auto& a, const auto& b) { return a->z_order() < b->z_order(); }); // Prepare a new layer stack, pulling in layers from the previous // layer stack that are still active and updating their attributes. std::vector layers; size_t layer_index = 0; for (const auto& surface : surfaces) { // The bottom layer is opaque, other layers blend. HWC::BlendMode blending = layer_index == 0 ? HWC::BlendMode::None : HWC::BlendMode::Coverage; // Try to find a layer for this surface in the set of active layers. auto search = std::lower_bound(layers_.begin(), layers_.end(), surface->surface_id()); const bool found = search != layers_.end() && search->GetSurfaceId() == surface->surface_id(); if (found) { // Update the attributes of the layer that may have changed. search->SetBlending(blending); search->SetZOrder(layer_index); // Relative z-order. // Move the existing layer to the new layer set and remove the empty layer // object from the current set. layers.push_back(std::move(*search)); layers_.erase(search); } else { // Insert a layer for the new surface. layers.emplace_back(composer_.get(), *target_display_, surface, blending, HWC::Composition::Device, layer_index); } ALOGI_IF( TRACE, "HardwareComposer::UpdateLayerConfig: layer_index=%zu surface_id=%d", layer_index, layers[layer_index].GetSurfaceId()); layer_index++; } // Sort the new layer stack by ascending surface id. std::sort(layers.begin(), layers.end()); // Replace the previous layer set with the new layer set. The destructor of // the previous set will clean up the remaining Layers that are not moved to // the new layer set. layers_ = std::move(layers); ALOGD_IF(TRACE, "HardwareComposer::UpdateLayerConfig: %zd active layers", layers_.size()); } std::vector>::const_iterator HardwareComposer::VsyncService::FindCallback( const sp& callback) const { sp binder = IInterface::asBinder(callback); return std::find_if(callbacks_.cbegin(), callbacks_.cend(), [&](const sp& callback) { return IInterface::asBinder(callback) == binder; }); } status_t HardwareComposer::VsyncService::registerCallback( const sp callback) { std::lock_guard autolock(mutex_); if (FindCallback(callback) == callbacks_.cend()) { callbacks_.push_back(callback); } return OK; } status_t HardwareComposer::VsyncService::unregisterCallback( const sp callback) { std::lock_guard autolock(mutex_); auto iter = FindCallback(callback); if (iter != callbacks_.cend()) { callbacks_.erase(iter); } return OK; } void HardwareComposer::VsyncService::OnVsync(int64_t vsync_timestamp) { ATRACE_NAME("VsyncService::OnVsync"); std::lock_guard autolock(mutex_); for (auto iter = callbacks_.begin(); iter != callbacks_.end();) { if ((*iter)->onVsync(vsync_timestamp) == android::DEAD_OBJECT) { iter = callbacks_.erase(iter); } else { ++iter; } } } Return HardwareComposer::ComposerCallback::onHotplug( Hwc2::Display display, IComposerCallback::Connection conn) { std::lock_guard lock(mutex_); ALOGI("onHotplug display=%" PRIu64 " conn=%d", display, conn); bool is_primary = !got_first_hotplug_ || display == primary_display_.id; // Our first onHotplug callback is always for the primary display. if (!got_first_hotplug_) { LOG_ALWAYS_FATAL_IF(conn != IComposerCallback::Connection::CONNECTED, "Initial onHotplug callback should be primary display connected"); got_first_hotplug_ = true; } else if (is_primary) { ALOGE("Ignoring unexpected onHotplug() call for primary display"); return Void(); } if (conn == IComposerCallback::Connection::CONNECTED) { if (!is_primary) external_display_ = DisplayInfo(); DisplayInfo& display_info = is_primary ? primary_display_ : *external_display_; display_info.id = display; std::array buffer; snprintf(buffer.data(), buffer.size(), "/sys/class/graphics/fb%" PRIu64 "/vsync_event", display); if (LocalHandle handle{buffer.data(), O_RDONLY}) { ALOGI( "HardwareComposer::ComposerCallback::onHotplug: Driver supports " "vsync_event node for display %" PRIu64, display); display_info.driver_vsync_event_fd = std::move(handle); } else { ALOGI( "HardwareComposer::ComposerCallback::onHotplug: Driver does not " "support vsync_event node for display %" PRIu64, display); } } else if (conn == IComposerCallback::Connection::DISCONNECTED) { external_display_ = std::nullopt; } if (!is_primary) external_display_was_hotplugged_ = true; return Void(); } Return HardwareComposer::ComposerCallback::onRefresh( Hwc2::Display /*display*/) { return hardware::Void(); } Return HardwareComposer::ComposerCallback::onVsync(Hwc2::Display display, int64_t timestamp) { TRACE_FORMAT("vsync_callback|display=%" PRIu64 ";timestamp=%" PRId64 "|", display, timestamp); std::lock_guard lock(mutex_); DisplayInfo* display_info = GetDisplayInfo(display); if (display_info) { display_info->callback_vsync_timestamp = timestamp; } if (primary_display_.id == display && vsync_service_ != nullptr) { vsync_service_->OnVsync(timestamp); } return Void(); } void HardwareComposer::ComposerCallback::SetVsyncService( const sp& vsync_service) { std::lock_guard lock(mutex_); vsync_service_ = vsync_service; } HardwareComposer::ComposerCallback::Displays HardwareComposer::ComposerCallback::GetDisplays() { std::lock_guard lock(mutex_); Displays displays; displays.primary_display = primary_display_.id; if (external_display_) displays.external_display = external_display_->id; if (external_display_was_hotplugged_) { external_display_was_hotplugged_ = false; displays.external_display_was_hotplugged = true; } return displays; } Status HardwareComposer::ComposerCallback::GetVsyncTime( hwc2_display_t display) { std::lock_guard autolock(mutex_); DisplayInfo* display_info = GetDisplayInfo(display); if (!display_info) { ALOGW("Attempt to get vsync time for unknown display %" PRIu64, display); return ErrorStatus(EINVAL); } // See if the driver supports direct vsync events. LocalHandle& event_fd = display_info->driver_vsync_event_fd; if (!event_fd) { // Fall back to returning the last timestamp returned by the vsync // callback. return display_info->callback_vsync_timestamp; } // When the driver supports the vsync_event sysfs node we can use it to // determine the latest vsync timestamp, even if the HWC callback has been // delayed. // The driver returns data in the form "VSYNC=". std::array data; data.fill('\0'); // Seek back to the beginning of the event file. int ret = lseek(event_fd.Get(), 0, SEEK_SET); if (ret < 0) { const int error = errno; ALOGE( "HardwareComposer::ComposerCallback::GetVsyncTime: Failed to seek " "vsync event fd: %s", strerror(error)); return ErrorStatus(error); } // Read the vsync event timestamp. ret = read(event_fd.Get(), data.data(), data.size()); if (ret < 0) { const int error = errno; ALOGE_IF(error != EAGAIN, "HardwareComposer::ComposerCallback::GetVsyncTime: Error " "while reading timestamp: %s", strerror(error)); return ErrorStatus(error); } int64_t timestamp; ret = sscanf(data.data(), "VSYNC=%" PRIu64, reinterpret_cast(×tamp)); if (ret < 0) { const int error = errno; ALOGE( "HardwareComposer::ComposerCallback::GetVsyncTime: Error while " "parsing timestamp: %s", strerror(error)); return ErrorStatus(error); } return {timestamp}; } HardwareComposer::ComposerCallback::DisplayInfo* HardwareComposer::ComposerCallback::GetDisplayInfo(hwc2_display_t display) { if (display == primary_display_.id) { return &primary_display_; } else if (external_display_ && display == external_display_->id) { return &(*external_display_); } return nullptr; } void Layer::Reset() { if (hardware_composer_layer_) { HWC::Error error = composer_->destroyLayer(display_params_.id, hardware_composer_layer_); if (error != HWC::Error::None && (!ignore_bad_display_errors_on_destroy_ || error != HWC::Error::BadDisplay)) { ALOGE("destroyLayer() failed for display %" PRIu64 ", layer %" PRIu64 ". error: %s", display_params_.id, hardware_composer_layer_, error.to_string().c_str()); } hardware_composer_layer_ = 0; } z_order_ = 0; blending_ = HWC::BlendMode::None; composition_type_ = HWC::Composition::Invalid; target_composition_type_ = composition_type_; source_ = EmptyVariant{}; acquire_fence_.Close(); surface_rect_functions_applied_ = false; pending_visibility_settings_ = true; cached_buffer_map_.clear(); ignore_bad_display_errors_on_destroy_ = false; } Layer::Layer(Hwc2::Composer* composer, const DisplayParams& display_params, const std::shared_ptr& surface, HWC::BlendMode blending, HWC::Composition composition_type, size_t z_order) : composer_(composer), display_params_(display_params), z_order_{z_order}, blending_{blending}, target_composition_type_{composition_type}, source_{SourceSurface{surface}} { CommonLayerSetup(); } Layer::Layer(Hwc2::Composer* composer, const DisplayParams& display_params, const std::shared_ptr& buffer, HWC::BlendMode blending, HWC::Composition composition_type, size_t z_order) : composer_(composer), display_params_(display_params), z_order_{z_order}, blending_{blending}, target_composition_type_{composition_type}, source_{SourceBuffer{buffer}} { CommonLayerSetup(); } Layer::~Layer() { Reset(); } Layer::Layer(Layer&& other) noexcept { *this = std::move(other); } Layer& Layer::operator=(Layer&& other) noexcept { if (this != &other) { Reset(); using std::swap; swap(composer_, other.composer_); swap(display_params_, other.display_params_); swap(hardware_composer_layer_, other.hardware_composer_layer_); swap(z_order_, other.z_order_); swap(blending_, other.blending_); swap(composition_type_, other.composition_type_); swap(target_composition_type_, other.target_composition_type_); swap(source_, other.source_); swap(acquire_fence_, other.acquire_fence_); swap(surface_rect_functions_applied_, other.surface_rect_functions_applied_); swap(pending_visibility_settings_, other.pending_visibility_settings_); swap(cached_buffer_map_, other.cached_buffer_map_); swap(ignore_bad_display_errors_on_destroy_, other.ignore_bad_display_errors_on_destroy_); } return *this; } void Layer::UpdateBuffer(const std::shared_ptr& buffer) { if (source_.is()) std::get(source_) = {buffer}; } void Layer::SetBlending(HWC::BlendMode blending) { if (blending_ != blending) { blending_ = blending; pending_visibility_settings_ = true; } } void Layer::SetZOrder(size_t z_order) { if (z_order_ != z_order) { z_order_ = z_order; pending_visibility_settings_ = true; } } IonBuffer* Layer::GetBuffer() { struct Visitor { IonBuffer* operator()(SourceSurface& source) { return source.GetBuffer(); } IonBuffer* operator()(SourceBuffer& source) { return source.GetBuffer(); } IonBuffer* operator()(EmptyVariant) { return nullptr; } }; return source_.Visit(Visitor{}); } void Layer::UpdateVisibilitySettings() { if (pending_visibility_settings_) { pending_visibility_settings_ = false; HWC::Error error; error = composer_->setLayerBlendMode( display_params_.id, hardware_composer_layer_, blending_.cast()); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer blend mode: %s", error.to_string().c_str()); error = composer_->setLayerZOrder(display_params_.id, hardware_composer_layer_, z_order_); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting z_ order: %s", error.to_string().c_str()); } } void Layer::UpdateLayerSettings() { HWC::Error error; UpdateVisibilitySettings(); // TODO(eieio): Use surface attributes or some other mechanism to control // the layer display frame. error = composer_->setLayerDisplayFrame( display_params_.id, hardware_composer_layer_, {0, 0, display_params_.width, display_params_.height}); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer display frame: %s", error.to_string().c_str()); error = composer_->setLayerVisibleRegion( display_params_.id, hardware_composer_layer_, {{0, 0, display_params_.width, display_params_.height}}); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer visible region: %s", error.to_string().c_str()); error = composer_->setLayerPlaneAlpha(display_params_.id, hardware_composer_layer_, 1.0f); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer plane alpha: %s", error.to_string().c_str()); } void Layer::CommonLayerSetup() { HWC::Error error = composer_->createLayer(display_params_.id, &hardware_composer_layer_); ALOGE_IF(error != HWC::Error::None, "Layer::CommonLayerSetup: Failed to create layer on primary " "display: %s", error.to_string().c_str()); UpdateLayerSettings(); } bool Layer::CheckAndUpdateCachedBuffer(std::size_t slot, int buffer_id) { auto search = cached_buffer_map_.find(slot); if (search != cached_buffer_map_.end() && search->second == buffer_id) return true; // Assign or update the buffer slot. if (buffer_id >= 0) cached_buffer_map_[slot] = buffer_id; return false; } void Layer::Prepare() { int right, bottom, id; sp handle; std::size_t slot; // Acquire the next buffer according to the type of source. IfAnyOf::Call(&source_, [&](auto& source) { std::tie(right, bottom, id, handle, acquire_fence_, slot) = source.Acquire(); }); TRACE_FORMAT("Layer::Prepare|buffer_id=%d;slot=%zu|", id, slot); // Update any visibility (blending, z-order) changes that occurred since // last prepare. UpdateVisibilitySettings(); // When a layer is first setup there may be some time before the first // buffer arrives. Setup the HWC layer as a solid color to stall for time // until the first buffer arrives. Once the first buffer arrives there will // always be a buffer for the frame even if it is old. if (!handle.get()) { if (composition_type_ == HWC::Composition::Invalid) { composition_type_ = HWC::Composition::SolidColor; composer_->setLayerCompositionType( display_params_.id, hardware_composer_layer_, composition_type_.cast()); Hwc2::IComposerClient::Color layer_color = {0, 0, 0, 0}; composer_->setLayerColor(display_params_.id, hardware_composer_layer_, layer_color); } else { // The composition type is already set. Nothing else to do until a // buffer arrives. } } else { if (composition_type_ != target_composition_type_) { composition_type_ = target_composition_type_; composer_->setLayerCompositionType( display_params_.id, hardware_composer_layer_, composition_type_.cast()); } // See if the HWC cache already has this buffer. const bool cached = CheckAndUpdateCachedBuffer(slot, id); if (cached) handle = nullptr; HWC::Error error{HWC::Error::None}; error = composer_->setLayerBuffer(display_params_.id, hardware_composer_layer_, slot, handle, acquire_fence_.Get()); ALOGE_IF(error != HWC::Error::None, "Layer::Prepare: Error setting layer buffer: %s", error.to_string().c_str()); if (!surface_rect_functions_applied_) { const float float_right = right; const float float_bottom = bottom; error = composer_->setLayerSourceCrop(display_params_.id, hardware_composer_layer_, {0, 0, float_right, float_bottom}); ALOGE_IF(error != HWC::Error::None, "Layer::Prepare: Error setting layer source crop: %s", error.to_string().c_str()); surface_rect_functions_applied_ = true; } } } void Layer::Finish(int release_fence_fd) { IfAnyOf::Call( &source_, [release_fence_fd](auto& source) { source.Finish(LocalHandle(release_fence_fd)); }); } void Layer::Drop() { acquire_fence_.Close(); } } // namespace dvr } // namespace android