1 /**
2  * \file macros.h
3  * A collection of useful macros.
4  */
5 
6 /*
7  * Mesa 3-D graphics library
8  *
9  * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice shall be included
19  * in all copies or substantial portions of the Software.
20  *
21  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
24  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27  * OTHER DEALINGS IN THE SOFTWARE.
28  */
29 
30 
31 #ifndef MACROS_H
32 #define MACROS_H
33 
34 #include "util/macros.h"
35 #include "util/u_math.h"
36 #include "util/rounding.h"
37 #include "imports.h"
38 
39 
40 /**
41  * \name Integer / float conversion for colors, normals, etc.
42  */
43 /*@{*/
44 
45 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
46 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
47 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
48 
49 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
50 #define FLOAT_TO_UBYTE(X)   ((GLubyte) (GLint) ((X) * 255.0F))
51 
52 
53 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
54 #define BYTE_TO_FLOAT(B)    ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
55 
56 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
57 #define FLOAT_TO_BYTE(X)    ( (((GLint) (255.0F * (X))) - 1) / 2 )
58 
59 
60 /** Convert GLbyte to GLfloat while preserving zero */
61 #define BYTE_TO_FLOATZ(B)   ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
62 
63 
64 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
65 #define BYTE_TO_FLOAT_TEX(B)    ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
66 
67 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
68 #define FLOAT_TO_BYTE_TEX(X)    CLAMP( (GLint) (127.0F * (X)), -128, 127 )
69 
70 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
71 #define USHORT_TO_FLOAT(S)  ((GLfloat) (S) * (1.0F / 65535.0F))
72 
73 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
74 #define FLOAT_TO_USHORT(X)   ((GLuint) ((X) * 65535.0F))
75 
76 
77 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
78 #define SHORT_TO_FLOAT(S)   ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
79 
80 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
81 #define FLOAT_TO_SHORT(X)   ( (((GLint) (65535.0F * (X))) - 1) / 2 )
82 
83 /** Convert GLshort to GLfloat while preserving zero */
84 #define SHORT_TO_FLOATZ(S)   ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
85 
86 
87 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
88 #define SHORT_TO_FLOAT_TEX(S)    ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
89 
90 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
91 #define FLOAT_TO_SHORT_TEX(X)    ( (GLint) (32767.0F * (X)) )
92 
93 
94 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
95 #define UINT_TO_FLOAT(U)    ((GLfloat) ((U) * (1.0F / 4294967295.0)))
96 
97 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
98 #define FLOAT_TO_UINT(X)    ((GLuint) ((X) * 4294967295.0))
99 
100 
101 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
102 #define INT_TO_FLOAT(I)     ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
103 
104 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
105 /* causes overflow:
106 #define FLOAT_TO_INT(X)     ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
107 */
108 /* a close approximation: */
109 #define FLOAT_TO_INT(X)     ( (GLint) (2147483647.0 * (X)) )
110 
111 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
112 #define FLOAT_TO_INT64(X)     ( (GLint64) (9223372036854775807.0 * (double)(X)) )
113 
114 
115 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
116 #define INT_TO_FLOAT_TEX(I)    ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
117 
118 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
119 #define FLOAT_TO_INT_TEX(X)    ( (GLint) (2147483647.0 * (X)) )
120 
121 
122 #define BYTE_TO_UBYTE(b)   ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
123 #define SHORT_TO_UBYTE(s)  ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
124 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
125 #define INT_TO_UBYTE(i)    ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
126 #define UINT_TO_UBYTE(i)   ((GLubyte) ((i) >> 24))
127 
128 
129 #define BYTE_TO_USHORT(b)  ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
130 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
131 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
132 #define INT_TO_USHORT(i)   ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
133 #define UINT_TO_USHORT(i)  ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
134 #define UNCLAMPED_FLOAT_TO_USHORT(us, f)  \
135         us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
136 #define CLAMPED_FLOAT_TO_USHORT(us, f)  \
137         us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) )
138 
139 #define UNCLAMPED_FLOAT_TO_SHORT(s, f)  \
140         s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
141 
142 /***
143  *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
144  *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
145  ***/
146 #ifndef DEBUG
147 /* This function/macro is sensitive to precision.  Test very carefully
148  * if you change it!
149  */
150 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT)				\
151         do {								\
152            fi_type __tmp;						\
153            __tmp.f = (FLT);						\
154            if (__tmp.i < 0)						\
155               UB = (GLubyte) 0;						\
156            else if (__tmp.i >= IEEE_ONE)				\
157               UB = (GLubyte) 255;					\
158            else {							\
159               __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F;		\
160               UB = (GLubyte) __tmp.i;					\
161            }								\
162         } while (0)
163 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT)					\
164         do {								\
165            fi_type __tmp;						\
166            __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F;		\
167            UB = (GLubyte) __tmp.i;					\
168         } while (0)
169 #else
170 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
171 	ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F))
172 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
173 	ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F))
174 #endif
175 
UINT_AS_UNION(GLuint u)176 static fi_type UINT_AS_UNION(GLuint u)
177 {
178    fi_type tmp;
179    tmp.u = u;
180    return tmp;
181 }
182 
INT_AS_UNION(GLint i)183 static inline fi_type INT_AS_UNION(GLint i)
184 {
185    fi_type tmp;
186    tmp.i = i;
187    return tmp;
188 }
189 
FLOAT_AS_UNION(GLfloat f)190 static inline fi_type FLOAT_AS_UNION(GLfloat f)
191 {
192    fi_type tmp;
193    tmp.f = f;
194    return tmp;
195 }
196 
197 /**
198  * Convert a floating point value to an unsigned fixed point value.
199  *
200  * \param frac_bits   The number of bits used to store the fractional part.
201  */
202 static inline uint32_t
U_FIXED(float value,uint32_t frac_bits)203 U_FIXED(float value, uint32_t frac_bits)
204 {
205    value *= (1 << frac_bits);
206    return value < 0.0f ? 0 : (uint32_t) value;
207 }
208 
209 /**
210  * Convert a floating point value to an signed fixed point value.
211  *
212  * \param frac_bits   The number of bits used to store the fractional part.
213  */
214 static inline int32_t
S_FIXED(float value,uint32_t frac_bits)215 S_FIXED(float value, uint32_t frac_bits)
216 {
217    return (int32_t) (value * (1 << frac_bits));
218 }
219 /*@}*/
220 
221 
222 /** Stepping a GLfloat pointer by a byte stride */
223 #define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
224 /** Stepping a GLuint pointer by a byte stride */
225 #define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
226 /** Stepping a GLubyte[4] pointer by a byte stride */
227 #define STRIDE_4UB(p, i)  (p = (GLubyte (*)[4])((GLubyte *)p + i))
228 /** Stepping a GLfloat[4] pointer by a byte stride */
229 #define STRIDE_4F(p, i)  (p = (GLfloat (*)[4])((GLubyte *)p + i))
230 /** Stepping a \p t pointer by a byte stride */
231 #define STRIDE_T(p, t, i)  (p = (t)((GLubyte *)p + i))
232 
233 
234 /**********************************************************************/
235 /** \name 4-element vector operations */
236 /*@{*/
237 
238 /** Zero */
239 #define ZERO_4V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
240 
241 /** Test for equality */
242 #define TEST_EQ_4V(a,b)  ((a)[0] == (b)[0] &&   \
243               (a)[1] == (b)[1] &&   \
244               (a)[2] == (b)[2] &&   \
245               (a)[3] == (b)[3])
246 
247 /** Test for equality (unsigned bytes) */
248 static inline GLboolean
TEST_EQ_4UBV(const GLubyte a[4],const GLubyte b[4])249 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
250 {
251 #if defined(__i386__)
252    return *((const GLuint *) a) == *((const GLuint *) b);
253 #else
254    return TEST_EQ_4V(a, b);
255 #endif
256 }
257 
258 
259 /** Copy a 4-element vector */
260 #define COPY_4V( DST, SRC )         \
261 do {                                \
262    (DST)[0] = (SRC)[0];             \
263    (DST)[1] = (SRC)[1];             \
264    (DST)[2] = (SRC)[2];             \
265    (DST)[3] = (SRC)[3];             \
266 } while (0)
267 
268 /** Copy a 4-element unsigned byte vector */
269 static inline void
COPY_4UBV(GLubyte dst[4],const GLubyte src[4])270 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
271 {
272 #if defined(__i386__)
273    *((GLuint *) dst) = *((GLuint *) src);
274 #else
275    /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
276    COPY_4V(dst, src);
277 #endif
278 }
279 
280 /** Copy \p SZ elements into a 4-element vector */
281 #define COPY_SZ_4V(DST, SZ, SRC)  \
282 do {                              \
283    switch (SZ) {                  \
284    case 4: (DST)[3] = (SRC)[3];   \
285    case 3: (DST)[2] = (SRC)[2];   \
286    case 2: (DST)[1] = (SRC)[1];   \
287    case 1: (DST)[0] = (SRC)[0];   \
288    }                              \
289 } while(0)
290 
291 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
292  * default values to the remaining */
293 #define COPY_CLEAN_4V(DST, SZ, SRC)  \
294 do {                                 \
295       ASSIGN_4V( DST, 0, 0, 0, 1 );  \
296       COPY_SZ_4V( DST, SZ, SRC );    \
297 } while (0)
298 
299 /** Subtraction */
300 #define SUB_4V( DST, SRCA, SRCB )           \
301 do {                                        \
302       (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
303       (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
304       (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
305       (DST)[3] = (SRCA)[3] - (SRCB)[3];     \
306 } while (0)
307 
308 /** Addition */
309 #define ADD_4V( DST, SRCA, SRCB )           \
310 do {                                        \
311       (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
312       (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
313       (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
314       (DST)[3] = (SRCA)[3] + (SRCB)[3];     \
315 } while (0)
316 
317 /** Element-wise multiplication */
318 #define SCALE_4V( DST, SRCA, SRCB )         \
319 do {                                        \
320       (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
321       (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
322       (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
323       (DST)[3] = (SRCA)[3] * (SRCB)[3];     \
324 } while (0)
325 
326 /** In-place addition */
327 #define ACC_4V( DST, SRC )          \
328 do {                                \
329       (DST)[0] += (SRC)[0];         \
330       (DST)[1] += (SRC)[1];         \
331       (DST)[2] += (SRC)[2];         \
332       (DST)[3] += (SRC)[3];         \
333 } while (0)
334 
335 /** Element-wise multiplication and addition */
336 #define ACC_SCALE_4V( DST, SRCA, SRCB )     \
337 do {                                        \
338       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
339       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
340       (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
341       (DST)[3] += (SRCA)[3] * (SRCB)[3];    \
342 } while (0)
343 
344 /** In-place scalar multiplication and addition */
345 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
346 do {                                        \
347       (DST)[0] += S * (SRCB)[0];            \
348       (DST)[1] += S * (SRCB)[1];            \
349       (DST)[2] += S * (SRCB)[2];            \
350       (DST)[3] += S * (SRCB)[3];            \
351 } while (0)
352 
353 /** Scalar multiplication */
354 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
355 do {                                    \
356       (DST)[0] = S * (SRCB)[0];         \
357       (DST)[1] = S * (SRCB)[1];         \
358       (DST)[2] = S * (SRCB)[2];         \
359       (DST)[3] = S * (SRCB)[3];         \
360 } while (0)
361 
362 /** In-place scalar multiplication */
363 #define SELF_SCALE_SCALAR_4V( DST, S ) \
364 do {                                   \
365       (DST)[0] *= S;                   \
366       (DST)[1] *= S;                   \
367       (DST)[2] *= S;                   \
368       (DST)[3] *= S;                   \
369 } while (0)
370 
371 /*@}*/
372 
373 
374 /**********************************************************************/
375 /** \name 3-element vector operations*/
376 /*@{*/
377 
378 /** Zero */
379 #define ZERO_3V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = 0
380 
381 /** Test for equality */
382 #define TEST_EQ_3V(a,b)  \
383    ((a)[0] == (b)[0] &&  \
384     (a)[1] == (b)[1] &&  \
385     (a)[2] == (b)[2])
386 
387 /** Copy a 3-element vector */
388 #define COPY_3V( DST, SRC )         \
389 do {                                \
390    (DST)[0] = (SRC)[0];             \
391    (DST)[1] = (SRC)[1];             \
392    (DST)[2] = (SRC)[2];             \
393 } while (0)
394 
395 /** Copy a 3-element vector with cast */
396 #define COPY_3V_CAST( DST, SRC, CAST )  \
397 do {                                    \
398    (DST)[0] = (CAST)(SRC)[0];           \
399    (DST)[1] = (CAST)(SRC)[1];           \
400    (DST)[2] = (CAST)(SRC)[2];           \
401 } while (0)
402 
403 /** Copy a 3-element float vector */
404 #define COPY_3FV( DST, SRC )        \
405 do {                                \
406    const GLfloat *_tmp = (SRC);     \
407    (DST)[0] = _tmp[0];              \
408    (DST)[1] = _tmp[1];              \
409    (DST)[2] = _tmp[2];              \
410 } while (0)
411 
412 /** Subtraction */
413 #define SUB_3V( DST, SRCA, SRCB )        \
414 do {                                     \
415       (DST)[0] = (SRCA)[0] - (SRCB)[0];  \
416       (DST)[1] = (SRCA)[1] - (SRCB)[1];  \
417       (DST)[2] = (SRCA)[2] - (SRCB)[2];  \
418 } while (0)
419 
420 /** Addition */
421 #define ADD_3V( DST, SRCA, SRCB )       \
422 do {                                    \
423       (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
424       (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
425       (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
426 } while (0)
427 
428 /** In-place scalar multiplication */
429 #define SCALE_3V( DST, SRCA, SRCB )     \
430 do {                                    \
431       (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
432       (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
433       (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
434 } while (0)
435 
436 /** In-place element-wise multiplication */
437 #define SELF_SCALE_3V( DST, SRC )   \
438 do {                                \
439       (DST)[0] *= (SRC)[0];         \
440       (DST)[1] *= (SRC)[1];         \
441       (DST)[2] *= (SRC)[2];         \
442 } while (0)
443 
444 /** In-place addition */
445 #define ACC_3V( DST, SRC )          \
446 do {                                \
447       (DST)[0] += (SRC)[0];         \
448       (DST)[1] += (SRC)[1];         \
449       (DST)[2] += (SRC)[2];         \
450 } while (0)
451 
452 /** Element-wise multiplication and addition */
453 #define ACC_SCALE_3V( DST, SRCA, SRCB )     \
454 do {                                        \
455       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
456       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
457       (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
458 } while (0)
459 
460 /** Scalar multiplication */
461 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
462 do {                                    \
463       (DST)[0] = S * (SRCB)[0];         \
464       (DST)[1] = S * (SRCB)[1];         \
465       (DST)[2] = S * (SRCB)[2];         \
466 } while (0)
467 
468 /** In-place scalar multiplication and addition */
469 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
470 do {                                        \
471       (DST)[0] += S * (SRCB)[0];            \
472       (DST)[1] += S * (SRCB)[1];            \
473       (DST)[2] += S * (SRCB)[2];            \
474 } while (0)
475 
476 /** In-place scalar multiplication */
477 #define SELF_SCALE_SCALAR_3V( DST, S ) \
478 do {                                   \
479       (DST)[0] *= S;                   \
480       (DST)[1] *= S;                   \
481       (DST)[2] *= S;                   \
482 } while (0)
483 
484 /** In-place scalar addition */
485 #define ACC_SCALAR_3V( DST, S )     \
486 do {                                \
487       (DST)[0] += S;                \
488       (DST)[1] += S;                \
489       (DST)[2] += S;                \
490 } while (0)
491 
492 /** Assignment */
493 #define ASSIGN_3V( V, V0, V1, V2 )  \
494 do {                                \
495     V[0] = V0;                      \
496     V[1] = V1;                      \
497     V[2] = V2;                      \
498 } while(0)
499 
500 /*@}*/
501 
502 
503 /**********************************************************************/
504 /** \name 2-element vector operations*/
505 /*@{*/
506 
507 /** Zero */
508 #define ZERO_2V( DST )  (DST)[0] = (DST)[1] = 0
509 
510 /** Copy a 2-element vector */
511 #define COPY_2V( DST, SRC )         \
512 do {                        \
513    (DST)[0] = (SRC)[0];             \
514    (DST)[1] = (SRC)[1];             \
515 } while (0)
516 
517 /** Copy a 2-element vector with cast */
518 #define COPY_2V_CAST( DST, SRC, CAST )      \
519 do {                        \
520    (DST)[0] = (CAST)(SRC)[0];           \
521    (DST)[1] = (CAST)(SRC)[1];           \
522 } while (0)
523 
524 /** Copy a 2-element float vector */
525 #define COPY_2FV( DST, SRC )            \
526 do {                        \
527    const GLfloat *_tmp = (SRC);         \
528    (DST)[0] = _tmp[0];              \
529    (DST)[1] = _tmp[1];              \
530 } while (0)
531 
532 /** Subtraction */
533 #define SUB_2V( DST, SRCA, SRCB )       \
534 do {                        \
535       (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
536       (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
537 } while (0)
538 
539 /** Addition */
540 #define ADD_2V( DST, SRCA, SRCB )       \
541 do {                        \
542       (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
543       (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
544 } while (0)
545 
546 /** In-place scalar multiplication */
547 #define SCALE_2V( DST, SRCA, SRCB )     \
548 do {                        \
549       (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
550       (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
551 } while (0)
552 
553 /** In-place addition */
554 #define ACC_2V( DST, SRC )          \
555 do {                        \
556       (DST)[0] += (SRC)[0];         \
557       (DST)[1] += (SRC)[1];         \
558 } while (0)
559 
560 /** Element-wise multiplication and addition */
561 #define ACC_SCALE_2V( DST, SRCA, SRCB )     \
562 do {                        \
563       (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
564       (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
565 } while (0)
566 
567 /** Scalar multiplication */
568 #define SCALE_SCALAR_2V( DST, S, SRCB )     \
569 do {                        \
570       (DST)[0] = S * (SRCB)[0];         \
571       (DST)[1] = S * (SRCB)[1];         \
572 } while (0)
573 
574 /** In-place scalar multiplication and addition */
575 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
576 do {                        \
577       (DST)[0] += S * (SRCB)[0];        \
578       (DST)[1] += S * (SRCB)[1];        \
579 } while (0)
580 
581 /** In-place scalar multiplication */
582 #define SELF_SCALE_SCALAR_2V( DST, S )      \
583 do {                        \
584       (DST)[0] *= S;                \
585       (DST)[1] *= S;                \
586 } while (0)
587 
588 /** In-place scalar addition */
589 #define ACC_SCALAR_2V( DST, S )         \
590 do {                        \
591       (DST)[0] += S;                \
592       (DST)[1] += S;                \
593 } while (0)
594 
595 /** Assign scalers to short vectors */
596 #define ASSIGN_2V( V, V0, V1 )	\
597 do {				\
598     V[0] = V0;			\
599     V[1] = V1;			\
600 } while(0)
601 
602 /*@}*/
603 
604 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
605  * default values to the remaining components.
606  * The default values are chosen based on \p type.
607  */
608 static inline void
COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4],int sz,const fi_type src[4],GLenum type)609 COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4],
610                             GLenum type)
611 {
612    switch (type) {
613    case GL_FLOAT:
614       ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
615                 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1));
616       break;
617    case GL_INT:
618       ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0),
619                 INT_AS_UNION(0), INT_AS_UNION(1));
620       break;
621    case GL_UNSIGNED_INT:
622       ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0),
623                 UINT_AS_UNION(0), UINT_AS_UNION(1));
624       break;
625    default:
626       ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
627                 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */
628       assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro");
629    }
630    COPY_SZ_4V(dst, sz, src);
631 }
632 
633 /** \name Linear interpolation functions */
634 /*@{*/
635 
636 static inline GLfloat
LINTERP(GLfloat t,GLfloat out,GLfloat in)637 LINTERP(GLfloat t, GLfloat out, GLfloat in)
638 {
639    return out + t * (in - out);
640 }
641 
642 static inline void
INTERP_3F(GLfloat t,GLfloat dst[3],const GLfloat out[3],const GLfloat in[3])643 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
644 {
645    dst[0] = LINTERP( t, out[0], in[0] );
646    dst[1] = LINTERP( t, out[1], in[1] );
647    dst[2] = LINTERP( t, out[2], in[2] );
648 }
649 
650 static inline void
INTERP_4F(GLfloat t,GLfloat dst[4],const GLfloat out[4],const GLfloat in[4])651 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
652 {
653    dst[0] = LINTERP( t, out[0], in[0] );
654    dst[1] = LINTERP( t, out[1], in[1] );
655    dst[2] = LINTERP( t, out[2], in[2] );
656    dst[3] = LINTERP( t, out[3], in[3] );
657 }
658 
659 /*@}*/
660 
661 
662 
663 static inline unsigned
minify(unsigned value,unsigned levels)664 minify(unsigned value, unsigned levels)
665 {
666     return MAX2(1, value >> levels);
667 }
668 
669 /**
670  * Align a value up to an alignment value
671  *
672  * If \c value is not already aligned to the requested alignment value, it
673  * will be rounded up.
674  *
675  * \param value  Value to be rounded
676  * \param alignment  Alignment value to be used.  This must be a power of two.
677  *
678  * \sa ROUND_DOWN_TO()
679  */
680 static inline uintptr_t
ALIGN(uintptr_t value,int32_t alignment)681 ALIGN(uintptr_t value, int32_t alignment)
682 {
683    assert((alignment > 0) && _mesa_is_pow_two(alignment));
684    return (((value) + (alignment) - 1) & ~((alignment) - 1));
685 }
686 
687 /**
688  * Like ALIGN(), but works with a non-power-of-two alignment.
689  */
690 static inline uintptr_t
ALIGN_NPOT(uintptr_t value,int32_t alignment)691 ALIGN_NPOT(uintptr_t value, int32_t alignment)
692 {
693    assert(alignment > 0);
694    return (value + alignment - 1) / alignment * alignment;
695 }
696 
697 /**
698  * Align a value down to an alignment value
699  *
700  * If \c value is not already aligned to the requested alignment value, it
701  * will be rounded down.
702  *
703  * \param value  Value to be rounded
704  * \param alignment  Alignment value to be used.  This must be a power of two.
705  *
706  * \sa ALIGN()
707  */
708 static inline uintptr_t
ROUND_DOWN_TO(uintptr_t value,int32_t alignment)709 ROUND_DOWN_TO(uintptr_t value, int32_t alignment)
710 {
711    assert((alignment > 0) && _mesa_is_pow_two(alignment));
712    return ((value) & ~(alignment - 1));
713 }
714 
715 
716 /** Cross product of two 3-element vectors */
717 static inline void
CROSS3(GLfloat n[3],const GLfloat u[3],const GLfloat v[3])718 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
719 {
720    n[0] = u[1] * v[2] - u[2] * v[1];
721    n[1] = u[2] * v[0] - u[0] * v[2];
722    n[2] = u[0] * v[1] - u[1] * v[0];
723 }
724 
725 
726 /** Dot product of two 2-element vectors */
727 static inline GLfloat
DOT2(const GLfloat a[2],const GLfloat b[2])728 DOT2(const GLfloat a[2], const GLfloat b[2])
729 {
730    return a[0] * b[0] + a[1] * b[1];
731 }
732 
733 static inline GLfloat
DOT3(const GLfloat a[3],const GLfloat b[3])734 DOT3(const GLfloat a[3], const GLfloat b[3])
735 {
736    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
737 }
738 
739 static inline GLfloat
DOT4(const GLfloat a[4],const GLfloat b[4])740 DOT4(const GLfloat a[4], const GLfloat b[4])
741 {
742    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
743 }
744 
745 
746 static inline GLfloat
LEN_SQUARED_3FV(const GLfloat v[3])747 LEN_SQUARED_3FV(const GLfloat v[3])
748 {
749    return DOT3(v, v);
750 }
751 
752 static inline GLfloat
LEN_SQUARED_2FV(const GLfloat v[2])753 LEN_SQUARED_2FV(const GLfloat v[2])
754 {
755    return DOT2(v, v);
756 }
757 
758 
759 static inline GLfloat
LEN_3FV(const GLfloat v[3])760 LEN_3FV(const GLfloat v[3])
761 {
762    return sqrtf(LEN_SQUARED_3FV(v));
763 }
764 
765 static inline GLfloat
LEN_2FV(const GLfloat v[2])766 LEN_2FV(const GLfloat v[2])
767 {
768    return sqrtf(LEN_SQUARED_2FV(v));
769 }
770 
771 
772 /* Normalize a 3-element vector to unit length. */
773 static inline void
NORMALIZE_3FV(GLfloat v[3])774 NORMALIZE_3FV(GLfloat v[3])
775 {
776    GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
777    if (len) {
778       len = 1.0f / sqrtf(len);
779       v[0] *= len;
780       v[1] *= len;
781       v[2] *= len;
782    }
783 }
784 
785 
786 /** Test two floats have opposite signs */
787 static inline GLboolean
DIFFERENT_SIGNS(GLfloat x,GLfloat y)788 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
789 {
790 #ifdef _MSC_VER
791 #pragma warning( push )
792 #pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */
793 #endif
794    return signbit(x) != signbit(y);
795 #ifdef _MSC_VER
796 #pragma warning( pop )
797 #endif
798 }
799 
800 
801 /** casts to silence warnings with some compilers */
802 #define ENUM_TO_INT(E)     ((GLint)(E))
803 #define ENUM_TO_FLOAT(E)   ((GLfloat)(GLint)(E))
804 #define ENUM_TO_DOUBLE(E)  ((GLdouble)(GLint)(E))
805 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
806 
807 
808 /* Stringify */
809 #define STRINGIFY(x) #x
810 
811 #endif
812