1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Analyzes if a function potentially memory bound and if a kernel
12 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUPerfHintAnalysis.h"
18 #include "Utils/AMDGPUBaseInfo.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueMap.h"
30 #include "llvm/Support/CommandLine.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "amdgpu-perf-hint"
35 
36 static cl::opt<unsigned>
37     MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
38                    cl::desc("Function mem bound threshold in %"));
39 
40 static cl::opt<unsigned>
41     LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
42                     cl::desc("Kernel limit wave threshold in %"));
43 
44 static cl::opt<unsigned>
45     IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
46              cl::desc("Indirect access memory instruction weight"));
47 
48 static cl::opt<unsigned>
49     LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
50              cl::desc("Large stride memory access weight"));
51 
52 static cl::opt<unsigned>
53     LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
54                       cl::desc("Large stride memory access threshold"));
55 
56 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
57 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
58 
59 char llvm::AMDGPUPerfHintAnalysis::ID = 0;
60 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
61 
62 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
63                 "Analysis if a function is memory bound", true, true)
64 
65 namespace {
66 
67 struct AMDGPUPerfHint {
68   friend AMDGPUPerfHintAnalysis;
69 
70 public:
AMDGPUPerfHint__anon85a07fef0111::AMDGPUPerfHint71   AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
72                  const TargetLowering *TLI_)
73       : FIM(FIM_), DL(nullptr), TLI(TLI_) {}
74 
75   void runOnFunction(Function &F);
76 
77 private:
78   struct MemAccessInfo {
79     const Value *V;
80     const Value *Base;
81     int64_t Offset;
MemAccessInfo__anon85a07fef0111::AMDGPUPerfHint::MemAccessInfo82     MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
83     bool isLargeStride(MemAccessInfo &Reference) const;
84 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print__anon85a07fef0111::AMDGPUPerfHint::MemAccessInfo85     Printable print() const {
86       return Printable([this](raw_ostream &OS) {
87         OS << "Value: " << *V << '\n'
88            << "Base: " << *Base << " Offset: " << Offset << '\n';
89       });
90     }
91 #endif
92   };
93 
94   MemAccessInfo makeMemAccessInfo(Instruction *) const;
95 
96   MemAccessInfo LastAccess; // Last memory access info
97 
98   AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
99 
100   const DataLayout *DL;
101 
102   AMDGPUAS AS;
103 
104   const TargetLowering *TLI;
105 
106   void visit(const Function &F);
107   static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
108   static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
109 
110   bool isIndirectAccess(const Instruction *Inst) const;
111 
112   /// Check if the instruction is large stride.
113   /// The purpose is to identify memory access pattern like:
114   /// x = a[i];
115   /// y = a[i+1000];
116   /// z = a[i+2000];
117   /// In the above example, the second and third memory access will be marked
118   /// large stride memory access.
119   bool isLargeStride(const Instruction *Inst);
120 
121   bool isGlobalAddr(const Value *V) const;
122   bool isLocalAddr(const Value *V) const;
123   bool isConstantAddr(const Value *V) const;
124 };
125 
getMemoryInstrPtr(const Instruction * Inst)126 static const Value *getMemoryInstrPtr(const Instruction *Inst) {
127   if (auto LI = dyn_cast<LoadInst>(Inst)) {
128     return LI->getPointerOperand();
129   }
130   if (auto SI = dyn_cast<StoreInst>(Inst)) {
131     return SI->getPointerOperand();
132   }
133   if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
134     return AI->getPointerOperand();
135   }
136   if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
137     return AI->getPointerOperand();
138   }
139   if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
140     return MI->getRawDest();
141   }
142 
143   return nullptr;
144 }
145 
isIndirectAccess(const Instruction * Inst) const146 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
147   LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
148   SmallSet<const Value *, 32> WorkSet;
149   SmallSet<const Value *, 32> Visited;
150   if (const Value *MO = getMemoryInstrPtr(Inst)) {
151     if (isGlobalAddr(MO))
152       WorkSet.insert(MO);
153   }
154 
155   while (!WorkSet.empty()) {
156     const Value *V = *WorkSet.begin();
157     WorkSet.erase(*WorkSet.begin());
158     if (!Visited.insert(V).second)
159       continue;
160     LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');
161 
162     if (auto LD = dyn_cast<LoadInst>(V)) {
163       auto M = LD->getPointerOperand();
164       if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
165         LLVM_DEBUG(dbgs() << "    is IA\n");
166         return true;
167       }
168       continue;
169     }
170 
171     if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
172       auto P = GEP->getPointerOperand();
173       WorkSet.insert(P);
174       for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
175         WorkSet.insert(GEP->getOperand(I));
176       continue;
177     }
178 
179     if (auto U = dyn_cast<UnaryInstruction>(V)) {
180       WorkSet.insert(U->getOperand(0));
181       continue;
182     }
183 
184     if (auto BO = dyn_cast<BinaryOperator>(V)) {
185       WorkSet.insert(BO->getOperand(0));
186       WorkSet.insert(BO->getOperand(1));
187       continue;
188     }
189 
190     if (auto S = dyn_cast<SelectInst>(V)) {
191       WorkSet.insert(S->getFalseValue());
192       WorkSet.insert(S->getTrueValue());
193       continue;
194     }
195 
196     if (auto E = dyn_cast<ExtractElementInst>(V)) {
197       WorkSet.insert(E->getVectorOperand());
198       continue;
199     }
200 
201     LLVM_DEBUG(dbgs() << "    dropped\n");
202   }
203 
204   LLVM_DEBUG(dbgs() << "  is not IA\n");
205   return false;
206 }
207 
visit(const Function & F)208 void AMDGPUPerfHint::visit(const Function &F) {
209   auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo()));
210   if (!FIP.second)
211     return;
212 
213   AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second;
214 
215   LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
216 
217   for (auto &B : F) {
218     LastAccess = MemAccessInfo();
219     for (auto &I : B) {
220       if (getMemoryInstrPtr(&I)) {
221         if (isIndirectAccess(&I))
222           ++FI.IAMInstCount;
223         if (isLargeStride(&I))
224           ++FI.LSMInstCount;
225         ++FI.MemInstCount;
226         ++FI.InstCount;
227         continue;
228       }
229       CallSite CS(const_cast<Instruction *>(&I));
230       if (CS) {
231         Function *Callee = CS.getCalledFunction();
232         if (!Callee || Callee->isDeclaration()) {
233           ++FI.InstCount;
234           continue;
235         }
236         if (&F == Callee) // Handle immediate recursion
237           continue;
238 
239         visit(*Callee);
240         auto Loc = FIM.find(Callee);
241 
242         assert(Loc != FIM.end() && "No func info");
243         FI.MemInstCount += Loc->second.MemInstCount;
244         FI.InstCount += Loc->second.InstCount;
245         FI.IAMInstCount += Loc->second.IAMInstCount;
246         FI.LSMInstCount += Loc->second.LSMInstCount;
247       } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
248         TargetLoweringBase::AddrMode AM;
249         auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
250         AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
251         AM.HasBaseReg = !AM.BaseGV;
252         if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
253                                        GEP->getPointerAddressSpace()))
254           // Offset will likely be folded into load or store
255           continue;
256         ++FI.InstCount;
257       } else {
258         ++FI.InstCount;
259       }
260     }
261   }
262 }
263 
runOnFunction(Function & F)264 void AMDGPUPerfHint::runOnFunction(Function &F) {
265   if (FIM.find(&F) != FIM.end())
266     return;
267 
268   const Module &M = *F.getParent();
269   DL = &M.getDataLayout();
270   AS = AMDGPU::getAMDGPUAS(M);
271 
272   visit(F);
273   auto Loc = FIM.find(&F);
274 
275   assert(Loc != FIM.end() && "No func info");
276   LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount
277                     << '\n'
278                     << " IAMInst: " << Loc->second.IAMInstCount << '\n'
279                     << " LSMInst: " << Loc->second.LSMInstCount << '\n'
280                     << " TotalInst: " << Loc->second.InstCount << '\n');
281 
282   auto &FI = Loc->second;
283 
284   if (isMemBound(FI)) {
285     LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
286     NumMemBound++;
287   }
288 
289   if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) {
290     LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
291     NumLimitWave++;
292   }
293 }
294 
isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo & FI)295 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
296   return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh;
297 }
298 
needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo & FI)299 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
300   return ((FI.MemInstCount + FI.IAMInstCount * IAWeight +
301            FI.LSMInstCount * LSWeight) *
302           100 / FI.InstCount) > LimitWaveThresh;
303 }
304 
isGlobalAddr(const Value * V) const305 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
306   if (auto PT = dyn_cast<PointerType>(V->getType())) {
307     unsigned As = PT->getAddressSpace();
308     // Flat likely points to global too.
309     return As == AS.GLOBAL_ADDRESS || As == AS.FLAT_ADDRESS;
310   }
311   return false;
312 }
313 
isLocalAddr(const Value * V) const314 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
315   if (auto PT = dyn_cast<PointerType>(V->getType()))
316     return PT->getAddressSpace() == AS.LOCAL_ADDRESS;
317   return false;
318 }
319 
isLargeStride(const Instruction * Inst)320 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
321   LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
322 
323   MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
324   bool IsLargeStride = MAI.isLargeStride(LastAccess);
325   if (MAI.Base)
326     LastAccess = std::move(MAI);
327 
328   return IsLargeStride;
329 }
330 
331 AMDGPUPerfHint::MemAccessInfo
makeMemAccessInfo(Instruction * Inst) const332 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
333   MemAccessInfo MAI;
334   const Value *MO = getMemoryInstrPtr(Inst);
335 
336   LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
337   // Do not treat local-addr memory access as large stride.
338   if (isLocalAddr(MO))
339     return MAI;
340 
341   MAI.V = MO;
342   MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
343   return MAI;
344 }
345 
isConstantAddr(const Value * V) const346 bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
347   if (auto PT = dyn_cast<PointerType>(V->getType())) {
348     unsigned As = PT->getAddressSpace();
349     return As == AS.CONSTANT_ADDRESS || As == AS.CONSTANT_ADDRESS_32BIT;
350   }
351   return false;
352 }
353 
isLargeStride(MemAccessInfo & Reference) const354 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
355     MemAccessInfo &Reference) const {
356 
357   if (!Base || !Reference.Base || Base != Reference.Base)
358     return false;
359 
360   uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
361                                             : Reference.Offset - Offset;
362   bool Result = Diff > LargeStrideThresh;
363   LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
364                << print() << "<=>\n"
365                << Reference.print() << "Result:" << Result << '\n');
366   return Result;
367 }
368 } // namespace
369 
runOnFunction(Function & F)370 bool AMDGPUPerfHintAnalysis::runOnFunction(Function &F) {
371   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
372   if (!TPC)
373     return false;
374 
375   const TargetMachine &TM = TPC->getTM<TargetMachine>();
376   const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F);
377 
378   AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
379   Analyzer.runOnFunction(F);
380   return false;
381 }
382 
isMemoryBound(const Function * F) const383 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
384   auto FI = FIM.find(F);
385   if (FI == FIM.end())
386     return false;
387 
388   return AMDGPUPerfHint::isMemBound(FI->second);
389 }
390 
needsWaveLimiter(const Function * F) const391 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
392   auto FI = FIM.find(F);
393   if (FI == FIM.end())
394     return false;
395 
396   return AMDGPUPerfHint::needLimitWave(FI->second);
397 }
398