1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #ifndef GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_
31 #define GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_
32 
33 #include <float.h>
34 #include <math.h>
35 
36 #include <google/protobuf/stubs/common.h>
37 #include <google/protobuf/stubs/logging.h>
38 #include <google/protobuf/stubs/mathlimits.h>
39 
40 namespace google {
41 namespace protobuf {
42 namespace internal {
43 template<typename T>
IsNan(T value)44 bool IsNan(T value) {
45   return false;
46 }
47 template<>
IsNan(float value)48 inline bool IsNan(float value) {
49 #ifdef _MSC_VER
50   return _isnan(value);
51 #else
52   return isnan(value);
53 #endif
54 }
55 template<>
IsNan(double value)56 inline bool IsNan(double value) {
57 #ifdef _MSC_VER
58   return _isnan(value);
59 #else
60   return isnan(value);
61 #endif
62 }
63 
64 template<typename T>
AlmostEquals(T a,T b)65 bool AlmostEquals(T a, T b) {
66   return a == b;
67 }
68 template<>
AlmostEquals(float a,float b)69 inline bool AlmostEquals(float a, float b) {
70   return fabs(a - b) < 32 * FLT_EPSILON;
71 }
72 
73 template<>
AlmostEquals(double a,double b)74 inline bool AlmostEquals(double a, double b) {
75   return fabs(a - b) < 32 * DBL_EPSILON;
76 }
77 }  // namespace internal
78 
79 class MathUtil {
80  public:
81   template<typename T>
Sign(T value)82   static T Sign(T value) {
83     if (value == T(0) || ::google::protobuf::internal::IsNan<T>(value)) {
84       return value;
85     }
86     return value > T(0) ? 1 : -1;
87   }
88 
89   template<typename T>
AlmostEquals(T a,T b)90   static bool AlmostEquals(T a, T b) {
91     return ::google::protobuf::internal::AlmostEquals(a, b);
92   }
93 
94   // Largest of two values.
95   // Works correctly for special floating point values.
96   // Note: 0.0 and -0.0 are not differentiated by Max (Max(0.0, -0.0) is -0.0),
97   // which should be OK because, although they (can) have different
98   // bit representation, they are observably the same when examined
99   // with arithmetic and (in)equality operators.
100   template<typename T>
Max(const T x,const T y)101   static T Max(const T x, const T y) {
102     return MathLimits<T>::IsNaN(x) || x > y ? x : y;
103   }
104 
105   // Absolute value of x
106   // Works correctly for unsigned types and
107   // for special floating point values.
108   // Note: 0.0 and -0.0 are not differentiated by Abs (Abs(0.0) is -0.0),
109   // which should be OK: see the comment for Max above.
110   template<typename T>
Abs(const T x)111   static T Abs(const T x) {
112     return x > T(0) ? x : -x;
113   }
114 
115   // Absolute value of the difference between two numbers.
116   // Works correctly for signed types and special floating point values.
117   template<typename T>
AbsDiff(const T x,const T y)118   static typename MathLimits<T>::UnsignedType AbsDiff(const T x, const T y) {
119     // Carries out arithmetic as unsigned to avoid overflow.
120     typedef typename MathLimits<T>::UnsignedType R;
121     return x > y ? R(x) - R(y) : R(y) - R(x);
122   }
123 
124   // If two (usually floating point) numbers are within a certain
125   // fraction of their magnitude or within a certain absolute margin of error.
126   // This is the same as the following but faster:
127   //   WithinFraction(x, y, fraction)  ||  WithinMargin(x, y, margin)
128   // E.g. WithinFraction(0.0, 1e-10, 1e-5) is false but
129   //      WithinFractionOrMargin(0.0, 1e-10, 1e-5, 1e-5) is true.
130   template<typename T>
131   static bool WithinFractionOrMargin(const T x, const T y,
132                                      const T fraction, const T margin);
133 };
134 
135 template<typename T>
WithinFractionOrMargin(const T x,const T y,const T fraction,const T margin)136 bool MathUtil::WithinFractionOrMargin(const T x, const T y,
137                                       const T fraction, const T margin) {
138   // Not just "0 <= fraction" to fool the compiler for unsigned types.
139   GOOGLE_DCHECK((T(0) < fraction || T(0) == fraction) &&
140          fraction < T(1) &&
141          margin >= T(0));
142 
143   // Template specialization will convert the if() condition to a constant,
144   // which will cause the compiler to generate code for either the "if" part
145   // or the "then" part.  In this way we avoid a compiler warning
146   // about a potential integer overflow in crosstool v12 (gcc 4.3.1).
147   if (MathLimits<T>::kIsInteger) {
148     return x == y;
149   } else {
150     // IsFinite checks are to make kPosInf and kNegInf not within fraction
151     if (!MathLimits<T>::IsFinite(x) && !MathLimits<T>::IsFinite(y)) {
152       return false;
153     }
154     T relative_margin = static_cast<T>(fraction * Max(Abs(x), Abs(y)));
155     return AbsDiff(x, y) <= Max(margin, relative_margin);
156   }
157 }
158 
159 }  // namespace protobuf
160 }  // namespace google
161 
162 #endif  // GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_
163