1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/allocation.h"
6
7 #include <stdlib.h> // For free, malloc.
8 #include "src/base/bits.h"
9 #include "src/base/lazy-instance.h"
10 #include "src/base/logging.h"
11 #include "src/base/page-allocator.h"
12 #include "src/base/platform/platform.h"
13 #include "src/utils.h"
14 #include "src/v8.h"
15
16 #if V8_LIBC_BIONIC
17 #include <malloc.h> // NOLINT
18 #endif
19
20 #if defined(LEAK_SANITIZER)
21 #include <sanitizer/lsan_interface.h>
22 #endif
23
24 namespace v8 {
25 namespace internal {
26
27 namespace {
28
AlignedAllocInternal(size_t size,size_t alignment)29 void* AlignedAllocInternal(size_t size, size_t alignment) {
30 void* ptr;
31 #if V8_OS_WIN
32 ptr = _aligned_malloc(size, alignment);
33 #elif V8_LIBC_BIONIC
34 // posix_memalign is not exposed in some Android versions, so we fall back to
35 // memalign. See http://code.google.com/p/android/issues/detail?id=35391.
36 ptr = memalign(alignment, size);
37 #else
38 if (posix_memalign(&ptr, alignment, size)) ptr = nullptr;
39 #endif
40 return ptr;
41 }
42
43 // TODO(bbudge) Simplify this once all embedders implement a page allocator.
44 struct InitializePageAllocator {
Constructv8::internal::__anon6a0f6d3f0111::InitializePageAllocator45 static void Construct(void* page_allocator_ptr_arg) {
46 auto page_allocator_ptr =
47 reinterpret_cast<v8::PageAllocator**>(page_allocator_ptr_arg);
48 v8::PageAllocator* page_allocator =
49 V8::GetCurrentPlatform()->GetPageAllocator();
50 if (page_allocator == nullptr) {
51 static v8::base::PageAllocator default_allocator;
52 page_allocator = &default_allocator;
53 }
54 *page_allocator_ptr = page_allocator;
55 }
56 };
57
58 static base::LazyInstance<v8::PageAllocator*, InitializePageAllocator>::type
59 page_allocator = LAZY_INSTANCE_INITIALIZER;
60
GetPageAllocator()61 v8::PageAllocator* GetPageAllocator() { return page_allocator.Get(); }
62
63 // We will attempt allocation this many times. After each failure, we call
64 // OnCriticalMemoryPressure to try to free some memory.
65 const int kAllocationTries = 2;
66
67 } // namespace
68
New(size_t size)69 void* Malloced::New(size_t size) {
70 void* result = AllocWithRetry(size);
71 if (result == nullptr) {
72 V8::FatalProcessOutOfMemory(nullptr, "Malloced operator new");
73 }
74 return result;
75 }
76
Delete(void * p)77 void Malloced::Delete(void* p) {
78 free(p);
79 }
80
StrDup(const char * str)81 char* StrDup(const char* str) {
82 int length = StrLength(str);
83 char* result = NewArray<char>(length + 1);
84 MemCopy(result, str, length);
85 result[length] = '\0';
86 return result;
87 }
88
StrNDup(const char * str,int n)89 char* StrNDup(const char* str, int n) {
90 int length = StrLength(str);
91 if (n < length) length = n;
92 char* result = NewArray<char>(length + 1);
93 MemCopy(result, str, length);
94 result[length] = '\0';
95 return result;
96 }
97
AllocWithRetry(size_t size)98 void* AllocWithRetry(size_t size) {
99 void* result = nullptr;
100 for (int i = 0; i < kAllocationTries; ++i) {
101 result = malloc(size);
102 if (result != nullptr) break;
103 if (!OnCriticalMemoryPressure(size)) break;
104 }
105 return result;
106 }
107
AlignedAlloc(size_t size,size_t alignment)108 void* AlignedAlloc(size_t size, size_t alignment) {
109 DCHECK_LE(V8_ALIGNOF(void*), alignment);
110 DCHECK(base::bits::IsPowerOfTwo(alignment));
111 void* result = nullptr;
112 for (int i = 0; i < kAllocationTries; ++i) {
113 result = AlignedAllocInternal(size, alignment);
114 if (result != nullptr) break;
115 if (!OnCriticalMemoryPressure(size + alignment)) break;
116 }
117 if (result == nullptr) {
118 V8::FatalProcessOutOfMemory(nullptr, "AlignedAlloc");
119 }
120 return result;
121 }
122
AlignedFree(void * ptr)123 void AlignedFree(void *ptr) {
124 #if V8_OS_WIN
125 _aligned_free(ptr);
126 #elif V8_LIBC_BIONIC
127 // Using free is not correct in general, but for V8_LIBC_BIONIC it is.
128 free(ptr);
129 #else
130 free(ptr);
131 #endif
132 }
133
AllocatePageSize()134 size_t AllocatePageSize() { return GetPageAllocator()->AllocatePageSize(); }
135
CommitPageSize()136 size_t CommitPageSize() { return GetPageAllocator()->CommitPageSize(); }
137
SetRandomMmapSeed(int64_t seed)138 void SetRandomMmapSeed(int64_t seed) {
139 GetPageAllocator()->SetRandomMmapSeed(seed);
140 }
141
GetRandomMmapAddr()142 void* GetRandomMmapAddr() { return GetPageAllocator()->GetRandomMmapAddr(); }
143
AllocatePages(void * address,size_t size,size_t alignment,PageAllocator::Permission access)144 void* AllocatePages(void* address, size_t size, size_t alignment,
145 PageAllocator::Permission access) {
146 DCHECK_EQ(address, AlignedAddress(address, alignment));
147 DCHECK_EQ(0UL, size & (GetPageAllocator()->AllocatePageSize() - 1));
148 void* result = nullptr;
149 for (int i = 0; i < kAllocationTries; ++i) {
150 result =
151 GetPageAllocator()->AllocatePages(address, size, alignment, access);
152 if (result != nullptr) break;
153 size_t request_size = size + alignment - AllocatePageSize();
154 if (!OnCriticalMemoryPressure(request_size)) break;
155 }
156 #if defined(LEAK_SANITIZER)
157 if (result != nullptr) {
158 __lsan_register_root_region(result, size);
159 }
160 #endif
161 return result;
162 }
163
FreePages(void * address,const size_t size)164 bool FreePages(void* address, const size_t size) {
165 DCHECK_EQ(0UL, size & (GetPageAllocator()->AllocatePageSize() - 1));
166 bool result = GetPageAllocator()->FreePages(address, size);
167 #if defined(LEAK_SANITIZER)
168 if (result) {
169 __lsan_unregister_root_region(address, size);
170 }
171 #endif
172 return result;
173 }
174
ReleasePages(void * address,size_t size,size_t new_size)175 bool ReleasePages(void* address, size_t size, size_t new_size) {
176 DCHECK_LT(new_size, size);
177 bool result = GetPageAllocator()->ReleasePages(address, size, new_size);
178 #if defined(LEAK_SANITIZER)
179 if (result) {
180 __lsan_unregister_root_region(address, size);
181 __lsan_register_root_region(address, new_size);
182 }
183 #endif
184 return result;
185 }
186
SetPermissions(void * address,size_t size,PageAllocator::Permission access)187 bool SetPermissions(void* address, size_t size,
188 PageAllocator::Permission access) {
189 return GetPageAllocator()->SetPermissions(address, size, access);
190 }
191
AllocatePage(void * address,size_t * allocated)192 byte* AllocatePage(void* address, size_t* allocated) {
193 size_t page_size = AllocatePageSize();
194 void* result =
195 AllocatePages(address, page_size, page_size, PageAllocator::kReadWrite);
196 if (result != nullptr) *allocated = page_size;
197 return static_cast<byte*>(result);
198 }
199
OnCriticalMemoryPressure(size_t length)200 bool OnCriticalMemoryPressure(size_t length) {
201 // TODO(bbudge) Rework retry logic once embedders implement the more
202 // informative overload.
203 if (!V8::GetCurrentPlatform()->OnCriticalMemoryPressure(length)) {
204 V8::GetCurrentPlatform()->OnCriticalMemoryPressure();
205 }
206 return true;
207 }
208
VirtualMemory()209 VirtualMemory::VirtualMemory() : address_(kNullAddress), size_(0) {}
210
VirtualMemory(size_t size,void * hint,size_t alignment)211 VirtualMemory::VirtualMemory(size_t size, void* hint, size_t alignment)
212 : address_(kNullAddress), size_(0) {
213 size_t page_size = AllocatePageSize();
214 size_t alloc_size = RoundUp(size, page_size);
215 address_ = reinterpret_cast<Address>(
216 AllocatePages(hint, alloc_size, alignment, PageAllocator::kNoAccess));
217 if (address_ != kNullAddress) {
218 size_ = alloc_size;
219 }
220 }
221
~VirtualMemory()222 VirtualMemory::~VirtualMemory() {
223 if (IsReserved()) {
224 Free();
225 }
226 }
227
Reset()228 void VirtualMemory::Reset() {
229 address_ = kNullAddress;
230 size_ = 0;
231 }
232
SetPermissions(Address address,size_t size,PageAllocator::Permission access)233 bool VirtualMemory::SetPermissions(Address address, size_t size,
234 PageAllocator::Permission access) {
235 CHECK(InVM(address, size));
236 bool result = v8::internal::SetPermissions(address, size, access);
237 DCHECK(result);
238 return result;
239 }
240
Release(Address free_start)241 size_t VirtualMemory::Release(Address free_start) {
242 DCHECK(IsReserved());
243 DCHECK(IsAddressAligned(free_start, CommitPageSize()));
244 // Notice: Order is important here. The VirtualMemory object might live
245 // inside the allocated region.
246 const size_t free_size = size_ - (free_start - address_);
247 CHECK(InVM(free_start, free_size));
248 DCHECK_LT(address_, free_start);
249 DCHECK_LT(free_start, address_ + size_);
250 CHECK(ReleasePages(reinterpret_cast<void*>(address_), size_,
251 size_ - free_size));
252 size_ -= free_size;
253 return free_size;
254 }
255
Free()256 void VirtualMemory::Free() {
257 DCHECK(IsReserved());
258 // Notice: Order is important here. The VirtualMemory object might live
259 // inside the allocated region.
260 Address address = address_;
261 size_t size = size_;
262 CHECK(InVM(address, size));
263 Reset();
264 // FreePages expects size to be aligned to allocation granularity. Trimming
265 // may leave size at only commit granularity. Align it here.
266 CHECK(FreePages(reinterpret_cast<void*>(address),
267 RoundUp(size, AllocatePageSize())));
268 }
269
TakeControl(VirtualMemory * from)270 void VirtualMemory::TakeControl(VirtualMemory* from) {
271 DCHECK(!IsReserved());
272 address_ = from->address_;
273 size_ = from->size_;
274 from->Reset();
275 }
276
AllocVirtualMemory(size_t size,void * hint,VirtualMemory * result)277 bool AllocVirtualMemory(size_t size, void* hint, VirtualMemory* result) {
278 VirtualMemory vm(size, hint);
279 if (vm.IsReserved()) {
280 result->TakeControl(&vm);
281 return true;
282 }
283 return false;
284 }
285
AlignedAllocVirtualMemory(size_t size,size_t alignment,void * hint,VirtualMemory * result)286 bool AlignedAllocVirtualMemory(size_t size, size_t alignment, void* hint,
287 VirtualMemory* result) {
288 VirtualMemory vm(size, hint, alignment);
289 if (vm.IsReserved()) {
290 result->TakeControl(&vm);
291 return true;
292 }
293 return false;
294 }
295
296 } // namespace internal
297 } // namespace v8
298