1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_
18 #define ART_RUNTIME_BASE_MUTEX_INL_H_
19 
20 #include <inttypes.h>
21 
22 #include "mutex.h"
23 
24 #include "base/utils.h"
25 #include "base/value_object.h"
26 #include "thread.h"
27 
28 #if ART_USE_FUTEXES
29 #include "linux/futex.h"
30 #include "sys/syscall.h"
31 #ifndef SYS_futex
32 #define SYS_futex __NR_futex
33 #endif
34 #endif  // ART_USE_FUTEXES
35 
36 #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_)
37 
38 namespace art {
39 
40 #if ART_USE_FUTEXES
futex(volatile int * uaddr,int op,int val,const struct timespec * timeout,volatile int * uaddr2,int val3)41 static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout,
42                         volatile int *uaddr2, int val3) {
43   return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3);
44 }
45 #endif  // ART_USE_FUTEXES
46 
47 // The following isn't strictly necessary, but we want updates on Atomic<pid_t> to be lock-free.
48 // TODO: Use std::atomic::is_always_lock_free after switching to C++17 atomics.
49 static_assert(sizeof(pid_t) <= sizeof(int32_t), "pid_t should fit in 32 bits");
50 
SafeGetTid(const Thread * self)51 static inline pid_t SafeGetTid(const Thread* self) {
52   if (self != nullptr) {
53     return self->GetTid();
54   } else {
55     return GetTid();
56   }
57 }
58 
CheckUnattachedThread(LockLevel level)59 static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS {
60   // The check below enumerates the cases where we expect not to be able to sanity check locks
61   // on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock.
62   // TODO: tighten this check.
63   if (kDebugLocking) {
64     CHECK(!Locks::IsSafeToCallAbortRacy() ||
65           // Used during thread creation to avoid races with runtime shutdown. Thread::Current not
66           // yet established.
67           level == kRuntimeShutdownLock ||
68           // Thread Ids are allocated/released before threads are established.
69           level == kAllocatedThreadIdsLock ||
70           // Thread LDT's are initialized without Thread::Current established.
71           level == kModifyLdtLock ||
72           // Threads are unregistered while holding the thread list lock, during this process they
73           // no longer exist and so we expect an unlock with no self.
74           level == kThreadListLock ||
75           // Ignore logging which may or may not have set up thread data structures.
76           level == kLoggingLock ||
77           // When transitioning from suspended to runnable, a daemon thread might be in
78           // a situation where the runtime is shutting down. To not crash our debug locking
79           // mechanism we just pass null Thread* to the MutexLock during that transition
80           // (see Thread::TransitionFromSuspendedToRunnable).
81           level == kThreadSuspendCountLock ||
82           // Avoid recursive death.
83           level == kAbortLock ||
84           // Locks at the absolute top of the stack can be locked at any time.
85           level == kTopLockLevel) << level;
86   }
87 }
88 
RegisterAsLocked(Thread * self)89 inline void BaseMutex::RegisterAsLocked(Thread* self) {
90   if (UNLIKELY(self == nullptr)) {
91     CheckUnattachedThread(level_);
92     return;
93   }
94   LockLevel level = level_;
95   // It would be nice to avoid this condition checking in the non-debug case,
96   // but that would make the various methods that check if a mutex is held not
97   // work properly for thread wait locks. Since the vast majority of lock
98   // acquisitions are not thread wait locks, this check should not be too
99   // expensive.
100   if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitLock) != nullptr) {
101     level = kThreadWaitWakeLock;
102   }
103   if (kDebugLocking) {
104     // Check if a bad Mutex of this level or lower is held.
105     bool bad_mutexes_held = false;
106     // Specifically allow a kTopLockLevel lock to be gained when the current thread holds the
107     // mutator_lock_ exclusive. This is because we suspending when holding locks at this level is
108     // not allowed and if we hold the mutator_lock_ exclusive we must unsuspend stuff eventually
109     // so there are no deadlocks.
110     if (level == kTopLockLevel &&
111         Locks::mutator_lock_->IsSharedHeld(self) &&
112         !Locks::mutator_lock_->IsExclusiveHeld(self)) {
113       LOG(ERROR) << "Lock level violation: holding \"" << Locks::mutator_lock_->name_ << "\" "
114                   << "(level " << kMutatorLock << " - " << static_cast<int>(kMutatorLock)
115                   << ") non-exclusive while locking \"" << name_ << "\" "
116                   << "(level " << level << " - " << static_cast<int>(level) << ") a top level"
117                   << "mutex. This is not allowed.";
118       bad_mutexes_held = true;
119     } else if (this == Locks::mutator_lock_ && self->GetHeldMutex(kTopLockLevel) != nullptr) {
120       LOG(ERROR) << "Lock level violation. Locking mutator_lock_ while already having a "
121                  << "kTopLevelLock (" << self->GetHeldMutex(kTopLockLevel)->name_ << "held is "
122                  << "not allowed.";
123       bad_mutexes_held = true;
124     }
125     for (int i = level; i >= 0; --i) {
126       LockLevel lock_level_i = static_cast<LockLevel>(i);
127       BaseMutex* held_mutex = self->GetHeldMutex(lock_level_i);
128       if (level == kTopLockLevel &&
129           lock_level_i == kMutatorLock &&
130           Locks::mutator_lock_->IsExclusiveHeld(self)) {
131         // This is checked above.
132         continue;
133       } else if (UNLIKELY(held_mutex != nullptr) && lock_level_i != kAbortLock) {
134         LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" "
135                    << "(level " << lock_level_i << " - " << i
136                    << ") while locking \"" << name_ << "\" "
137                    << "(level " << level << " - " << static_cast<int>(level) << ")";
138         if (lock_level_i > kAbortLock) {
139           // Only abort in the check below if this is more than abort level lock.
140           bad_mutexes_held = true;
141         }
142       }
143     }
144     if (gAborting == 0) {  // Avoid recursive aborts.
145       CHECK(!bad_mutexes_held);
146     }
147   }
148   // Don't record monitors as they are outside the scope of analysis. They may be inspected off of
149   // the monitor list.
150   if (level != kMonitorLock) {
151     self->SetHeldMutex(level, this);
152   }
153 }
154 
RegisterAsUnlocked(Thread * self)155 inline void BaseMutex::RegisterAsUnlocked(Thread* self) {
156   if (UNLIKELY(self == nullptr)) {
157     CheckUnattachedThread(level_);
158     return;
159   }
160   if (level_ != kMonitorLock) {
161     auto level = level_;
162     if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitWakeLock) == this) {
163       level = kThreadWaitWakeLock;
164     }
165     if (kDebugLocking && gAborting == 0) {  // Avoid recursive aborts.
166       if (level == kThreadWaitWakeLock) {
167         CHECK(self->GetHeldMutex(kThreadWaitLock) != nullptr) << "Held " << kThreadWaitWakeLock << " without " << kThreadWaitLock;;
168       }
169       CHECK(self->GetHeldMutex(level) == this) << "Unlocking on unacquired mutex: " << name_;
170     }
171     self->SetHeldMutex(level, nullptr);
172   }
173 }
174 
SharedLock(Thread * self)175 inline void ReaderWriterMutex::SharedLock(Thread* self) {
176   DCHECK(self == nullptr || self == Thread::Current());
177 #if ART_USE_FUTEXES
178   bool done = false;
179   do {
180     int32_t cur_state = state_.load(std::memory_order_relaxed);
181     if (LIKELY(cur_state >= 0)) {
182       // Add as an extra reader.
183       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
184     } else {
185       HandleSharedLockContention(self, cur_state);
186     }
187   } while (!done);
188 #else
189   CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_));
190 #endif
191   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
192   RegisterAsLocked(self);
193   AssertSharedHeld(self);
194 }
195 
SharedUnlock(Thread * self)196 inline void ReaderWriterMutex::SharedUnlock(Thread* self) {
197   DCHECK(self == nullptr || self == Thread::Current());
198   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
199   AssertSharedHeld(self);
200   RegisterAsUnlocked(self);
201 #if ART_USE_FUTEXES
202   bool done = false;
203   do {
204     int32_t cur_state = state_.load(std::memory_order_relaxed);
205     if (LIKELY(cur_state > 0)) {
206       // Reduce state by 1 and impose lock release load/store ordering.
207       // Note, the relaxed loads below musn't reorder before the CompareAndSet.
208       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
209       // a status bit into the state on contention.
210       done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, cur_state - 1);
211       if (done && (cur_state - 1) == 0) {  // Weak CAS may fail spuriously.
212         if (num_pending_writers_.load(std::memory_order_seq_cst) > 0 ||
213             num_pending_readers_.load(std::memory_order_seq_cst) > 0) {
214           // Wake any exclusive waiters as there are now no readers.
215           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
216         }
217       }
218     } else {
219       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
220     }
221   } while (!done);
222 #else
223   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
224 #endif
225 }
226 
IsExclusiveHeld(const Thread * self)227 inline bool Mutex::IsExclusiveHeld(const Thread* self) const {
228   DCHECK(self == nullptr || self == Thread::Current());
229   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
230   if (kDebugLocking) {
231     // Sanity debug check that if we think it is locked we have it in our held mutexes.
232     if (result && self != nullptr && level_ != kMonitorLock && !gAborting) {
233       if (level_ == kThreadWaitLock && self->GetHeldMutex(kThreadWaitLock) != this) {
234         CHECK_EQ(self->GetHeldMutex(kThreadWaitWakeLock), this);
235       } else {
236         CHECK_EQ(self->GetHeldMutex(level_), this);
237       }
238     }
239   }
240   return result;
241 }
242 
GetExclusiveOwnerTid()243 inline pid_t Mutex::GetExclusiveOwnerTid() const {
244   return exclusive_owner_.load(std::memory_order_relaxed);
245 }
246 
AssertExclusiveHeld(const Thread * self)247 inline void Mutex::AssertExclusiveHeld(const Thread* self) const {
248   if (kDebugLocking && (gAborting == 0)) {
249     CHECK(IsExclusiveHeld(self)) << *this;
250   }
251 }
252 
AssertHeld(const Thread * self)253 inline void Mutex::AssertHeld(const Thread* self) const {
254   AssertExclusiveHeld(self);
255 }
256 
IsExclusiveHeld(const Thread * self)257 inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const {
258   DCHECK(self == nullptr || self == Thread::Current());
259   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
260   if (kDebugLocking) {
261     // Sanity that if the pthread thinks we own the lock the Thread agrees.
262     if (self != nullptr && result)  {
263       CHECK_EQ(self->GetHeldMutex(level_), this);
264     }
265   }
266   return result;
267 }
268 
GetExclusiveOwnerTid()269 inline pid_t ReaderWriterMutex::GetExclusiveOwnerTid() const {
270 #if ART_USE_FUTEXES
271   int32_t state = state_.load(std::memory_order_relaxed);
272   if (state == 0) {
273     return 0;  // No owner.
274   } else if (state > 0) {
275     return -1;  // Shared.
276   } else {
277     return exclusive_owner_.load(std::memory_order_relaxed);
278   }
279 #else
280   return exclusive_owner_.load(std::memory_order_relaxed);
281 #endif
282 }
283 
AssertExclusiveHeld(const Thread * self)284 inline void ReaderWriterMutex::AssertExclusiveHeld(const Thread* self) const {
285   if (kDebugLocking && (gAborting == 0)) {
286     CHECK(IsExclusiveHeld(self)) << *this;
287   }
288 }
289 
AssertWriterHeld(const Thread * self)290 inline void ReaderWriterMutex::AssertWriterHeld(const Thread* self) const {
291   AssertExclusiveHeld(self);
292 }
293 
TransitionFromRunnableToSuspended(Thread * self)294 inline void MutatorMutex::TransitionFromRunnableToSuspended(Thread* self) {
295   AssertSharedHeld(self);
296   RegisterAsUnlocked(self);
297 }
298 
TransitionFromSuspendedToRunnable(Thread * self)299 inline void MutatorMutex::TransitionFromSuspendedToRunnable(Thread* self) {
300   RegisterAsLocked(self);
301   AssertSharedHeld(self);
302 }
303 
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)304 inline ReaderMutexLock::ReaderMutexLock(Thread* self, ReaderWriterMutex& mu)
305     : self_(self), mu_(mu) {
306   mu_.SharedLock(self_);
307 }
308 
~ReaderMutexLock()309 inline ReaderMutexLock::~ReaderMutexLock() {
310   mu_.SharedUnlock(self_);
311 }
312 
313 }  // namespace art
314 
315 #endif  // ART_RUNTIME_BASE_MUTEX_INL_H_
316