1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "inline"
17 #include "llvm/Module.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/InlineCost.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Transforms/IPO/InlinerPass.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 using namespace llvm;
33 
34 STATISTIC(NumInlined, "Number of functions inlined");
35 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
36 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
37 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
38 
39 static cl::opt<int>
40 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
41         cl::desc("Control the amount of inlining to perform (default = 225)"));
42 
43 static cl::opt<int>
44 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
45               cl::desc("Threshold for inlining functions with inline hint"));
46 
47 // Threshold to use when optsize is specified (and there is no -inline-limit).
48 const int OptSizeThreshold = 75;
49 
Inliner(char & ID)50 Inliner::Inliner(char &ID)
51   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit) {}
52 
Inliner(char & ID,int Threshold)53 Inliner::Inliner(char &ID, int Threshold)
54   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
55                                           InlineLimit : Threshold) {}
56 
57 /// getAnalysisUsage - For this class, we declare that we require and preserve
58 /// the call graph.  If the derived class implements this method, it should
59 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & Info) const60 void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
61   CallGraphSCCPass::getAnalysisUsage(Info);
62 }
63 
64 
65 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
66 InlinedArrayAllocasTy;
67 
68 /// InlineCallIfPossible - If it is possible to inline the specified call site,
69 /// do so and update the CallGraph for this operation.
70 ///
71 /// This function also does some basic book-keeping to update the IR.  The
72 /// InlinedArrayAllocas map keeps track of any allocas that are already
73 /// available from other  functions inlined into the caller.  If we are able to
74 /// inline this call site we attempt to reuse already available allocas or add
75 /// any new allocas to the set if not possible.
InlineCallIfPossible(CallSite CS,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory)76 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
77                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
78                                  int InlineHistory) {
79   Function *Callee = CS.getCalledFunction();
80   Function *Caller = CS.getCaller();
81 
82   // Try to inline the function.  Get the list of static allocas that were
83   // inlined.
84   if (!InlineFunction(CS, IFI))
85     return false;
86 
87   // If the inlined function had a higher stack protection level than the
88   // calling function, then bump up the caller's stack protection level.
89   if (Callee->hasFnAttr(Attribute::StackProtectReq))
90     Caller->addFnAttr(Attribute::StackProtectReq);
91   else if (Callee->hasFnAttr(Attribute::StackProtect) &&
92            !Caller->hasFnAttr(Attribute::StackProtectReq))
93     Caller->addFnAttr(Attribute::StackProtect);
94 
95   // Look at all of the allocas that we inlined through this call site.  If we
96   // have already inlined other allocas through other calls into this function,
97   // then we know that they have disjoint lifetimes and that we can merge them.
98   //
99   // There are many heuristics possible for merging these allocas, and the
100   // different options have different tradeoffs.  One thing that we *really*
101   // don't want to hurt is SRoA: once inlining happens, often allocas are no
102   // longer address taken and so they can be promoted.
103   //
104   // Our "solution" for that is to only merge allocas whose outermost type is an
105   // array type.  These are usually not promoted because someone is using a
106   // variable index into them.  These are also often the most important ones to
107   // merge.
108   //
109   // A better solution would be to have real memory lifetime markers in the IR
110   // and not have the inliner do any merging of allocas at all.  This would
111   // allow the backend to do proper stack slot coloring of all allocas that
112   // *actually make it to the backend*, which is really what we want.
113   //
114   // Because we don't have this information, we do this simple and useful hack.
115   //
116   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
117 
118   // When processing our SCC, check to see if CS was inlined from some other
119   // call site.  For example, if we're processing "A" in this code:
120   //   A() { B() }
121   //   B() { x = alloca ... C() }
122   //   C() { y = alloca ... }
123   // Assume that C was not inlined into B initially, and so we're processing A
124   // and decide to inline B into A.  Doing this makes an alloca available for
125   // reuse and makes a callsite (C) available for inlining.  When we process
126   // the C call site we don't want to do any alloca merging between X and Y
127   // because their scopes are not disjoint.  We could make this smarter by
128   // keeping track of the inline history for each alloca in the
129   // InlinedArrayAllocas but this isn't likely to be a significant win.
130   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
131     return true;
132 
133   // Loop over all the allocas we have so far and see if they can be merged with
134   // a previously inlined alloca.  If not, remember that we had it.
135   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
136        AllocaNo != e; ++AllocaNo) {
137     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
138 
139     // Don't bother trying to merge array allocations (they will usually be
140     // canonicalized to be an allocation *of* an array), or allocations whose
141     // type is not itself an array (because we're afraid of pessimizing SRoA).
142     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
143     if (ATy == 0 || AI->isArrayAllocation())
144       continue;
145 
146     // Get the list of all available allocas for this array type.
147     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
148 
149     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
150     // that we have to be careful not to reuse the same "available" alloca for
151     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
152     // set to keep track of which "available" allocas are being used by this
153     // function.  Also, AllocasForType can be empty of course!
154     bool MergedAwayAlloca = false;
155     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
156       AllocaInst *AvailableAlloca = AllocasForType[i];
157 
158       // The available alloca has to be in the right function, not in some other
159       // function in this SCC.
160       if (AvailableAlloca->getParent() != AI->getParent())
161         continue;
162 
163       // If the inlined function already uses this alloca then we can't reuse
164       // it.
165       if (!UsedAllocas.insert(AvailableAlloca))
166         continue;
167 
168       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
169       // success!
170       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
171                    << *AvailableAlloca << '\n');
172 
173       AI->replaceAllUsesWith(AvailableAlloca);
174       AI->eraseFromParent();
175       MergedAwayAlloca = true;
176       ++NumMergedAllocas;
177       IFI.StaticAllocas[AllocaNo] = 0;
178       break;
179     }
180 
181     // If we already nuked the alloca, we're done with it.
182     if (MergedAwayAlloca)
183       continue;
184 
185     // If we were unable to merge away the alloca either because there are no
186     // allocas of the right type available or because we reused them all
187     // already, remember that this alloca came from an inlined function and mark
188     // it used so we don't reuse it for other allocas from this inline
189     // operation.
190     AllocasForType.push_back(AI);
191     UsedAllocas.insert(AI);
192   }
193 
194   return true;
195 }
196 
getInlineThreshold(CallSite CS) const197 unsigned Inliner::getInlineThreshold(CallSite CS) const {
198   int thres = InlineThreshold;
199 
200   // Listen to optsize when -inline-limit is not given.
201   Function *Caller = CS.getCaller();
202   if (Caller && !Caller->isDeclaration() &&
203       Caller->hasFnAttr(Attribute::OptimizeForSize) &&
204       InlineLimit.getNumOccurrences() == 0)
205     thres = OptSizeThreshold;
206 
207   // Listen to inlinehint when it would increase the threshold.
208   Function *Callee = CS.getCalledFunction();
209   if (HintThreshold > thres && Callee && !Callee->isDeclaration() &&
210       Callee->hasFnAttr(Attribute::InlineHint))
211     thres = HintThreshold;
212 
213   return thres;
214 }
215 
216 /// shouldInline - Return true if the inliner should attempt to inline
217 /// at the given CallSite.
shouldInline(CallSite CS)218 bool Inliner::shouldInline(CallSite CS) {
219   InlineCost IC = getInlineCost(CS);
220 
221   if (IC.isAlways()) {
222     DEBUG(dbgs() << "    Inlining: cost=always"
223           << ", Call: " << *CS.getInstruction() << "\n");
224     return true;
225   }
226 
227   if (IC.isNever()) {
228     DEBUG(dbgs() << "    NOT Inlining: cost=never"
229           << ", Call: " << *CS.getInstruction() << "\n");
230     return false;
231   }
232 
233   int Cost = IC.getValue();
234   Function *Caller = CS.getCaller();
235   int CurrentThreshold = getInlineThreshold(CS);
236   float FudgeFactor = getInlineFudgeFactor(CS);
237   int AdjThreshold = (int)(CurrentThreshold * FudgeFactor);
238   if (Cost >= AdjThreshold) {
239     DEBUG(dbgs() << "    NOT Inlining: cost=" << Cost
240           << ", thres=" << AdjThreshold
241           << ", Call: " << *CS.getInstruction() << "\n");
242     return false;
243   }
244 
245   // Try to detect the case where the current inlining candidate caller
246   // (call it B) is a static function and is an inlining candidate elsewhere,
247   // and the current candidate callee (call it C) is large enough that
248   // inlining it into B would make B too big to inline later.  In these
249   // circumstances it may be best not to inline C into B, but to inline B
250   // into its callers.
251   if (Caller->hasLocalLinkage()) {
252     int TotalSecondaryCost = 0;
253     bool outerCallsFound = false;
254     // This bool tracks what happens if we do NOT inline C into B.
255     bool callerWillBeRemoved = true;
256     // This bool tracks what happens if we DO inline C into B.
257     bool inliningPreventsSomeOuterInline = false;
258     for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
259          I != E; ++I) {
260       CallSite CS2(*I);
261 
262       // If this isn't a call to Caller (it could be some other sort
263       // of reference) skip it.  Such references will prevent the caller
264       // from being removed.
265       if (!CS2 || CS2.getCalledFunction() != Caller) {
266         callerWillBeRemoved = false;
267         continue;
268       }
269 
270       InlineCost IC2 = getInlineCost(CS2);
271       if (IC2.isNever())
272         callerWillBeRemoved = false;
273       if (IC2.isAlways() || IC2.isNever())
274         continue;
275 
276       outerCallsFound = true;
277       int Cost2 = IC2.getValue();
278       int CurrentThreshold2 = getInlineThreshold(CS2);
279       float FudgeFactor2 = getInlineFudgeFactor(CS2);
280 
281       if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
282         callerWillBeRemoved = false;
283 
284       // See if we have this case.  We subtract off the penalty
285       // for the call instruction, which we would be deleting.
286       if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
287           Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
288                 (int)(CurrentThreshold2 * FudgeFactor2)) {
289         inliningPreventsSomeOuterInline = true;
290         TotalSecondaryCost += Cost2;
291       }
292     }
293     // If all outer calls to Caller would get inlined, the cost for the last
294     // one is set very low by getInlineCost, in anticipation that Caller will
295     // be removed entirely.  We did not account for this above unless there
296     // is only one caller of Caller.
297     if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
298       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
299 
300     if (outerCallsFound && inliningPreventsSomeOuterInline &&
301         TotalSecondaryCost < Cost) {
302       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
303            " Cost = " << Cost <<
304            ", outer Cost = " << TotalSecondaryCost << '\n');
305       return false;
306     }
307   }
308 
309   DEBUG(dbgs() << "    Inlining: cost=" << Cost
310         << ", thres=" << AdjThreshold
311         << ", Call: " << *CS.getInstruction() << '\n');
312   return true;
313 }
314 
315 /// InlineHistoryIncludes - Return true if the specified inline history ID
316 /// indicates an inline history that includes the specified function.
InlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)317 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
318             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
319   while (InlineHistoryID != -1) {
320     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
321            "Invalid inline history ID");
322     if (InlineHistory[InlineHistoryID].first == F)
323       return true;
324     InlineHistoryID = InlineHistory[InlineHistoryID].second;
325   }
326   return false;
327 }
328 
329 
runOnSCC(CallGraphSCC & SCC)330 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
331   CallGraph &CG = getAnalysis<CallGraph>();
332   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
333 
334   SmallPtrSet<Function*, 8> SCCFunctions;
335   DEBUG(dbgs() << "Inliner visiting SCC:");
336   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
337     Function *F = (*I)->getFunction();
338     if (F) SCCFunctions.insert(F);
339     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
340   }
341 
342   // Scan through and identify all call sites ahead of time so that we only
343   // inline call sites in the original functions, not call sites that result
344   // from inlining other functions.
345   SmallVector<std::pair<CallSite, int>, 16> CallSites;
346 
347   // When inlining a callee produces new call sites, we want to keep track of
348   // the fact that they were inlined from the callee.  This allows us to avoid
349   // infinite inlining in some obscure cases.  To represent this, we use an
350   // index into the InlineHistory vector.
351   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
352 
353   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
354     Function *F = (*I)->getFunction();
355     if (!F) continue;
356 
357     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
358       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
359         CallSite CS(cast<Value>(I));
360         // If this isn't a call, or it is a call to an intrinsic, it can
361         // never be inlined.
362         if (!CS || isa<IntrinsicInst>(I))
363           continue;
364 
365         // If this is a direct call to an external function, we can never inline
366         // it.  If it is an indirect call, inlining may resolve it to be a
367         // direct call, so we keep it.
368         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
369           continue;
370 
371         CallSites.push_back(std::make_pair(CS, -1));
372       }
373   }
374 
375   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
376 
377   // If there are no calls in this function, exit early.
378   if (CallSites.empty())
379     return false;
380 
381   // Now that we have all of the call sites, move the ones to functions in the
382   // current SCC to the end of the list.
383   unsigned FirstCallInSCC = CallSites.size();
384   for (unsigned i = 0; i < FirstCallInSCC; ++i)
385     if (Function *F = CallSites[i].first.getCalledFunction())
386       if (SCCFunctions.count(F))
387         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
388 
389 
390   InlinedArrayAllocasTy InlinedArrayAllocas;
391   InlineFunctionInfo InlineInfo(&CG, TD);
392 
393   // Now that we have all of the call sites, loop over them and inline them if
394   // it looks profitable to do so.
395   bool Changed = false;
396   bool LocalChange;
397   do {
398     LocalChange = false;
399     // Iterate over the outer loop because inlining functions can cause indirect
400     // calls to become direct calls.
401     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
402       CallSite CS = CallSites[CSi].first;
403 
404       Function *Caller = CS.getCaller();
405       Function *Callee = CS.getCalledFunction();
406 
407       // If this call site is dead and it is to a readonly function, we should
408       // just delete the call instead of trying to inline it, regardless of
409       // size.  This happens because IPSCCP propagates the result out of the
410       // call and then we're left with the dead call.
411       if (isInstructionTriviallyDead(CS.getInstruction())) {
412         DEBUG(dbgs() << "    -> Deleting dead call: "
413                      << *CS.getInstruction() << "\n");
414         // Update the call graph by deleting the edge from Callee to Caller.
415         CG[Caller]->removeCallEdgeFor(CS);
416         CS.getInstruction()->eraseFromParent();
417         ++NumCallsDeleted;
418         // Update the cached cost info with the missing call
419         growCachedCostInfo(Caller, NULL);
420       } else {
421         // We can only inline direct calls to non-declarations.
422         if (Callee == 0 || Callee->isDeclaration()) continue;
423 
424         // If this call site was obtained by inlining another function, verify
425         // that the include path for the function did not include the callee
426         // itself.  If so, we'd be recursively inlining the same function,
427         // which would provide the same callsites, which would cause us to
428         // infinitely inline.
429         int InlineHistoryID = CallSites[CSi].second;
430         if (InlineHistoryID != -1 &&
431             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
432           continue;
433 
434 
435         // If the policy determines that we should inline this function,
436         // try to do so.
437         if (!shouldInline(CS))
438           continue;
439 
440         // Attempt to inline the function.
441         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
442                                   InlineHistoryID))
443           continue;
444         ++NumInlined;
445 
446         // If inlining this function gave us any new call sites, throw them
447         // onto our worklist to process.  They are useful inline candidates.
448         if (!InlineInfo.InlinedCalls.empty()) {
449           // Create a new inline history entry for this, so that we remember
450           // that these new callsites came about due to inlining Callee.
451           int NewHistoryID = InlineHistory.size();
452           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
453 
454           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
455                i != e; ++i) {
456             Value *Ptr = InlineInfo.InlinedCalls[i];
457             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
458           }
459         }
460 
461         // Update the cached cost info with the inlined call.
462         growCachedCostInfo(Caller, Callee);
463       }
464 
465       // If we inlined or deleted the last possible call site to the function,
466       // delete the function body now.
467       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
468           // TODO: Can remove if in SCC now.
469           !SCCFunctions.count(Callee) &&
470 
471           // The function may be apparently dead, but if there are indirect
472           // callgraph references to the node, we cannot delete it yet, this
473           // could invalidate the CGSCC iterator.
474           CG[Callee]->getNumReferences() == 0) {
475         DEBUG(dbgs() << "    -> Deleting dead function: "
476               << Callee->getName() << "\n");
477         CallGraphNode *CalleeNode = CG[Callee];
478 
479         // Remove any call graph edges from the callee to its callees.
480         CalleeNode->removeAllCalledFunctions();
481 
482         resetCachedCostInfo(Callee);
483 
484         // Removing the node for callee from the call graph and delete it.
485         delete CG.removeFunctionFromModule(CalleeNode);
486         ++NumDeleted;
487       }
488 
489       // Remove this call site from the list.  If possible, use
490       // swap/pop_back for efficiency, but do not use it if doing so would
491       // move a call site to a function in this SCC before the
492       // 'FirstCallInSCC' barrier.
493       if (SCC.isSingular()) {
494         CallSites[CSi] = CallSites.back();
495         CallSites.pop_back();
496       } else {
497         CallSites.erase(CallSites.begin()+CSi);
498       }
499       --CSi;
500 
501       Changed = true;
502       LocalChange = true;
503     }
504   } while (LocalChange);
505 
506   return Changed;
507 }
508 
509 // doFinalization - Remove now-dead linkonce functions at the end of
510 // processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)511 bool Inliner::doFinalization(CallGraph &CG) {
512   return removeDeadFunctions(CG);
513 }
514 
515 /// removeDeadFunctions - Remove dead functions that are not included in
516 /// DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,SmallPtrSet<const Function *,16> * DNR)517 bool Inliner::removeDeadFunctions(CallGraph &CG,
518                                   SmallPtrSet<const Function *, 16> *DNR) {
519   SmallPtrSet<CallGraphNode*, 16> FunctionsToRemove;
520 
521   // Scan for all of the functions, looking for ones that should now be removed
522   // from the program.  Insert the dead ones in the FunctionsToRemove set.
523   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
524     CallGraphNode *CGN = I->second;
525     if (CGN->getFunction() == 0)
526       continue;
527 
528     Function *F = CGN->getFunction();
529 
530     // If the only remaining users of the function are dead constants, remove
531     // them.
532     F->removeDeadConstantUsers();
533 
534     if (DNR && DNR->count(F))
535       continue;
536     if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
537         !F->hasAvailableExternallyLinkage())
538       continue;
539     if (!F->use_empty())
540       continue;
541 
542     // Remove any call graph edges from the function to its callees.
543     CGN->removeAllCalledFunctions();
544 
545     // Remove any edges from the external node to the function's call graph
546     // node.  These edges might have been made irrelegant due to
547     // optimization of the program.
548     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
549 
550     // Removing the node for callee from the call graph and delete it.
551     FunctionsToRemove.insert(CGN);
552   }
553 
554   // Now that we know which functions to delete, do so.  We didn't want to do
555   // this inline, because that would invalidate our CallGraph::iterator
556   // objects. :(
557   //
558   // Note that it doesn't matter that we are iterating over a non-stable set
559   // here to do this, it doesn't matter which order the functions are deleted
560   // in.
561   bool Changed = false;
562   for (SmallPtrSet<CallGraphNode*, 16>::iterator I = FunctionsToRemove.begin(),
563        E = FunctionsToRemove.end(); I != E; ++I) {
564     resetCachedCostInfo((*I)->getFunction());
565     delete CG.removeFunctionFromModule(*I);
566     ++NumDeleted;
567     Changed = true;
568   }
569 
570   return Changed;
571 }
572