1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_
16 #define TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_
17 
18 #include <memory>
19 #include <string>
20 
21 #include "tensorflow/core/common_runtime/buf_rendezvous.h"
22 #include "tensorflow/core/framework/collective.h"
23 #include "tensorflow/core/framework/device_attributes.pb.h"
24 
25 namespace tensorflow {
26 class CollectiveImplementation;
27 class DeviceMgr;
28 class Device;
29 
30 // Helper interface that aliases regular subfields of a Tensor as separate
31 // Tensors for in-place update.
32 class CollectiveAdapter {
33  public:
~CollectiveAdapter()34   virtual ~CollectiveAdapter() {}
35 
36   // Move the backing tensor to 'output' with its original storage and
37   // shape. After this call this CollectiveAdapter object should be
38   // deleted immediately without calling any of its other methods.
39   virtual void ConsumeFinalValue(Tensor* output) = 0;
40 
41   // const access to entire intermediate value for debugging
42   virtual const Tensor& Value() const = 0;
43 
44   // Returns tensor for chunk i which aliases the backing buffer.
45   virtual Tensor ChunkAlias(int i) = 0;
46 
47   // Returns tensor allocated on the same device but with its own
48   // separate backing buffer.  Will have same type and size as
49   // chunk i.
50   virtual Tensor TempChunk(int i) const = 0;
51 
52   // Bytes in chunk i
53   virtual int64 ChunkBytes(int i) const = 0;
54 
55   // Generate a CPU RAM scalar tensor of the same DataType as the
56   // backing tensor with the given integer value.
57   virtual Tensor Scalar(int v) const = 0;
58 
59   // Generate a scalar tensor of same DataType and on the same device
60   // as the backing tensor.
61   virtual Tensor Scalar(Allocator* a) const = 0;
62 
63   // Debugging string describing buffer location
64   virtual string TBounds(const Tensor& t) const = 0;
65 
66   virtual string DebugString() const = 0;
67 
68   // Computes the number of elements per alias chunk tensor.
69   //
70   // A CHECK in tensor.cc expects that the memory buffer backing a
71   // Tensor will be aligned according to EIGEN_MAX_ALIGN_BYTES.  To
72   // ensure that all chunk aliasing Tensors maintain this alignment we
73   // need to pick a chunk size that preserves it.  Note than in extreme
74   // cases (impractical, but possible with very small tensors) one or
75   // more tail chunks can end up emptby.
76   static int64 AlignedChunkElts(int64 elt_bytes, int64 total_elts,
77                                 int64 num_chunks);
78 };
79 
80 // Create a CollectiveAdaptor wrapping 'output', specialized to its
81 // data-type and shape.  If align_chunks == true then chunk size may
82 // be larger than output->NumElements() / num_chunks and one or more
83 // of the suffix chunks may be empty.  Chunks will be arranged to start
84 // and end on alignment boundaries.  If align_chunks == false then
85 // output->NumElements() % num_chunks must be 0 and all chunks will
86 // have exactly the same size, ignoring alignment issues.
87 CollectiveAdapter* MakeCollectiveAdapter(Tensor* output, int num_chunks,
88                                          Allocator* allocator,
89                                          bool align_chunks = true);
90 
91 // Default implementation of CollectiveExecutor.  Delegates the actual
92 // work of moving data to a class specialized for the operation type,
93 // arguments and device+interconnect topology.
94 class BaseCollectiveExecutor : public CollectiveExecutor {
95  public:
BaseCollectiveExecutor(CollectiveExecutorMgrInterface * cem,PerStepCollectiveRemoteAccess * remote_access,int64 step_id,const DeviceMgr * dev_mgr,const string * gpu_ring_order)96   BaseCollectiveExecutor(CollectiveExecutorMgrInterface* cem,
97                          PerStepCollectiveRemoteAccess* remote_access,
98                          int64 step_id, const DeviceMgr* dev_mgr,
99                          const string* gpu_ring_order)
100       : CollectiveExecutor(cem),
101         step_id_(step_id),
102         dev_mgr_(dev_mgr),
103         remote_access_(remote_access),
104         gpu_ring_order_(gpu_ring_order) {}
105 
106   ~BaseCollectiveExecutor() override;
107 
108   void StartAbort(const Status& s) override;
109 
110   void ExecuteAsync(OpKernelContext* ctx, const CollectiveParams& col_params,
111                     const string& exec_key, StatusCallback done) override;
112 
113   void CompleteParamsAsync(const string& device, CollectiveParams* cp,
114                            CancellationManager* cancel_mgr,
115                            StatusCallback done) override;
116 
remote_access()117   PerStepCollectiveRemoteAccess* remote_access() override {
118     return remote_access_.get();
119   }
120 
RecvFromPeer(const string & peer_device,const string & peer_task,bool peer_is_local,const string & key,Device * to_device,DeviceContext * to_device_ctx,const AllocatorAttributes & to_alloc_attr,Tensor * to_tensor,const DeviceLocality & client_locality,int stream_index,const StatusCallback & done)121   void RecvFromPeer(const string& peer_device, const string& peer_task,
122                     bool peer_is_local, const string& key, Device* to_device,
123                     DeviceContext* to_device_ctx,
124                     const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor,
125                     const DeviceLocality& client_locality, int stream_index,
126                     const StatusCallback& done) override {
127     remote_access_->RecvFromPeer(
128         peer_device, peer_task, peer_is_local, key, to_device, to_device_ctx,
129         to_alloc_attr, to_tensor, client_locality, stream_index, done);
130   }
131 
PostToPeer(const string & peer_device,const string & peer_task,const string & key,Device * from_device,DeviceContext * from_device_ctx,const AllocatorAttributes & from_alloc_attr,const Tensor * from_tensor,const DeviceLocality & client_locality,const StatusCallback & done)132   void PostToPeer(const string& peer_device, const string& peer_task,
133                   const string& key, Device* from_device,
134                   DeviceContext* from_device_ctx,
135                   const AllocatorAttributes& from_alloc_attr,
136                   const Tensor* from_tensor,
137                   const DeviceLocality& client_locality,
138                   const StatusCallback& done) override {
139     remote_access_->PostToPeer(peer_device, peer_task, key, from_device,
140                                from_device_ctx, from_alloc_attr, from_tensor,
141                                client_locality, done);
142   }
143 
144   // If we need to enforce an ordering on any portion of collective
145   // implementation, and the ordering is encoded via attribute on the collective
146   // op, this function will block until all dependencies for this collective
147   // have completed.
148   void WaitForDependencies(const CollectiveParams& col_params) override;
149   // Record that this collective has completed the portion of the implementation
150   // that needs to be ordered wrt other collectives, to unblock any of its
151   // dependent ops.
152   void Launched(const CollectiveParams& col_params) override;
153 
154  protected:
155   const int64 step_id_;
156   const DeviceMgr* dev_mgr_;  // Not owned.
157   std::unique_ptr<PerStepCollectiveRemoteAccess> remote_access_;
158   const string* gpu_ring_order_;  // Not owned.
159   mutex launch_mu_;
160   condition_variable launch_cv_;
161   // collective instance key -> number of local devices for which NCCL ops have
162   // been launched.
163   std::unordered_map<int32, int32> launched_ GUARDED_BY(launch_mu_);
164 
165  private:
166   Status CreateCollective(const CollectiveParams& col_params,
167                           CollectiveImplementationInterface** col_impl);
168   // Check if all ops on which this collective depends on have launched.
169   bool CheckDependencies(const CollectiveParams& col_params)
170       EXCLUSIVE_LOCKS_REQUIRED(launch_mu_);
171 };
172 
173 }  // namespace tensorflow
174 #endif  // TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_
175