1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/date.h"
6 
7 #include "src/conversions.h"
8 #include "src/objects-inl.h"
9 #include "src/objects.h"
10 
11 #ifdef V8_INTL_SUPPORT
12 #include "src/intl.h"
13 #endif
14 
15 namespace v8 {
16 namespace internal {
17 
18 
19 static const int kDaysIn4Years = 4 * 365 + 1;
20 static const int kDaysIn100Years = 25 * kDaysIn4Years - 1;
21 static const int kDaysIn400Years = 4 * kDaysIn100Years + 1;
22 static const int kDays1970to2000 = 30 * 365 + 7;
23 static const int kDaysOffset = 1000 * kDaysIn400Years + 5 * kDaysIn400Years -
24                                kDays1970to2000;
25 static const int kYearsOffset = 400000;
26 static const char kDaysInMonths[] =
27     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
28 
DateCache()29 DateCache::DateCache()
30     : stamp_(0),
31       tz_cache_(
32 #ifdef V8_INTL_SUPPORT
33           FLAG_icu_timezone_data ? new ICUTimezoneCache()
34                                  : base::OS::CreateTimezoneCache()
35 #else
36           base::OS::CreateTimezoneCache()
37 #endif
38               ) {
39   ResetDateCache();
40 }
41 
ResetDateCache()42 void DateCache::ResetDateCache() {
43   static const int kMaxStamp = Smi::kMaxValue;
44   if (stamp_->value() >= kMaxStamp) {
45     stamp_ = Smi::kZero;
46   } else {
47     stamp_ = Smi::FromInt(stamp_->value() + 1);
48   }
49   DCHECK(stamp_ != Smi::FromInt(kInvalidStamp));
50   for (int i = 0; i < kDSTSize; ++i) {
51     ClearSegment(&dst_[i]);
52   }
53   dst_usage_counter_ = 0;
54   before_ = &dst_[0];
55   after_ = &dst_[1];
56   ymd_valid_ = false;
57 #ifdef V8_INTL_SUPPORT
58   if (!FLAG_icu_timezone_data) {
59 #endif
60     local_offset_ms_ = kInvalidLocalOffsetInMs;
61 #ifdef V8_INTL_SUPPORT
62   }
63 #endif
64   tz_cache_->Clear();
65   tz_name_ = nullptr;
66   dst_tz_name_ = nullptr;
67 }
68 
69 // ECMA 262 - ES#sec-timeclip TimeClip (time)
TimeClip(double time)70 double DateCache::TimeClip(double time) {
71   if (-kMaxTimeInMs <= time && time <= kMaxTimeInMs) {
72     return DoubleToInteger(time) + 0.0;
73   }
74   return std::numeric_limits<double>::quiet_NaN();
75 }
76 
ClearSegment(DST * segment)77 void DateCache::ClearSegment(DST* segment) {
78   segment->start_sec = kMaxEpochTimeInSec;
79   segment->end_sec = -kMaxEpochTimeInSec;
80   segment->offset_ms = 0;
81   segment->last_used = 0;
82 }
83 
84 
YearMonthDayFromDays(int days,int * year,int * month,int * day)85 void DateCache::YearMonthDayFromDays(
86     int days, int* year, int* month, int* day) {
87   if (ymd_valid_) {
88     // Check conservatively if the given 'days' has
89     // the same year and month as the cached 'days'.
90     int new_day = ymd_day_ + (days - ymd_days_);
91     if (new_day >= 1 && new_day <= 28) {
92       ymd_day_ = new_day;
93       ymd_days_ = days;
94       *year = ymd_year_;
95       *month = ymd_month_;
96       *day = new_day;
97       return;
98     }
99   }
100   int save_days = days;
101 
102   days += kDaysOffset;
103   *year = 400 * (days / kDaysIn400Years) - kYearsOffset;
104   days %= kDaysIn400Years;
105 
106   DCHECK_EQ(save_days, DaysFromYearMonth(*year, 0) + days);
107 
108   days--;
109   int yd1 = days / kDaysIn100Years;
110   days %= kDaysIn100Years;
111   *year += 100 * yd1;
112 
113   days++;
114   int yd2 = days / kDaysIn4Years;
115   days %= kDaysIn4Years;
116   *year += 4 * yd2;
117 
118   days--;
119   int yd3 = days / 365;
120   days %= 365;
121   *year += yd3;
122 
123 
124   bool is_leap = (!yd1 || yd2) && !yd3;
125 
126   DCHECK_GE(days, -1);
127   DCHECK(is_leap || (days >= 0));
128   DCHECK((days < 365) || (is_leap && (days < 366)));
129   DCHECK(is_leap == ((*year % 4 == 0) && (*year % 100 || (*year % 400 == 0))));
130   DCHECK(is_leap || ((DaysFromYearMonth(*year, 0) + days) == save_days));
131   DCHECK(!is_leap || ((DaysFromYearMonth(*year, 0) + days + 1) == save_days));
132 
133   days += is_leap;
134 
135   // Check if the date is after February.
136   if (days >= 31 + 28 + BoolToInt(is_leap)) {
137     days -= 31 + 28 + BoolToInt(is_leap);
138     // Find the date starting from March.
139     for (int i = 2; i < 12; i++) {
140       if (days < kDaysInMonths[i]) {
141         *month = i;
142         *day = days + 1;
143         break;
144       }
145       days -= kDaysInMonths[i];
146     }
147   } else {
148     // Check January and February.
149     if (days < 31) {
150       *month = 0;
151       *day = days + 1;
152     } else {
153       *month = 1;
154       *day = days - 31 + 1;
155     }
156   }
157   DCHECK(DaysFromYearMonth(*year, *month) + *day - 1 == save_days);
158   ymd_valid_ = true;
159   ymd_year_ = *year;
160   ymd_month_ = *month;
161   ymd_day_ = *day;
162   ymd_days_ = save_days;
163 }
164 
165 
DaysFromYearMonth(int year,int month)166 int DateCache::DaysFromYearMonth(int year, int month) {
167   static const int day_from_month[] = {0, 31, 59, 90, 120, 151,
168                                        181, 212, 243, 273, 304, 334};
169   static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152,
170                                             182, 213, 244, 274, 305, 335};
171 
172   year += month / 12;
173   month %= 12;
174   if (month < 0) {
175     year--;
176     month += 12;
177   }
178 
179   DCHECK_GE(month, 0);
180   DCHECK_LT(month, 12);
181 
182   // year_delta is an arbitrary number such that:
183   // a) year_delta = -1 (mod 400)
184   // b) year + year_delta > 0 for years in the range defined by
185   //    ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
186   //    Jan 1 1970. This is required so that we don't run into integer
187   //    division of negative numbers.
188   // c) there shouldn't be an overflow for 32-bit integers in the following
189   //    operations.
190   static const int year_delta = 399999;
191   static const int base_day = 365 * (1970 + year_delta) +
192                               (1970 + year_delta) / 4 -
193                               (1970 + year_delta) / 100 +
194                               (1970 + year_delta) / 400;
195 
196   int year1 = year + year_delta;
197   int day_from_year = 365 * year1 +
198                       year1 / 4 -
199                       year1 / 100 +
200                       year1 / 400 -
201                       base_day;
202 
203   if ((year % 4 != 0) || (year % 100 == 0 && year % 400 != 0)) {
204     return day_from_year + day_from_month[month];
205   }
206   return day_from_year + day_from_month_leap[month];
207 }
208 
209 
BreakDownTime(int64_t time_ms,int * year,int * month,int * day,int * weekday,int * hour,int * min,int * sec,int * ms)210 void DateCache::BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
211                               int* weekday, int* hour, int* min, int* sec,
212                               int* ms) {
213   int const days = DaysFromTime(time_ms);
214   int const time_in_day_ms = TimeInDay(time_ms, days);
215   YearMonthDayFromDays(days, year, month, day);
216   *weekday = Weekday(days);
217   *hour = time_in_day_ms / (60 * 60 * 1000);
218   *min = (time_in_day_ms / (60 * 1000)) % 60;
219   *sec = (time_in_day_ms / 1000) % 60;
220   *ms = time_in_day_ms % 1000;
221 }
222 
223 // Implements LocalTimeZonedjustment(t, isUTC)
224 // ECMA 262 - ES#sec-local-time-zone-adjustment
GetLocalOffsetFromOS(int64_t time_ms,bool is_utc)225 int DateCache::GetLocalOffsetFromOS(int64_t time_ms, bool is_utc) {
226   double offset;
227 #ifdef V8_INTL_SUPPORT
228   if (FLAG_icu_timezone_data) {
229     offset = tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
230   } else {
231 #endif
232     // When ICU timezone data is not used, we need to compute the timezone
233     // offset for a given local time.
234     //
235     // The following shows that using DST for (t - LocalTZA - hour) produces
236     // correct conversion where LocalTZA is the timezone offset in winter (no
237     // DST) and the timezone offset is assumed to have no historical change.
238     // Note that it does not work for the past and the future if LocalTZA (no
239     // DST) is different from the current LocalTZA (no DST). For instance,
240     // this will break for Europe/Moscow in 2012 ~ 2013 because LocalTZA was
241     // 4h instead of the current 3h (as of 2018).
242     //
243     // Consider transition to DST at local time L1.
244     // Let L0 = L1 - hour, L2 = L1 + hour,
245     //     U1 = UTC time that corresponds to L1,
246     //     U0 = U1 - hour.
247     // Transitioning to DST moves local clock one hour forward L1 => L2, so
248     // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
249     // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
250     // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
251     // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
252     // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
253     // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
254     // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
255     //
256     // Consider transition from DST at local time L1.
257     // Let L0 = L1 - hour,
258     //     U1 = UTC time that corresponds to L1,
259     //     U0 = U1 - hour, U2 = U1 + hour.
260     // Transitioning from DST moves local clock one hour back L1 => L0, so
261     // U0 = UTC time that corresponds to L0 (before transition)
262     //    = L0 - LocalTZA - hour.
263     // U1 = UTC time that corresponds to L0 (after transition)
264     //    = L0 - LocalTZA = L1 - LocalTZA - hour
265     // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
266     // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
267     // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
268     // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
269     // It is impossible to get U1 from local time.
270     if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
271       // This gets the constant LocalTZA (arguments are ignored).
272       local_offset_ms_ =
273           tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
274     }
275     offset = local_offset_ms_;
276     if (!is_utc) {
277       const int kMsPerHour = 3600 * 1000;
278       time_ms -= (offset + kMsPerHour);
279     }
280     offset += DaylightSavingsOffsetInMs(time_ms);
281 #ifdef V8_INTL_SUPPORT
282   }
283 #endif
284   DCHECK_LT(offset, kInvalidLocalOffsetInMs);
285   return static_cast<int>(offset);
286 }
287 
ExtendTheAfterSegment(int time_sec,int offset_ms)288 void DateCache::ExtendTheAfterSegment(int time_sec, int offset_ms) {
289   if (after_->offset_ms == offset_ms &&
290       after_->start_sec <= time_sec + kDefaultDSTDeltaInSec &&
291       time_sec <= after_->end_sec) {
292     // Extend the after_ segment.
293     after_->start_sec = time_sec;
294   } else {
295     // The after_ segment is either invalid or starts too late.
296     if (after_->start_sec <= after_->end_sec) {
297       // If the after_ segment is valid, replace it with a new segment.
298       after_ = LeastRecentlyUsedDST(before_);
299     }
300     after_->start_sec = time_sec;
301     after_->end_sec = time_sec;
302     after_->offset_ms = offset_ms;
303     after_->last_used = ++dst_usage_counter_;
304   }
305 }
306 
307 
DaylightSavingsOffsetInMs(int64_t time_ms)308 int DateCache::DaylightSavingsOffsetInMs(int64_t time_ms) {
309   int time_sec = (time_ms >= 0 && time_ms <= kMaxEpochTimeInMs)
310       ? static_cast<int>(time_ms / 1000)
311       : static_cast<int>(EquivalentTime(time_ms) / 1000);
312 
313   // Invalidate cache if the usage counter is close to overflow.
314   // Note that dst_usage_counter is incremented less than ten times
315   // in this function.
316   if (dst_usage_counter_ >= kMaxInt - 10) {
317     dst_usage_counter_ = 0;
318     for (int i = 0; i < kDSTSize; ++i) {
319       ClearSegment(&dst_[i]);
320     }
321   }
322 
323   // Optimistic fast check.
324   if (before_->start_sec <= time_sec &&
325       time_sec <= before_->end_sec) {
326     // Cache hit.
327     before_->last_used = ++dst_usage_counter_;
328     return before_->offset_ms;
329   }
330 
331   ProbeDST(time_sec);
332 
333   DCHECK(InvalidSegment(before_) || before_->start_sec <= time_sec);
334   DCHECK(InvalidSegment(after_) || time_sec < after_->start_sec);
335 
336   if (InvalidSegment(before_)) {
337     // Cache miss.
338     before_->start_sec = time_sec;
339     before_->end_sec = time_sec;
340     before_->offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
341     before_->last_used = ++dst_usage_counter_;
342     return before_->offset_ms;
343   }
344 
345   if (time_sec <= before_->end_sec) {
346     // Cache hit.
347     before_->last_used = ++dst_usage_counter_;
348     return before_->offset_ms;
349   }
350 
351   if (time_sec > before_->end_sec + kDefaultDSTDeltaInSec) {
352     // If the before_ segment ends too early, then just
353     // query for the offset of the time_sec
354     int offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
355     ExtendTheAfterSegment(time_sec, offset_ms);
356     // This swap helps the optimistic fast check in subsequent invocations.
357     DST* temp = before_;
358     before_ = after_;
359     after_ = temp;
360     return offset_ms;
361   }
362 
363   // Now the time_sec is between
364   // before_->end_sec and before_->end_sec + default DST delta.
365   // Update the usage counter of before_ since it is going to be used.
366   before_->last_used = ++dst_usage_counter_;
367 
368   // Check if after_ segment is invalid or starts too late.
369   // Note that start_sec of invalid segments is kMaxEpochTimeInSec.
370   if (before_->end_sec + kDefaultDSTDeltaInSec <= after_->start_sec) {
371     int new_after_start_sec = before_->end_sec + kDefaultDSTDeltaInSec;
372     int new_offset_ms = GetDaylightSavingsOffsetFromOS(new_after_start_sec);
373     ExtendTheAfterSegment(new_after_start_sec, new_offset_ms);
374   } else {
375     DCHECK(!InvalidSegment(after_));
376     // Update the usage counter of after_ since it is going to be used.
377     after_->last_used = ++dst_usage_counter_;
378   }
379 
380   // Now the time_sec is between before_->end_sec and after_->start_sec.
381   // Only one daylight savings offset change can occur in this interval.
382 
383   if (before_->offset_ms == after_->offset_ms) {
384     // Merge two segments if they have the same offset.
385     before_->end_sec = after_->end_sec;
386     ClearSegment(after_);
387     return before_->offset_ms;
388   }
389 
390   // Binary search for daylight savings offset change point,
391   // but give up if we don't find it in five iterations.
392   for (int i = 4; i >= 0; --i) {
393     int delta = after_->start_sec - before_->end_sec;
394     int middle_sec = (i == 0) ? time_sec : before_->end_sec + delta / 2;
395     int offset_ms = GetDaylightSavingsOffsetFromOS(middle_sec);
396     if (before_->offset_ms == offset_ms) {
397       before_->end_sec = middle_sec;
398       if (time_sec <= before_->end_sec) {
399         return offset_ms;
400       }
401     } else {
402       DCHECK(after_->offset_ms == offset_ms);
403       after_->start_sec = middle_sec;
404       if (time_sec >= after_->start_sec) {
405         // This swap helps the optimistic fast check in subsequent invocations.
406         DST* temp = before_;
407         before_ = after_;
408         after_ = temp;
409         return offset_ms;
410       }
411     }
412   }
413   return 0;
414 }
415 
416 
ProbeDST(int time_sec)417 void DateCache::ProbeDST(int time_sec) {
418   DST* before = nullptr;
419   DST* after = nullptr;
420   DCHECK(before_ != after_);
421 
422   for (int i = 0; i < kDSTSize; ++i) {
423     if (dst_[i].start_sec <= time_sec) {
424       if (before == nullptr || before->start_sec < dst_[i].start_sec) {
425         before = &dst_[i];
426       }
427     } else if (time_sec < dst_[i].end_sec) {
428       if (after == nullptr || after->end_sec > dst_[i].end_sec) {
429         after = &dst_[i];
430       }
431     }
432   }
433 
434   // If before or after segments were not found,
435   // then set them to any invalid segment.
436   if (before == nullptr) {
437     before = InvalidSegment(before_) ? before_ : LeastRecentlyUsedDST(after);
438   }
439   if (after == nullptr) {
440     after = InvalidSegment(after_) && before != after_
441             ? after_ : LeastRecentlyUsedDST(before);
442   }
443 
444   DCHECK_NOT_NULL(before);
445   DCHECK_NOT_NULL(after);
446   DCHECK(before != after);
447   DCHECK(InvalidSegment(before) || before->start_sec <= time_sec);
448   DCHECK(InvalidSegment(after) || time_sec < after->start_sec);
449   DCHECK(InvalidSegment(before) || InvalidSegment(after) ||
450          before->end_sec < after->start_sec);
451 
452   before_ = before;
453   after_ = after;
454 }
455 
456 
LeastRecentlyUsedDST(DST * skip)457 DateCache::DST* DateCache::LeastRecentlyUsedDST(DST* skip) {
458   DST* result = nullptr;
459   for (int i = 0; i < kDSTSize; ++i) {
460     if (&dst_[i] == skip) continue;
461     if (result == nullptr || result->last_used > dst_[i].last_used) {
462       result = &dst_[i];
463     }
464   }
465   ClearSegment(result);
466   return result;
467 }
468 
469 }  // namespace internal
470 }  // namespace v8
471