1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DenseMap class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16
17 #include "llvm/Support/MathExtras.h"
18 #include "llvm/Support/PointerLikeTypeTraits.h"
19 #include "llvm/Support/type_traits.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include <algorithm>
22 #include <iterator>
23 #include <new>
24 #include <utility>
25 #include <cassert>
26 #include <cstddef>
27 #include <cstring>
28
29 namespace llvm {
30
31 template<typename KeyT, typename ValueT,
32 typename KeyInfoT = DenseMapInfo<KeyT>,
33 typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
34 class DenseMapIterator;
35
36 template<typename KeyT, typename ValueT,
37 typename KeyInfoT = DenseMapInfo<KeyT>,
38 typename ValueInfoT = DenseMapInfo<ValueT> >
39 class DenseMap {
40 typedef std::pair<KeyT, ValueT> BucketT;
41 unsigned NumBuckets;
42 BucketT *Buckets;
43
44 unsigned NumEntries;
45 unsigned NumTombstones;
46 public:
47 typedef KeyT key_type;
48 typedef ValueT mapped_type;
49 typedef BucketT value_type;
50
DenseMap(const DenseMap & other)51 DenseMap(const DenseMap &other) {
52 NumBuckets = 0;
53 CopyFrom(other);
54 }
55
56 explicit DenseMap(unsigned NumInitBuckets = 0) {
57 init(NumInitBuckets);
58 }
59
60 template<typename InputIt>
DenseMap(const InputIt & I,const InputIt & E)61 DenseMap(const InputIt &I, const InputIt &E) {
62 init(NextPowerOf2(std::distance(I, E)));
63 insert(I, E);
64 }
65
~DenseMap()66 ~DenseMap() {
67 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
68 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
69 if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
70 !KeyInfoT::isEqual(P->first, TombstoneKey))
71 P->second.~ValueT();
72 P->first.~KeyT();
73 }
74 #ifndef NDEBUG
75 if (NumBuckets)
76 memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
77 #endif
78 operator delete(Buckets);
79 }
80
81 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
82 typedef DenseMapIterator<KeyT, ValueT,
83 KeyInfoT, ValueInfoT, true> const_iterator;
begin()84 inline iterator begin() {
85 // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
86 return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
87 }
end()88 inline iterator end() {
89 return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
90 }
begin()91 inline const_iterator begin() const {
92 return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
93 }
end()94 inline const_iterator end() const {
95 return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
96 }
97
empty()98 bool empty() const { return NumEntries == 0; }
size()99 unsigned size() const { return NumEntries; }
100
101 /// Grow the densemap so that it has at least Size buckets. Does not shrink
resize(size_t Size)102 void resize(size_t Size) {
103 if (Size > NumBuckets)
104 grow(Size);
105 }
106
clear()107 void clear() {
108 if (NumEntries == 0 && NumTombstones == 0) return;
109
110 // If the capacity of the array is huge, and the # elements used is small,
111 // shrink the array.
112 if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
113 shrink_and_clear();
114 return;
115 }
116
117 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
118 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
119 if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
120 if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
121 P->second.~ValueT();
122 --NumEntries;
123 }
124 P->first = EmptyKey;
125 }
126 }
127 assert(NumEntries == 0 && "Node count imbalance!");
128 NumTombstones = 0;
129 }
130
131 /// count - Return true if the specified key is in the map.
count(const KeyT & Val)132 bool count(const KeyT &Val) const {
133 BucketT *TheBucket;
134 return LookupBucketFor(Val, TheBucket);
135 }
136
find(const KeyT & Val)137 iterator find(const KeyT &Val) {
138 BucketT *TheBucket;
139 if (LookupBucketFor(Val, TheBucket))
140 return iterator(TheBucket, Buckets+NumBuckets);
141 return end();
142 }
find(const KeyT & Val)143 const_iterator find(const KeyT &Val) const {
144 BucketT *TheBucket;
145 if (LookupBucketFor(Val, TheBucket))
146 return const_iterator(TheBucket, Buckets+NumBuckets);
147 return end();
148 }
149
150 /// lookup - Return the entry for the specified key, or a default
151 /// constructed value if no such entry exists.
lookup(const KeyT & Val)152 ValueT lookup(const KeyT &Val) const {
153 BucketT *TheBucket;
154 if (LookupBucketFor(Val, TheBucket))
155 return TheBucket->second;
156 return ValueT();
157 }
158
159 // Inserts key,value pair into the map if the key isn't already in the map.
160 // If the key is already in the map, it returns false and doesn't update the
161 // value.
insert(const std::pair<KeyT,ValueT> & KV)162 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
163 BucketT *TheBucket;
164 if (LookupBucketFor(KV.first, TheBucket))
165 return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
166 false); // Already in map.
167
168 // Otherwise, insert the new element.
169 TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
170 return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
171 true);
172 }
173
174 /// insert - Range insertion of pairs.
175 template<typename InputIt>
insert(InputIt I,InputIt E)176 void insert(InputIt I, InputIt E) {
177 for (; I != E; ++I)
178 insert(*I);
179 }
180
181
erase(const KeyT & Val)182 bool erase(const KeyT &Val) {
183 BucketT *TheBucket;
184 if (!LookupBucketFor(Val, TheBucket))
185 return false; // not in map.
186
187 TheBucket->second.~ValueT();
188 TheBucket->first = getTombstoneKey();
189 --NumEntries;
190 ++NumTombstones;
191 return true;
192 }
erase(iterator I)193 void erase(iterator I) {
194 BucketT *TheBucket = &*I;
195 TheBucket->second.~ValueT();
196 TheBucket->first = getTombstoneKey();
197 --NumEntries;
198 ++NumTombstones;
199 }
200
swap(DenseMap & RHS)201 void swap(DenseMap& RHS) {
202 std::swap(NumBuckets, RHS.NumBuckets);
203 std::swap(Buckets, RHS.Buckets);
204 std::swap(NumEntries, RHS.NumEntries);
205 std::swap(NumTombstones, RHS.NumTombstones);
206 }
207
FindAndConstruct(const KeyT & Key)208 value_type& FindAndConstruct(const KeyT &Key) {
209 BucketT *TheBucket;
210 if (LookupBucketFor(Key, TheBucket))
211 return *TheBucket;
212
213 return *InsertIntoBucket(Key, ValueT(), TheBucket);
214 }
215
216 ValueT &operator[](const KeyT &Key) {
217 return FindAndConstruct(Key).second;
218 }
219
220 DenseMap& operator=(const DenseMap& other) {
221 CopyFrom(other);
222 return *this;
223 }
224
225 /// isPointerIntoBucketsArray - Return true if the specified pointer points
226 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
227 /// value in the DenseMap).
isPointerIntoBucketsArray(const void * Ptr)228 bool isPointerIntoBucketsArray(const void *Ptr) const {
229 return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
230 }
231
232 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
233 /// array. In conjunction with the previous method, this can be used to
234 /// determine whether an insertion caused the DenseMap to reallocate.
getPointerIntoBucketsArray()235 const void *getPointerIntoBucketsArray() const { return Buckets; }
236
237 private:
CopyFrom(const DenseMap & other)238 void CopyFrom(const DenseMap& other) {
239 if (NumBuckets != 0 &&
240 (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
241 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
242 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
243 if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
244 !KeyInfoT::isEqual(P->first, TombstoneKey))
245 P->second.~ValueT();
246 P->first.~KeyT();
247 }
248 }
249
250 NumEntries = other.NumEntries;
251 NumTombstones = other.NumTombstones;
252
253 if (NumBuckets) {
254 #ifndef NDEBUG
255 memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
256 #endif
257 operator delete(Buckets);
258 }
259
260 NumBuckets = other.NumBuckets;
261
262 if (NumBuckets == 0) {
263 Buckets = 0;
264 return;
265 }
266
267 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
268
269 if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
270 memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT));
271 else
272 for (size_t i = 0; i < NumBuckets; ++i) {
273 new (&Buckets[i].first) KeyT(other.Buckets[i].first);
274 if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
275 !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
276 new (&Buckets[i].second) ValueT(other.Buckets[i].second);
277 }
278 }
279
InsertIntoBucket(const KeyT & Key,const ValueT & Value,BucketT * TheBucket)280 BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
281 BucketT *TheBucket) {
282 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
283 // the buckets are empty (meaning that many are filled with tombstones),
284 // grow the table.
285 //
286 // The later case is tricky. For example, if we had one empty bucket with
287 // tons of tombstones, failing lookups (e.g. for insertion) would have to
288 // probe almost the entire table until it found the empty bucket. If the
289 // table completely filled with tombstones, no lookup would ever succeed,
290 // causing infinite loops in lookup.
291 ++NumEntries;
292 if (NumEntries*4 >= NumBuckets*3) {
293 this->grow(NumBuckets * 2);
294 LookupBucketFor(Key, TheBucket);
295 }
296 if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
297 this->grow(NumBuckets);
298 LookupBucketFor(Key, TheBucket);
299 }
300
301 // If we are writing over a tombstone, remember this.
302 if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
303 --NumTombstones;
304
305 TheBucket->first = Key;
306 new (&TheBucket->second) ValueT(Value);
307 return TheBucket;
308 }
309
getHashValue(const KeyT & Val)310 static unsigned getHashValue(const KeyT &Val) {
311 return KeyInfoT::getHashValue(Val);
312 }
getEmptyKey()313 static const KeyT getEmptyKey() {
314 return KeyInfoT::getEmptyKey();
315 }
getTombstoneKey()316 static const KeyT getTombstoneKey() {
317 return KeyInfoT::getTombstoneKey();
318 }
319
320 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
321 /// FoundBucket. If the bucket contains the key and a value, this returns
322 /// true, otherwise it returns a bucket with an empty marker or tombstone and
323 /// returns false.
LookupBucketFor(const KeyT & Val,BucketT * & FoundBucket)324 bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
325 unsigned BucketNo = getHashValue(Val);
326 unsigned ProbeAmt = 1;
327 BucketT *BucketsPtr = Buckets;
328
329 if (NumBuckets == 0) {
330 FoundBucket = 0;
331 return false;
332 }
333
334 // FoundTombstone - Keep track of whether we find a tombstone while probing.
335 BucketT *FoundTombstone = 0;
336 const KeyT EmptyKey = getEmptyKey();
337 const KeyT TombstoneKey = getTombstoneKey();
338 assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
339 !KeyInfoT::isEqual(Val, TombstoneKey) &&
340 "Empty/Tombstone value shouldn't be inserted into map!");
341
342 while (1) {
343 BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
344 // Found Val's bucket? If so, return it.
345 if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
346 FoundBucket = ThisBucket;
347 return true;
348 }
349
350 // If we found an empty bucket, the key doesn't exist in the set.
351 // Insert it and return the default value.
352 if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
353 // If we've already seen a tombstone while probing, fill it in instead
354 // of the empty bucket we eventually probed to.
355 if (FoundTombstone) ThisBucket = FoundTombstone;
356 FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
357 return false;
358 }
359
360 // If this is a tombstone, remember it. If Val ends up not in the map, we
361 // prefer to return it than something that would require more probing.
362 if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
363 FoundTombstone = ThisBucket; // Remember the first tombstone found.
364
365 // Otherwise, it's a hash collision or a tombstone, continue quadratic
366 // probing.
367 BucketNo += ProbeAmt++;
368 }
369 }
370
init(unsigned InitBuckets)371 void init(unsigned InitBuckets) {
372 NumEntries = 0;
373 NumTombstones = 0;
374 NumBuckets = InitBuckets;
375
376 if (InitBuckets == 0) {
377 Buckets = 0;
378 return;
379 }
380
381 assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
382 "# initial buckets must be a power of two!");
383 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
384 // Initialize all the keys to EmptyKey.
385 const KeyT EmptyKey = getEmptyKey();
386 for (unsigned i = 0; i != InitBuckets; ++i)
387 new (&Buckets[i].first) KeyT(EmptyKey);
388 }
389
grow(unsigned AtLeast)390 void grow(unsigned AtLeast) {
391 unsigned OldNumBuckets = NumBuckets;
392 BucketT *OldBuckets = Buckets;
393
394 if (NumBuckets < 64)
395 NumBuckets = 64;
396
397 // Double the number of buckets.
398 while (NumBuckets < AtLeast)
399 NumBuckets <<= 1;
400 NumTombstones = 0;
401 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
402
403 // Initialize all the keys to EmptyKey.
404 const KeyT EmptyKey = getEmptyKey();
405 for (unsigned i = 0, e = NumBuckets; i != e; ++i)
406 new (&Buckets[i].first) KeyT(EmptyKey);
407
408 // Insert all the old elements.
409 const KeyT TombstoneKey = getTombstoneKey();
410 for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
411 if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
412 !KeyInfoT::isEqual(B->first, TombstoneKey)) {
413 // Insert the key/value into the new table.
414 BucketT *DestBucket;
415 bool FoundVal = LookupBucketFor(B->first, DestBucket);
416 (void)FoundVal; // silence warning.
417 assert(!FoundVal && "Key already in new map?");
418 DestBucket->first = B->first;
419 new (&DestBucket->second) ValueT(B->second);
420
421 // Free the value.
422 B->second.~ValueT();
423 }
424 B->first.~KeyT();
425 }
426
427 #ifndef NDEBUG
428 if (OldNumBuckets)
429 memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
430 #endif
431 // Free the old table.
432 operator delete(OldBuckets);
433 }
434
shrink_and_clear()435 void shrink_and_clear() {
436 unsigned OldNumBuckets = NumBuckets;
437 BucketT *OldBuckets = Buckets;
438
439 // Reduce the number of buckets.
440 NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
441 : 64;
442 NumTombstones = 0;
443 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
444
445 // Initialize all the keys to EmptyKey.
446 const KeyT EmptyKey = getEmptyKey();
447 for (unsigned i = 0, e = NumBuckets; i != e; ++i)
448 new (&Buckets[i].first) KeyT(EmptyKey);
449
450 // Free the old buckets.
451 const KeyT TombstoneKey = getTombstoneKey();
452 for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
453 if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
454 !KeyInfoT::isEqual(B->first, TombstoneKey)) {
455 // Free the value.
456 B->second.~ValueT();
457 }
458 B->first.~KeyT();
459 }
460
461 #ifndef NDEBUG
462 memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
463 #endif
464 // Free the old table.
465 operator delete(OldBuckets);
466
467 NumEntries = 0;
468 }
469
470 public:
471 /// Return the approximate size (in bytes) of the actual map.
472 /// This is just the raw memory used by DenseMap.
473 /// If entries are pointers to objects, the size of the referenced objects
474 /// are not included.
getMemorySize()475 size_t getMemorySize() const {
476 return NumBuckets * sizeof(BucketT);
477 }
478 };
479
480 template<typename KeyT, typename ValueT,
481 typename KeyInfoT, typename ValueInfoT, bool IsConst>
482 class DenseMapIterator {
483 typedef std::pair<KeyT, ValueT> Bucket;
484 typedef DenseMapIterator<KeyT, ValueT,
485 KeyInfoT, ValueInfoT, true> ConstIterator;
486 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
487 public:
488 typedef ptrdiff_t difference_type;
489 typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
490 typedef value_type *pointer;
491 typedef value_type &reference;
492 typedef std::forward_iterator_tag iterator_category;
493 private:
494 pointer Ptr, End;
495 public:
DenseMapIterator()496 DenseMapIterator() : Ptr(0), End(0) {}
497
DenseMapIterator(pointer Pos,pointer E)498 DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
499 AdvancePastEmptyBuckets();
500 }
501
502 // If IsConst is true this is a converting constructor from iterator to
503 // const_iterator and the default copy constructor is used.
504 // Otherwise this is a copy constructor for iterator.
DenseMapIterator(const DenseMapIterator<KeyT,ValueT,KeyInfoT,ValueInfoT,false> & I)505 DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
506 KeyInfoT, ValueInfoT, false>& I)
507 : Ptr(I.Ptr), End(I.End) {}
508
509 reference operator*() const {
510 return *Ptr;
511 }
512 pointer operator->() const {
513 return Ptr;
514 }
515
516 bool operator==(const ConstIterator &RHS) const {
517 return Ptr == RHS.operator->();
518 }
519 bool operator!=(const ConstIterator &RHS) const {
520 return Ptr != RHS.operator->();
521 }
522
523 inline DenseMapIterator& operator++() { // Preincrement
524 ++Ptr;
525 AdvancePastEmptyBuckets();
526 return *this;
527 }
528 DenseMapIterator operator++(int) { // Postincrement
529 DenseMapIterator tmp = *this; ++*this; return tmp;
530 }
531
532 private:
AdvancePastEmptyBuckets()533 void AdvancePastEmptyBuckets() {
534 const KeyT Empty = KeyInfoT::getEmptyKey();
535 const KeyT Tombstone = KeyInfoT::getTombstoneKey();
536
537 while (Ptr != End &&
538 (KeyInfoT::isEqual(Ptr->first, Empty) ||
539 KeyInfoT::isEqual(Ptr->first, Tombstone)))
540 ++Ptr;
541 }
542 };
543
544 template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
545 static inline size_t
capacity_in_bytes(const DenseMap<KeyT,ValueT,KeyInfoT,ValueInfoT> & X)546 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT, ValueInfoT> &X) {
547 return X.getMemorySize();
548 }
549
550 } // end namespace llvm
551
552 #endif
553