1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include <fcntl.h>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <sys/stat.h>
20 #include <sys/types.h>
21 
22 #include "tensorflow/lite/allocation.h"
23 #include "tensorflow/lite/c/builtin_op_data.h"
24 #include "tensorflow/lite/c/c_api_internal.h"
25 #include "tensorflow/lite/core/api/error_reporter.h"
26 #include "tensorflow/lite/core/api/flatbuffer_conversions.h"
27 #include "tensorflow/lite/model.h"
28 #ifndef TFLITE_MCU
29 #include "tensorflow/lite/nnapi_delegate.h"
30 #endif
31 #include "tensorflow/lite/version.h"
32 
33 namespace tflite {
34 
35 namespace {
36 // Ensure that ErrorReporter is non-null.
ValidateErrorReporter(ErrorReporter * e)37 ErrorReporter* ValidateErrorReporter(ErrorReporter* e) {
38   return e ? e : DefaultErrorReporter();
39 }
40 }  // namespace
41 
42 const char* kEmptyTensorName = "";
43 
44 // Normally we'd use ABSL_HAVE_ATTRIBUTE_WEAK and ABSL_ATTRIBUTE_WEAK, but
45 // we avoid the absl dependency for binary size reasons.
46 #ifdef __has_attribute
47 #define TFLITE_HAS_ATTRIBUTE(x) __has_attribute(x)
48 #else
49 #define TFLITE_HAS_ATTRIBUTE(x) 0
50 #endif
51 
52 #if TFLITE_HAS_ATTRIBUTE(weak) || (defined(__GNUC__) && !defined(__clang__))
53 // Using weak symbols for the flex delegate allows automatic injection of the
54 // delegate simply by adding it as a dependency. See also the strong override in
55 // lite/delegates/flex/delegate.cc.
AcquireFlexDelegate()56 __attribute__((weak)) Interpreter::TfLiteDelegatePtr AcquireFlexDelegate() {
57   return Interpreter::TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {});
58 }
59 #else
60 Interpreter::TfLiteDelegatePtr (*AcquireFlexDelegate)() = nullptr;
61 #endif
62 
63 #ifndef TFLITE_MCU
64 // Loads a model from `filename`. If `mmap_file` is true then use mmap,
65 // otherwise make a copy of the model in a buffer.
GetAllocationFromFile(const char * filename,bool mmap_file,ErrorReporter * error_reporter,bool use_nnapi)66 std::unique_ptr<Allocation> GetAllocationFromFile(const char* filename,
67                                                   bool mmap_file,
68                                                   ErrorReporter* error_reporter,
69                                                   bool use_nnapi) {
70   std::unique_ptr<Allocation> allocation;
71   if (mmap_file && MMAPAllocation::IsSupported()) {
72     if (use_nnapi && NNAPIDelegate::IsSupported())
73       allocation.reset(new NNAPIAllocation(filename, error_reporter));
74     else
75       allocation.reset(new MMAPAllocation(filename, error_reporter));
76   } else {
77     allocation.reset(new FileCopyAllocation(filename, error_reporter));
78   }
79   return allocation;
80 }
81 
BuildFromFile(const char * filename,ErrorReporter * error_reporter)82 std::unique_ptr<FlatBufferModel> FlatBufferModel::BuildFromFile(
83     const char* filename, ErrorReporter* error_reporter) {
84   error_reporter = ValidateErrorReporter(error_reporter);
85 
86   std::unique_ptr<FlatBufferModel> model;
87   auto allocation = GetAllocationFromFile(filename, /*mmap_file=*/true,
88                                           error_reporter, /*use_nnapi=*/true);
89   model.reset(new FlatBufferModel(std::move(allocation), error_reporter));
90   if (!model->initialized()) model.reset();
91   return model;
92 }
93 
VerifyAndBuildFromFile(const char * filename,TfLiteVerifier * extra_verifier,ErrorReporter * error_reporter)94 std::unique_ptr<FlatBufferModel> FlatBufferModel::VerifyAndBuildFromFile(
95     const char* filename, TfLiteVerifier* extra_verifier,
96     ErrorReporter* error_reporter) {
97   error_reporter = ValidateErrorReporter(error_reporter);
98 
99   std::unique_ptr<FlatBufferModel> model;
100   auto allocation = GetAllocationFromFile(filename, /*mmap_file=*/true,
101                                           error_reporter, /*use_nnapi=*/true);
102 
103   flatbuffers::Verifier base_verifier(
104       reinterpret_cast<const uint8_t*>(allocation->base()),
105       allocation->bytes());
106   if (!VerifyModelBuffer(base_verifier)) {
107     error_reporter->Report("The model is not a valid Flatbuffer file");
108     return nullptr;
109   }
110 
111   if (extra_verifier &&
112       !extra_verifier->Verify(static_cast<const char*>(allocation->base()),
113                               allocation->bytes(), error_reporter)) {
114     return model;
115   }
116   model.reset(new FlatBufferModel(std::move(allocation), error_reporter));
117   if (!model->initialized()) model.reset();
118   return model;
119 }
120 #endif
121 
BuildFromBuffer(const char * caller_owned_buffer,size_t buffer_size,ErrorReporter * error_reporter)122 std::unique_ptr<FlatBufferModel> FlatBufferModel::BuildFromBuffer(
123     const char* caller_owned_buffer, size_t buffer_size,
124     ErrorReporter* error_reporter) {
125   error_reporter = ValidateErrorReporter(error_reporter);
126 
127   std::unique_ptr<FlatBufferModel> model;
128   std::unique_ptr<Allocation> allocation(
129       new MemoryAllocation(caller_owned_buffer, buffer_size, error_reporter));
130   model.reset(new FlatBufferModel(std::move(allocation), error_reporter));
131   if (!model->initialized()) model.reset();
132   return model;
133 }
134 
VerifyAndBuildFromBuffer(const char * buffer,size_t buffer_size,TfLiteVerifier * extra_verifier,ErrorReporter * error_reporter)135 std::unique_ptr<FlatBufferModel> FlatBufferModel::VerifyAndBuildFromBuffer(
136     const char* buffer, size_t buffer_size, TfLiteVerifier* extra_verifier,
137     ErrorReporter* error_reporter) {
138   error_reporter = ValidateErrorReporter(error_reporter);
139 
140   flatbuffers::Verifier base_verifier(reinterpret_cast<const uint8_t*>(buffer),
141                                       buffer_size);
142   if (!VerifyModelBuffer(base_verifier)) {
143     error_reporter->Report("The model is not a valid Flatbuffer buffer");
144     return nullptr;
145   }
146 
147   if (extra_verifier &&
148       !extra_verifier->Verify(buffer, buffer_size, error_reporter)) {
149     return nullptr;
150   }
151 
152   return BuildFromBuffer(buffer, buffer_size, error_reporter);
153 }
154 
BuildFromModel(const tflite::Model * caller_owned_model_spec,ErrorReporter * error_reporter)155 std::unique_ptr<FlatBufferModel> FlatBufferModel::BuildFromModel(
156     const tflite::Model* caller_owned_model_spec,
157     ErrorReporter* error_reporter) {
158   error_reporter = ValidateErrorReporter(error_reporter);
159 
160   std::unique_ptr<FlatBufferModel> model;
161   model.reset(new FlatBufferModel(caller_owned_model_spec, error_reporter));
162   if (!model->initialized()) model.reset();
163   return model;
164 }
165 
CheckModelIdentifier() const166 bool FlatBufferModel::CheckModelIdentifier() const {
167   if (!tflite::ModelBufferHasIdentifier(allocation_->base())) {
168     const char* ident = flatbuffers::GetBufferIdentifier(allocation_->base());
169     error_reporter_->Report(
170         "Model provided has model identifier '%c%c%c%c', should be '%s'\n",
171         ident[0], ident[1], ident[2], ident[3], tflite::ModelIdentifier());
172     return false;
173   }
174   return true;
175 }
176 
FlatBufferModel(const Model * model,ErrorReporter * error_reporter)177 FlatBufferModel::FlatBufferModel(const Model* model,
178                                  ErrorReporter* error_reporter)
179     : model_(model), error_reporter_(ValidateErrorReporter(error_reporter)) {}
180 
FlatBufferModel(std::unique_ptr<Allocation> allocation,ErrorReporter * error_reporter)181 FlatBufferModel::FlatBufferModel(std::unique_ptr<Allocation> allocation,
182                                  ErrorReporter* error_reporter)
183     : error_reporter_(ValidateErrorReporter(error_reporter)),
184       allocation_(std::move(allocation)) {
185   if (!allocation_->valid() || !CheckModelIdentifier()) return;
186 
187   model_ = ::tflite::GetModel(allocation_->base());
188 }
189 
~FlatBufferModel()190 FlatBufferModel::~FlatBufferModel() {}
191 
InterpreterBuilder(const FlatBufferModel & model,const OpResolver & op_resolver)192 InterpreterBuilder::InterpreterBuilder(const FlatBufferModel& model,
193                                        const OpResolver& op_resolver)
194     : model_(model.GetModel()),
195       op_resolver_(op_resolver),
196       error_reporter_(ValidateErrorReporter(model.error_reporter())),
197       allocation_(model.allocation()) {}
198 
InterpreterBuilder(const::tflite::Model * model,const OpResolver & op_resolver,ErrorReporter * error_reporter)199 InterpreterBuilder::InterpreterBuilder(const ::tflite::Model* model,
200                                        const OpResolver& op_resolver,
201                                        ErrorReporter* error_reporter)
202     : model_(model),
203       op_resolver_(op_resolver),
204       error_reporter_(ValidateErrorReporter(error_reporter)) {}
205 
~InterpreterBuilder()206 InterpreterBuilder::~InterpreterBuilder() {}
207 
BuildLocalIndexToRegistrationMapping()208 TfLiteStatus InterpreterBuilder::BuildLocalIndexToRegistrationMapping() {
209   TfLiteStatus status = kTfLiteOk;
210   auto opcodes = model_->operator_codes();
211   for (const OperatorCode* opcode : *opcodes) {
212     const TfLiteRegistration* registration = nullptr;
213     status = GetRegistrationFromOpCode(opcode, op_resolver_, error_reporter_,
214                                        &registration);
215     if (status != kTfLiteOk) {
216       return status;
217     }
218     flatbuffer_op_index_to_registration_.push_back(registration);
219   }
220   return status;
221 }
222 
223 namespace {
224 template <class T>
FlatBufferIntArrayToVector(T * flat_array)225 std::vector<int> FlatBufferIntArrayToVector(T* flat_array) {
226   // Initialize shape of tensors with null shape. Empty vectors are converted
227   // to nullptr for models that are constructed via flatbuffers::Pack.
228   if (flat_array == nullptr) {
229     return {};
230   }
231   std::vector<int> ret(flat_array->Length());
232   for (int i = 0; i < flat_array->Length(); i++) {
233     ret[i] = flat_array->Get(i);
234   }
235   return ret;
236 }
237 
238 // Used to determine how the op data parsing function creates its working space.
239 class MallocDataAllocator : public BuiltinDataAllocator {
240  public:
Allocate(size_t size)241   void* Allocate(size_t size) override { return malloc(size); }
Deallocate(void * data)242   void Deallocate(void* data) override { free(data); }
243 };
244 
245 }  // namespace
246 
ParseNodes(const flatbuffers::Vector<flatbuffers::Offset<Operator>> * operators,Subgraph * subgraph)247 TfLiteStatus InterpreterBuilder::ParseNodes(
248     const flatbuffers::Vector<flatbuffers::Offset<Operator>>* operators,
249     Subgraph* subgraph) {
250   TfLiteStatus status = kTfLiteOk;
251 
252   // Reduce the number of redundant allocations
253   subgraph->ReserveNodes(operators->Length());
254 
255   for (int i = 0; i < operators->Length(); ++i) {
256     const auto* op = operators->Get(i);
257     int index = op->opcode_index();
258     if (index < 0 || index >= flatbuffer_op_index_to_registration_.size()) {
259       error_reporter_->Report("Missing registration for opcode_index %d\n",
260                               index);
261       status = kTfLiteError;
262       continue;
263     }
264 
265     const TfLiteRegistration* registration =
266         flatbuffer_op_index_to_registration_[index];
267     if (registration == nullptr) {
268       error_reporter_->Report("Skipping op for opcode_index %d\n", index);
269       status = kTfLiteError;
270       continue;
271     }
272 
273     BuiltinOperator op_type =
274         static_cast<BuiltinOperator>(registration->builtin_code);
275 
276     if (op_type != BuiltinOperator_CUSTOM && op->custom_options()) {
277       error_reporter_->Report(
278           "Found builtin operator %s with custom options.\n",
279           EnumNameBuiltinOperator(op_type));
280     }
281 
282     if (op->custom_options()) {
283       subgraph->AddNodeWithParameters(
284           FlatBufferIntArrayToVector(op->inputs()),
285           FlatBufferIntArrayToVector(op->outputs()),
286           reinterpret_cast<const char*>(op->custom_options()->data()),
287           op->custom_options()->size(), nullptr, registration);
288     } else {
289       void* builtin_data = nullptr;
290       MallocDataAllocator malloc_allocator;
291       TF_LITE_ENSURE_STATUS(ParseOpData(op, op_type, error_reporter_,
292                                         &malloc_allocator, &builtin_data));
293       subgraph->AddNodeWithParameters(FlatBufferIntArrayToVector(op->inputs()),
294                                       FlatBufferIntArrayToVector(op->outputs()),
295                                       nullptr, 0, builtin_data, registration);
296     }
297   }
298 
299   return status;
300 }
301 
ParseQuantization(const QuantizationParameters * src_quantization,TfLiteQuantization * quantization)302 TfLiteStatus InterpreterBuilder::ParseQuantization(
303     const QuantizationParameters* src_quantization,
304     TfLiteQuantization* quantization) {
305   quantization->type = kTfLiteNoQuantization;
306   if (!src_quantization || !src_quantization->scale() ||
307       src_quantization->scale()->size() == 0) {
308     return kTfLiteOk;
309   }
310   if (!src_quantization->zero_point()) {
311     error_reporter_->Report(
312         "Quantization parameters has non-null scale but null zero_point.");
313     return kTfLiteError;
314   }
315 
316   // Ensure that the number of scales matches the number of zero_points.
317   if (src_quantization->scale()->size() !=
318       src_quantization->zero_point()->size()) {
319     error_reporter_->Report(
320         "QuantizationParam has %d zero_point values and %d scale values. Must "
321         "have same number.",
322         src_quantization->zero_point()->size(),
323         src_quantization->scale()->size());
324     return kTfLiteError;
325   }
326 
327   // Affine-quantization.
328   quantization->type = kTfLiteAffineQuantization;
329   auto* affine_quantization = reinterpret_cast<TfLiteAffineQuantization*>(
330       malloc(sizeof(TfLiteAffineQuantization)));
331   const size_t num_scales = src_quantization->scale()->size();
332   affine_quantization->scale = TfLiteFloatArrayCreate(num_scales);
333   affine_quantization->zero_point = TfLiteIntArrayCreate(num_scales);
334   for (size_t i = 0; i < num_scales; ++i) {
335     affine_quantization->scale->data[i] = src_quantization->scale()->Get(i);
336     affine_quantization->zero_point->data[i] =
337         src_quantization->zero_point()->Get(i);
338   }
339   if (src_quantization->quantized_dimension() < 0 ||
340       src_quantization->quantized_dimension() >= num_scales) {
341     error_reporter_->Report(
342         "quantized_dimension must be in range [0, %d). Was %d.", num_scales,
343         src_quantization->quantized_dimension());
344     return kTfLiteError;
345   }
346   affine_quantization->quantized_dimension =
347       src_quantization->quantized_dimension();
348   quantization->params = reinterpret_cast<void*>(affine_quantization);
349   return kTfLiteOk;
350 }
351 
ParseTensors(const flatbuffers::Vector<flatbuffers::Offset<Buffer>> * buffers,const flatbuffers::Vector<flatbuffers::Offset<Tensor>> * tensors,Subgraph * subgraph)352 TfLiteStatus InterpreterBuilder::ParseTensors(
353     const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
354     const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors,
355     Subgraph* subgraph) {
356   TfLiteStatus status = kTfLiteOk;
357 
358   // A little helper to get the names of inputs and outputs. Note that they
359   // must outlive the subgraph.
360   auto get_name = [](const tflite::Tensor* t) -> const char* {
361     auto name = t->name();
362     if (name) return name->c_str();
363     return kEmptyTensorName;
364   };
365 
366   for (int i = 0; i < tensors->Length(); ++i) {
367     const auto* tensor = tensors->Get(i);
368     std::vector<int> dims = FlatBufferIntArrayToVector(tensor->shape());
369 
370     const auto* src_quantization = tensor->quantization();
371     TfLiteQuantization quantization;
372     if (ParseQuantization(src_quantization, &quantization) != kTfLiteOk) {
373       status = kTfLiteError;
374       continue;
375     }
376 
377     TfLiteType type;
378     if (ConvertTensorType(tensor->type(), &type, error_reporter_) !=
379         kTfLiteOk) {
380       status = kTfLiteError;
381       continue;
382     }
383     auto get_readonly_data = [&](const char** buffer_data,
384                                  size_t* buffer_size) {
385       // TODO(aselle): Check what happens if we have an unspecified size
386       // constant.
387       *buffer_data = nullptr;
388       if (tensor->buffer() == 0) return kTfLiteOk;
389       if (tensor->buffer() >= buffers->size()) {
390         error_reporter_->Report(
391             "Tensor %d specifies out of range buffer %d (only %d buffers).\n",
392             i, tensor->buffer(), buffers->size());
393         return kTfLiteError;
394       }
395       if (auto* buffer = (*buffers)[tensor->buffer()]) {
396         if (auto* array = buffer->data()) {
397           if (size_t size = array->size()) {
398             *buffer_size = size;
399             *buffer_data = reinterpret_cast<const char*>(array->data());
400             return kTfLiteOk;
401           }
402         }
403       }
404       return kTfLiteOk;
405     };
406     size_t buffer_size = 0;
407     const char* buffer_ptr;
408     TF_LITE_ENSURE_STATUS(get_readonly_data(&buffer_ptr, &buffer_size));
409 
410     bool is_variable = tensor->is_variable();
411     if (buffer_ptr) {
412       if (is_variable) {
413         error_reporter_->Report(
414             "Tensor %d is a variable tensor with buffer. "
415             "It's not supported now.\n",
416             i);
417         status = kTfLiteError;
418       }
419 
420       if (subgraph->SetTensorParametersReadOnly(
421               i, type, get_name(tensor), dims, quantization, buffer_ptr,
422               buffer_size, allocation_) != kTfLiteOk) {
423         error_reporter_->Report("Tensor %d is invalidly specified in schema.\n",
424                                 i);
425         status = kTfLiteError;
426       }
427     } else {
428       if (subgraph->SetTensorParametersReadWrite(i, type, get_name(tensor),
429                                                  dims, quantization,
430                                                  is_variable) != kTfLiteOk) {
431         error_reporter_->Report("Tensor %d is invalidly specified in schema.\n",
432                                 i);
433         status = kTfLiteError;
434       }
435     }
436   }
437 
438   return status;
439 }
440 
ApplyDelegates(Interpreter * interpreter)441 TfLiteStatus InterpreterBuilder::ApplyDelegates(Interpreter* interpreter) {
442   // TODO(b/117561550): Move flex delegate application to the OpResolver.
443   if (AcquireFlexDelegate == nullptr) {
444     return kTfLiteOk;
445   }
446 
447   bool has_flex_op = false;
448   for (const auto* registration : flatbuffer_op_index_to_registration_) {
449     if ((registration->builtin_code == BuiltinOperator_CUSTOM) &&
450         IsFlexOp(registration->custom_name)) {
451       has_flex_op = true;
452       break;
453     }
454   }
455 
456   if (!has_flex_op) {
457     return kTfLiteOk;
458   }
459 
460   if (auto flex_delegate = AcquireFlexDelegate()) {
461     return interpreter->ModifyGraphWithDelegate(std::move(flex_delegate));
462   }
463 
464   return kTfLiteOk;
465 }
466 
operator ()(std::unique_ptr<Interpreter> * interpreter)467 TfLiteStatus InterpreterBuilder::operator()(
468     std::unique_ptr<Interpreter>* interpreter) {
469   return operator()(interpreter, /*num_threads=*/-1);
470 }
471 
operator ()(std::unique_ptr<Interpreter> * interpreter,int num_threads)472 TfLiteStatus InterpreterBuilder::operator()(
473     std::unique_ptr<Interpreter>* interpreter, int num_threads) {
474   if (!interpreter) {
475     error_reporter_->Report(
476         "Null output pointer passed to InterpreterBuilder.");
477     return kTfLiteError;
478   }
479 
480   // Safe exit by deleting partially created interpreter, to reduce verbosity
481   // on error conditions. Use by return cleanup_on_error();
482   auto cleanup_and_error = [&interpreter]() {
483     interpreter->reset();
484     return kTfLiteError;
485   };
486 
487   if (!model_) {
488     error_reporter_->Report("Null pointer passed in as model.");
489     return cleanup_and_error();
490   }
491 
492   if (model_->version() != TFLITE_SCHEMA_VERSION) {
493     error_reporter_->Report(
494         "Model provided is schema version %d not equal "
495         "to supported version %d.\n",
496         model_->version(), TFLITE_SCHEMA_VERSION);
497     return cleanup_and_error();
498   }
499 
500   if (BuildLocalIndexToRegistrationMapping() != kTfLiteOk) {
501     error_reporter_->Report("Registration failed.\n");
502     return cleanup_and_error();
503   }
504 
505   // Flatbuffer model schemas define a list of opcodes independent of the graph.
506   // We first map those to registrations. This reduces string lookups for custom
507   // ops since we only do it once per custom op rather than once per custom op
508   // invocation in the model graph.
509   // Construct interpreter with correct number of tensors and operators.
510   auto* subgraphs = model_->subgraphs();
511   auto* buffers = model_->buffers();
512 
513   if (subgraphs->size() == 0) {
514     error_reporter_->Report("No subgraph in the model.\n");
515     return cleanup_and_error();
516   }
517 
518   interpreter->reset(new Interpreter(error_reporter_));
519   (*interpreter)->SetNumThreads(num_threads);
520   if (subgraphs->Length() > 1) {
521     (*interpreter)->AddSubgraphs(subgraphs->Length() - 1);
522   }
523 
524   for (int subgraph_index = 0; subgraph_index < subgraphs->Length();
525        ++subgraph_index) {
526     const tflite::SubGraph* subgraph = (*subgraphs)[subgraph_index];
527     tflite::Subgraph* modified_subgraph =
528         (*interpreter)->subgraph(subgraph_index);
529     auto operators = subgraph->operators();
530     auto tensors = subgraph->tensors();
531     if (!operators || !tensors || !buffers) {
532       error_reporter_->Report(
533           "Did not get operators, tensors, or buffers in subgraph %d.\n",
534           subgraph_index);
535       return cleanup_and_error();
536     }
537     if (modified_subgraph->AddTensors(tensors->Length()) != kTfLiteOk) {
538       return cleanup_and_error();
539     }
540     // Set num threads
541     // Parse inputs/outputs
542     modified_subgraph->SetInputs(
543         FlatBufferIntArrayToVector(subgraph->inputs()));
544     modified_subgraph->SetOutputs(
545         FlatBufferIntArrayToVector(subgraph->outputs()));
546 
547     // Finally setup nodes and tensors
548     if (ParseNodes(operators, modified_subgraph) != kTfLiteOk)
549       return cleanup_and_error();
550     if (ParseTensors(buffers, tensors, modified_subgraph) != kTfLiteOk)
551       return cleanup_and_error();
552 
553     std::vector<int> variables;
554     for (int i = 0; i < modified_subgraph->tensors_size(); ++i) {
555       auto* tensor = modified_subgraph->tensor(i);
556       if (tensor->is_variable) {
557         variables.push_back(i);
558       }
559     }
560     modified_subgraph->SetVariables(std::move(variables));
561   }
562 
563   if (ApplyDelegates(interpreter->get()) != kTfLiteOk)
564     return cleanup_and_error();
565 
566   return kTfLiteOk;
567 }
568 
569 }  // namespace tflite
570