1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/bytestring.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20 
21 #include <openssl/buf.h>
22 #include <openssl/mem.h>
23 
24 #include "../internal.h"
25 
26 
CBB_zero(CBB * cbb)27 void CBB_zero(CBB *cbb) {
28   OPENSSL_memset(cbb, 0, sizeof(CBB));
29 }
30 
cbb_init(CBB * cbb,uint8_t * buf,size_t cap)31 static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) {
32   // This assumes that |cbb| has already been zeroed.
33   struct cbb_buffer_st *base;
34 
35   base = OPENSSL_malloc(sizeof(struct cbb_buffer_st));
36   if (base == NULL) {
37     return 0;
38   }
39 
40   base->buf = buf;
41   base->len = 0;
42   base->cap = cap;
43   base->can_resize = 1;
44   base->error = 0;
45 
46   cbb->base = base;
47   cbb->is_top_level = 1;
48   return 1;
49 }
50 
CBB_init(CBB * cbb,size_t initial_capacity)51 int CBB_init(CBB *cbb, size_t initial_capacity) {
52   CBB_zero(cbb);
53 
54   uint8_t *buf = OPENSSL_malloc(initial_capacity);
55   if (initial_capacity > 0 && buf == NULL) {
56     return 0;
57   }
58 
59   if (!cbb_init(cbb, buf, initial_capacity)) {
60     OPENSSL_free(buf);
61     return 0;
62   }
63 
64   return 1;
65 }
66 
CBB_init_fixed(CBB * cbb,uint8_t * buf,size_t len)67 int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) {
68   CBB_zero(cbb);
69 
70   if (!cbb_init(cbb, buf, len)) {
71     return 0;
72   }
73 
74   cbb->base->can_resize = 0;
75   return 1;
76 }
77 
CBB_cleanup(CBB * cbb)78 void CBB_cleanup(CBB *cbb) {
79   if (cbb->base) {
80     // Only top-level |CBB|s are cleaned up. Child |CBB|s are non-owning. They
81     // are implicitly discarded when the parent is flushed or cleaned up.
82     assert(cbb->is_top_level);
83 
84     if (cbb->base->can_resize) {
85       OPENSSL_free(cbb->base->buf);
86     }
87     OPENSSL_free(cbb->base);
88   }
89   cbb->base = NULL;
90 }
91 
cbb_buffer_reserve(struct cbb_buffer_st * base,uint8_t ** out,size_t len)92 static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out,
93                               size_t len) {
94   size_t newlen;
95 
96   if (base == NULL) {
97     return 0;
98   }
99 
100   newlen = base->len + len;
101   if (newlen < base->len) {
102     // Overflow
103     goto err;
104   }
105 
106   if (newlen > base->cap) {
107     size_t newcap = base->cap * 2;
108     uint8_t *newbuf;
109 
110     if (!base->can_resize) {
111       goto err;
112     }
113 
114     if (newcap < base->cap || newcap < newlen) {
115       newcap = newlen;
116     }
117     newbuf = OPENSSL_realloc(base->buf, newcap);
118     if (newbuf == NULL) {
119       goto err;
120     }
121 
122     base->buf = newbuf;
123     base->cap = newcap;
124   }
125 
126   if (out) {
127     *out = base->buf + base->len;
128   }
129 
130   return 1;
131 
132 err:
133   base->error = 1;
134   return 0;
135 }
136 
cbb_buffer_add(struct cbb_buffer_st * base,uint8_t ** out,size_t len)137 static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out,
138                           size_t len) {
139   if (!cbb_buffer_reserve(base, out, len)) {
140     return 0;
141   }
142   // This will not overflow or |cbb_buffer_reserve| would have failed.
143   base->len += len;
144   return 1;
145 }
146 
cbb_buffer_add_u(struct cbb_buffer_st * base,uint64_t v,size_t len_len)147 static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint64_t v,
148                             size_t len_len) {
149   if (len_len == 0) {
150     return 1;
151   }
152 
153   uint8_t *buf;
154   if (!cbb_buffer_add(base, &buf, len_len)) {
155     return 0;
156   }
157 
158   for (size_t i = len_len - 1; i < len_len; i--) {
159     buf[i] = v;
160     v >>= 8;
161   }
162 
163   if (v != 0) {
164     base->error = 1;
165     return 0;
166   }
167 
168   return 1;
169 }
170 
CBB_finish(CBB * cbb,uint8_t ** out_data,size_t * out_len)171 int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) {
172   if (!cbb->is_top_level) {
173     return 0;
174   }
175 
176   if (!CBB_flush(cbb)) {
177     return 0;
178   }
179 
180   if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) {
181     // |out_data| and |out_len| can only be NULL if the CBB is fixed.
182     return 0;
183   }
184 
185   if (out_data != NULL) {
186     *out_data = cbb->base->buf;
187   }
188   if (out_len != NULL) {
189     *out_len = cbb->base->len;
190   }
191   cbb->base->buf = NULL;
192   CBB_cleanup(cbb);
193   return 1;
194 }
195 
196 // CBB_flush recurses and then writes out any pending length prefix. The
197 // current length of the underlying base is taken to be the length of the
198 // length-prefixed data.
CBB_flush(CBB * cbb)199 int CBB_flush(CBB *cbb) {
200   size_t child_start, i, len;
201 
202   // If |cbb->base| has hit an error, the buffer is in an undefined state, so
203   // fail all following calls. In particular, |cbb->child| may point to invalid
204   // memory.
205   if (cbb->base == NULL || cbb->base->error) {
206     return 0;
207   }
208 
209   if (cbb->child == NULL || cbb->child->pending_len_len == 0) {
210     return 1;
211   }
212 
213   child_start = cbb->child->offset + cbb->child->pending_len_len;
214 
215   if (!CBB_flush(cbb->child) ||
216       child_start < cbb->child->offset ||
217       cbb->base->len < child_start) {
218     goto err;
219   }
220 
221   len = cbb->base->len - child_start;
222 
223   if (cbb->child->pending_is_asn1) {
224     // For ASN.1 we assume that we'll only need a single byte for the length.
225     // If that turned out to be incorrect, we have to move the contents along
226     // in order to make space.
227     uint8_t len_len;
228     uint8_t initial_length_byte;
229 
230     assert (cbb->child->pending_len_len == 1);
231 
232     if (len > 0xfffffffe) {
233       // Too large.
234       goto err;
235     } else if (len > 0xffffff) {
236       len_len = 5;
237       initial_length_byte = 0x80 | 4;
238     } else if (len > 0xffff) {
239       len_len = 4;
240       initial_length_byte = 0x80 | 3;
241     } else if (len > 0xff) {
242       len_len = 3;
243       initial_length_byte = 0x80 | 2;
244     } else if (len > 0x7f) {
245       len_len = 2;
246       initial_length_byte = 0x80 | 1;
247     } else {
248       len_len = 1;
249       initial_length_byte = (uint8_t)len;
250       len = 0;
251     }
252 
253     if (len_len != 1) {
254       // We need to move the contents along in order to make space.
255       size_t extra_bytes = len_len - 1;
256       if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) {
257         goto err;
258       }
259       OPENSSL_memmove(cbb->base->buf + child_start + extra_bytes,
260                       cbb->base->buf + child_start, len);
261     }
262     cbb->base->buf[cbb->child->offset++] = initial_length_byte;
263     cbb->child->pending_len_len = len_len - 1;
264   }
265 
266   for (i = cbb->child->pending_len_len - 1; i < cbb->child->pending_len_len;
267        i--) {
268     cbb->base->buf[cbb->child->offset + i] = (uint8_t)len;
269     len >>= 8;
270   }
271   if (len != 0) {
272     goto err;
273   }
274 
275   cbb->child->base = NULL;
276   cbb->child = NULL;
277 
278   return 1;
279 
280 err:
281   cbb->base->error = 1;
282   return 0;
283 }
284 
CBB_data(const CBB * cbb)285 const uint8_t *CBB_data(const CBB *cbb) {
286   assert(cbb->child == NULL);
287   return cbb->base->buf + cbb->offset + cbb->pending_len_len;
288 }
289 
CBB_len(const CBB * cbb)290 size_t CBB_len(const CBB *cbb) {
291   assert(cbb->child == NULL);
292   assert(cbb->offset + cbb->pending_len_len <= cbb->base->len);
293 
294   return cbb->base->len - cbb->offset - cbb->pending_len_len;
295 }
296 
cbb_add_length_prefixed(CBB * cbb,CBB * out_contents,uint8_t len_len)297 static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents,
298                                    uint8_t len_len) {
299   uint8_t *prefix_bytes;
300 
301   if (!CBB_flush(cbb)) {
302     return 0;
303   }
304 
305   size_t offset = cbb->base->len;
306   if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) {
307     return 0;
308   }
309 
310   OPENSSL_memset(prefix_bytes, 0, len_len);
311   OPENSSL_memset(out_contents, 0, sizeof(CBB));
312   out_contents->base = cbb->base;
313   cbb->child = out_contents;
314   cbb->child->offset = offset;
315   cbb->child->pending_len_len = len_len;
316   cbb->child->pending_is_asn1 = 0;
317 
318   return 1;
319 }
320 
CBB_add_u8_length_prefixed(CBB * cbb,CBB * out_contents)321 int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) {
322   return cbb_add_length_prefixed(cbb, out_contents, 1);
323 }
324 
CBB_add_u16_length_prefixed(CBB * cbb,CBB * out_contents)325 int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) {
326   return cbb_add_length_prefixed(cbb, out_contents, 2);
327 }
328 
CBB_add_u24_length_prefixed(CBB * cbb,CBB * out_contents)329 int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) {
330   return cbb_add_length_prefixed(cbb, out_contents, 3);
331 }
332 
333 // add_base128_integer encodes |v| as a big-endian base-128 integer where the
334 // high bit of each byte indicates where there is more data. This is the
335 // encoding used in DER for both high tag number form and OID components.
add_base128_integer(CBB * cbb,uint64_t v)336 static int add_base128_integer(CBB *cbb, uint64_t v) {
337   unsigned len_len = 0;
338   uint64_t copy = v;
339   while (copy > 0) {
340     len_len++;
341     copy >>= 7;
342   }
343   if (len_len == 0) {
344     len_len = 1;  // Zero is encoded with one byte.
345   }
346   for (unsigned i = len_len - 1; i < len_len; i--) {
347     uint8_t byte = (v >> (7 * i)) & 0x7f;
348     if (i != 0) {
349       // The high bit denotes whether there is more data.
350       byte |= 0x80;
351     }
352     if (!CBB_add_u8(cbb, byte)) {
353       return 0;
354     }
355   }
356   return 1;
357 }
358 
CBB_add_asn1(CBB * cbb,CBB * out_contents,unsigned tag)359 int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag) {
360   if (!CBB_flush(cbb)) {
361     return 0;
362   }
363 
364   // Split the tag into leading bits and tag number.
365   uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0;
366   unsigned tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK;
367   if (tag_number >= 0x1f) {
368     // Set all the bits in the tag number to signal high tag number form.
369     if (!CBB_add_u8(cbb, tag_bits | 0x1f) ||
370         !add_base128_integer(cbb, tag_number)) {
371       return 0;
372     }
373   } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) {
374     return 0;
375   }
376 
377   size_t offset = cbb->base->len;
378   if (!CBB_add_u8(cbb, 0)) {
379     return 0;
380   }
381 
382   OPENSSL_memset(out_contents, 0, sizeof(CBB));
383   out_contents->base = cbb->base;
384   cbb->child = out_contents;
385   cbb->child->offset = offset;
386   cbb->child->pending_len_len = 1;
387   cbb->child->pending_is_asn1 = 1;
388 
389   return 1;
390 }
391 
CBB_add_bytes(CBB * cbb,const uint8_t * data,size_t len)392 int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) {
393   uint8_t *dest;
394 
395   if (!CBB_flush(cbb) ||
396       !cbb_buffer_add(cbb->base, &dest, len)) {
397     return 0;
398   }
399   OPENSSL_memcpy(dest, data, len);
400   return 1;
401 }
402 
CBB_add_space(CBB * cbb,uint8_t ** out_data,size_t len)403 int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) {
404   if (!CBB_flush(cbb) ||
405       !cbb_buffer_add(cbb->base, out_data, len)) {
406     return 0;
407   }
408   return 1;
409 }
410 
CBB_reserve(CBB * cbb,uint8_t ** out_data,size_t len)411 int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) {
412   if (!CBB_flush(cbb) ||
413       !cbb_buffer_reserve(cbb->base, out_data, len)) {
414     return 0;
415   }
416   return 1;
417 }
418 
CBB_did_write(CBB * cbb,size_t len)419 int CBB_did_write(CBB *cbb, size_t len) {
420   size_t newlen = cbb->base->len + len;
421   if (cbb->child != NULL ||
422       newlen < cbb->base->len ||
423       newlen > cbb->base->cap) {
424     return 0;
425   }
426   cbb->base->len = newlen;
427   return 1;
428 }
429 
CBB_add_u8(CBB * cbb,uint8_t value)430 int CBB_add_u8(CBB *cbb, uint8_t value) {
431   if (!CBB_flush(cbb)) {
432     return 0;
433   }
434 
435   return cbb_buffer_add_u(cbb->base, value, 1);
436 }
437 
CBB_add_u16(CBB * cbb,uint16_t value)438 int CBB_add_u16(CBB *cbb, uint16_t value) {
439   if (!CBB_flush(cbb)) {
440     return 0;
441   }
442 
443   return cbb_buffer_add_u(cbb->base, value, 2);
444 }
445 
CBB_add_u24(CBB * cbb,uint32_t value)446 int CBB_add_u24(CBB *cbb, uint32_t value) {
447   if (!CBB_flush(cbb)) {
448     return 0;
449   }
450 
451   return cbb_buffer_add_u(cbb->base, value, 3);
452 }
453 
CBB_add_u32(CBB * cbb,uint32_t value)454 int CBB_add_u32(CBB *cbb, uint32_t value) {
455   if (!CBB_flush(cbb)) {
456     return 0;
457   }
458 
459   return cbb_buffer_add_u(cbb->base, value, 4);
460 }
461 
CBB_add_u64(CBB * cbb,uint64_t value)462 int CBB_add_u64(CBB *cbb, uint64_t value) {
463   if (!CBB_flush(cbb)) {
464     return 0;
465   }
466   return cbb_buffer_add_u(cbb->base, value, 8);
467 }
468 
CBB_discard_child(CBB * cbb)469 void CBB_discard_child(CBB *cbb) {
470   if (cbb->child == NULL) {
471     return;
472   }
473 
474   cbb->base->len = cbb->child->offset;
475 
476   cbb->child->base = NULL;
477   cbb->child = NULL;
478 }
479 
CBB_add_asn1_uint64(CBB * cbb,uint64_t value)480 int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) {
481   CBB child;
482   int started = 0;
483 
484   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_INTEGER)) {
485     return 0;
486   }
487 
488   for (size_t i = 0; i < 8; i++) {
489     uint8_t byte = (value >> 8*(7-i)) & 0xff;
490     if (!started) {
491       if (byte == 0) {
492         // Don't encode leading zeros.
493         continue;
494       }
495       // If the high bit is set, add a padding byte to make it
496       // unsigned.
497       if ((byte & 0x80) && !CBB_add_u8(&child, 0)) {
498         return 0;
499       }
500       started = 1;
501     }
502     if (!CBB_add_u8(&child, byte)) {
503       return 0;
504     }
505   }
506 
507   // 0 is encoded as a single 0, not the empty string.
508   if (!started && !CBB_add_u8(&child, 0)) {
509     return 0;
510   }
511 
512   return CBB_flush(cbb);
513 }
514 
CBB_add_asn1_octet_string(CBB * cbb,const uint8_t * data,size_t data_len)515 int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) {
516   CBB child;
517   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) ||
518       !CBB_add_bytes(&child, data, data_len) ||
519       !CBB_flush(cbb)) {
520     return 0;
521   }
522 
523   return 1;
524 }
525 
CBB_add_asn1_bool(CBB * cbb,int value)526 int CBB_add_asn1_bool(CBB *cbb, int value) {
527   CBB child;
528   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) ||
529       !CBB_add_u8(&child, value != 0 ? 0xff : 0) ||
530       !CBB_flush(cbb)) {
531     return 0;
532   }
533 
534   return 1;
535 }
536 
537 // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is
538 // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the
539 // component and the dot, so |cbs| may be passed into the function again for the
540 // next value.
parse_dotted_decimal(CBS * cbs,uint64_t * out)541 static int parse_dotted_decimal(CBS *cbs, uint64_t *out) {
542   *out = 0;
543   int seen_digit = 0;
544   for (;;) {
545     // Valid terminators for a component are the end of the string or a
546     // non-terminal dot. If the string ends with a dot, this is not a valid OID
547     // string.
548     uint8_t u;
549     if (!CBS_get_u8(cbs, &u) ||
550         (u == '.' && CBS_len(cbs) > 0)) {
551       break;
552     }
553     if (u < '0' || u > '9' ||
554         // Forbid stray leading zeros.
555         (seen_digit && *out == 0) ||
556         // Check for overflow.
557         *out > UINT64_MAX / 10 ||
558         *out * 10 > UINT64_MAX - (u - '0')) {
559       return 0;
560     }
561     *out = *out * 10 + (u - '0');
562     seen_digit = 1;
563   }
564   // The empty string is not a legal OID component.
565   return seen_digit;
566 }
567 
CBB_add_asn1_oid_from_text(CBB * cbb,const char * text,size_t len)568 int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) {
569   if (!CBB_flush(cbb)) {
570     return 0;
571   }
572 
573   CBS cbs;
574   CBS_init(&cbs, (const uint8_t *)text, len);
575 
576   // OIDs must have at least two components.
577   uint64_t a, b;
578   if (!parse_dotted_decimal(&cbs, &a) ||
579       !parse_dotted_decimal(&cbs, &b)) {
580     return 0;
581   }
582 
583   // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is
584   // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39.
585   if (a > 2 ||
586       (a < 2 && b > 39) ||
587       b > UINT64_MAX - 80 ||
588       !add_base128_integer(cbb, 40u * a + b)) {
589     return 0;
590   }
591 
592   // The remaining components are encoded unmodified.
593   while (CBS_len(&cbs) > 0) {
594     if (!parse_dotted_decimal(&cbs, &a) ||
595         !add_base128_integer(cbb, a)) {
596       return 0;
597     }
598   }
599 
600   return 1;
601 }
602 
compare_set_of_element(const void * a_ptr,const void * b_ptr)603 static int compare_set_of_element(const void *a_ptr, const void *b_ptr) {
604   // See X.690, section 11.6 for the ordering. They are sorted in ascending
605   // order by their DER encoding.
606   const CBS *a = a_ptr, *b = b_ptr;
607   size_t a_len = CBS_len(a), b_len = CBS_len(b);
608   size_t min_len = a_len < b_len ? a_len : b_len;
609   int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len);
610   if (ret != 0) {
611     return ret;
612   }
613   if (a_len == b_len) {
614     return 0;
615   }
616   // If one is a prefix of the other, the shorter one sorts first. (This is not
617   // actually reachable. No DER encoding is a prefix of another DER encoding.)
618   return a_len < b_len ? -1 : 1;
619 }
620 
CBB_flush_asn1_set_of(CBB * cbb)621 int CBB_flush_asn1_set_of(CBB *cbb) {
622   if (!CBB_flush(cbb)) {
623     return 0;
624   }
625 
626   CBS cbs;
627   size_t num_children = 0;
628   CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb));
629   while (CBS_len(&cbs) != 0) {
630     if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) {
631       return 0;
632     }
633     num_children++;
634   }
635 
636   if (num_children < 2) {
637     return 1;  // Nothing to do. This is the common case for X.509.
638   }
639   if (num_children > ((size_t)-1) / sizeof(CBS)) {
640     return 0;  // Overflow.
641   }
642 
643   // Parse out the children and sort. We alias them into a copy of so they
644   // remain valid as we rewrite |cbb|.
645   int ret = 0;
646   size_t buf_len = CBB_len(cbb);
647   uint8_t *buf = BUF_memdup(CBB_data(cbb), buf_len);
648   CBS *children = OPENSSL_malloc(num_children * sizeof(CBS));
649   if (buf == NULL || children == NULL) {
650     goto err;
651   }
652   CBS_init(&cbs, buf, buf_len);
653   for (size_t i = 0; i < num_children; i++) {
654     if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) {
655       goto err;
656     }
657   }
658   qsort(children, num_children, sizeof(CBS), compare_set_of_element);
659 
660   // Rewind |cbb| and write the contents back in the new order.
661   cbb->base->len = cbb->offset + cbb->pending_len_len;
662   for (size_t i = 0; i < num_children; i++) {
663     if (!CBB_add_bytes(cbb, CBS_data(&children[i]), CBS_len(&children[i]))) {
664       goto err;
665     }
666   }
667   assert(CBB_len(cbb) == buf_len);
668 
669   ret = 1;
670 
671 err:
672   OPENSSL_free(buf);
673   OPENSSL_free(children);
674   return ret;
675 }
676