1 //===-Config.h - LLVM Link Time Optimizer Configuration -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the lto::Config data structure, which allows clients to
11 // configure LTO.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LTO_CONFIG_H
16 #define LLVM_LTO_CONFIG_H
17 
18 #include "llvm/IR/DiagnosticInfo.h"
19 #include "llvm/Support/CodeGen.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetOptions.h"
22 
23 #include <functional>
24 
25 namespace llvm {
26 
27 class Error;
28 class Module;
29 class ModuleSummaryIndex;
30 class raw_pwrite_stream;
31 
32 namespace lto {
33 
34 /// LTO configuration. A linker can configure LTO by setting fields in this data
35 /// structure and passing it to the lto::LTO constructor.
36 struct Config {
37   // Note: when adding fields here, consider whether they need to be added to
38   // computeCacheKey in LTO.cpp.
39   std::string CPU;
40   TargetOptions Options;
41   std::vector<std::string> MAttrs;
42   Optional<Reloc::Model> RelocModel = Reloc::PIC_;
43   Optional<CodeModel::Model> CodeModel = None;
44   CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default;
45   TargetMachine::CodeGenFileType CGFileType = TargetMachine::CGFT_ObjectFile;
46   unsigned OptLevel = 2;
47   bool DisableVerify = false;
48 
49   /// Use the new pass manager
50   bool UseNewPM = false;
51 
52   /// Disable entirely the optimizer, including importing for ThinLTO
53   bool CodeGenOnly = false;
54 
55   /// If this field is set, the set of passes run in the middle-end optimizer
56   /// will be the one specified by the string. Only works with the new pass
57   /// manager as the old one doesn't have this ability.
58   std::string OptPipeline;
59 
60   // If this field is set, it has the same effect of specifying an AA pipeline
61   // identified by the string. Only works with the new pass manager, in
62   // conjunction OptPipeline.
63   std::string AAPipeline;
64 
65   /// Setting this field will replace target triples in input files with this
66   /// triple.
67   std::string OverrideTriple;
68 
69   /// Setting this field will replace unspecified target triples in input files
70   /// with this triple.
71   std::string DefaultTriple;
72 
73   /// Sample PGO profile path.
74   std::string SampleProfile;
75 
76   /// The directory to store .dwo files.
77   std::string DwoDir;
78 
79   /// The path to write a .dwo file to. This should generally only be used when
80   /// running an individual backend directly via thinBackend(), as otherwise
81   /// all .dwo files will be written to the same path.
82   std::string DwoPath;
83 
84   /// Optimization remarks file path.
85   std::string RemarksFilename = "";
86 
87   /// Whether to emit optimization remarks with hotness informations.
88   bool RemarksWithHotness = false;
89 
90   /// Whether to emit the pass manager debuggging informations.
91   bool DebugPassManager = false;
92 
93   /// Statistics output file path.
94   std::string StatsFile;
95 
96   bool ShouldDiscardValueNames = true;
97   DiagnosticHandlerFunction DiagHandler;
98 
99   /// If this field is set, LTO will write input file paths and symbol
100   /// resolutions here in llvm-lto2 command line flag format. This can be
101   /// used for testing and for running the LTO pipeline outside of the linker
102   /// with llvm-lto2.
103   std::unique_ptr<raw_ostream> ResolutionFile;
104 
105   /// The following callbacks deal with tasks, which normally represent the
106   /// entire optimization and code generation pipeline for what will become a
107   /// single native object file. Each task has a unique identifier between 0 and
108   /// getMaxTasks()-1, which is supplied to the callback via the Task parameter.
109   /// A task represents the entire pipeline for ThinLTO and regular
110   /// (non-parallel) LTO, but a parallel code generation task will be split into
111   /// N tasks before code generation, where N is the parallelism level.
112   ///
113   /// LTO may decide to stop processing a task at any time, for example if the
114   /// module is empty or if a module hook (see below) returns false. For this
115   /// reason, the client should not expect to receive exactly getMaxTasks()
116   /// native object files.
117 
118   /// A module hook may be used by a linker to perform actions during the LTO
119   /// pipeline. For example, a linker may use this function to implement
120   /// -save-temps. If this function returns false, any further processing for
121   /// that task is aborted.
122   ///
123   /// Module hooks must be thread safe with respect to the linker's internal
124   /// data structures. A module hook will never be called concurrently from
125   /// multiple threads with the same task ID, or the same module.
126   ///
127   /// Note that in out-of-process backend scenarios, none of the hooks will be
128   /// called for ThinLTO tasks.
129   typedef std::function<bool(unsigned Task, const Module &)> ModuleHookFn;
130 
131   /// This module hook is called after linking (regular LTO) or loading
132   /// (ThinLTO) the module, before modifying it.
133   ModuleHookFn PreOptModuleHook;
134 
135   /// This hook is called after promoting any internal functions
136   /// (ThinLTO-specific).
137   ModuleHookFn PostPromoteModuleHook;
138 
139   /// This hook is called after internalizing the module.
140   ModuleHookFn PostInternalizeModuleHook;
141 
142   /// This hook is called after importing from other modules (ThinLTO-specific).
143   ModuleHookFn PostImportModuleHook;
144 
145   /// This module hook is called after optimization is complete.
146   ModuleHookFn PostOptModuleHook;
147 
148   /// This module hook is called before code generation. It is similar to the
149   /// PostOptModuleHook, but for parallel code generation it is called after
150   /// splitting the module.
151   ModuleHookFn PreCodeGenModuleHook;
152 
153   /// A combined index hook is called after all per-module indexes have been
154   /// combined (ThinLTO-specific). It can be used to implement -save-temps for
155   /// the combined index.
156   ///
157   /// If this function returns false, any further processing for ThinLTO tasks
158   /// is aborted.
159   ///
160   /// It is called regardless of whether the backend is in-process, although it
161   /// is not called from individual backend processes.
162   typedef std::function<bool(const ModuleSummaryIndex &Index)>
163       CombinedIndexHookFn;
164   CombinedIndexHookFn CombinedIndexHook;
165 
166   /// This is a convenience function that configures this Config object to write
167   /// temporary files named after the given OutputFileName for each of the LTO
168   /// phases to disk. A client can use this function to implement -save-temps.
169   ///
170   /// FIXME: Temporary files derived from ThinLTO backends are currently named
171   /// after the input file name, rather than the output file name, when
172   /// UseInputModulePath is set to true.
173   ///
174   /// Specifically, it (1) sets each of the above module hooks and the combined
175   /// index hook to a function that calls the hook function (if any) that was
176   /// present in the appropriate field when the addSaveTemps function was
177   /// called, and writes the module to a bitcode file with a name prefixed by
178   /// the given output file name, and (2) creates a resolution file whose name
179   /// is prefixed by the given output file name and sets ResolutionFile to its
180   /// file handle.
181   Error addSaveTemps(std::string OutputFileName,
182                      bool UseInputModulePath = false);
183 };
184 
185 struct LTOLLVMDiagnosticHandler : public DiagnosticHandler {
186   DiagnosticHandlerFunction *Fn;
LTOLLVMDiagnosticHandlerLTOLLVMDiagnosticHandler187   LTOLLVMDiagnosticHandler(DiagnosticHandlerFunction *DiagHandlerFn)
188       : Fn(DiagHandlerFn) {}
handleDiagnosticsLTOLLVMDiagnosticHandler189   bool handleDiagnostics(const DiagnosticInfo &DI) override {
190     (*Fn)(DI);
191     return true;
192   }
193 };
194 /// A derived class of LLVMContext that initializes itself according to a given
195 /// Config object. The purpose of this class is to tie ownership of the
196 /// diagnostic handler to the context, as opposed to the Config object (which
197 /// may be ephemeral).
198 // FIXME: This should not be required as diagnostic handler is not callback.
199 struct LTOLLVMContext : LLVMContext {
200 
LTOLLVMContextLTOLLVMContext201   LTOLLVMContext(const Config &C) : DiagHandler(C.DiagHandler) {
202     setDiscardValueNames(C.ShouldDiscardValueNames);
203     enableDebugTypeODRUniquing();
204     setDiagnosticHandler(
205         llvm::make_unique<LTOLLVMDiagnosticHandler>(&DiagHandler), true);
206   }
207   DiagnosticHandlerFunction DiagHandler;
208 };
209 
210 }
211 }
212 
213 #endif
214