1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anoncc54a5490111::EffectiveContext81   EffectiveContext() : Inner(nullptr), Dependent(false) {}
82 
EffectiveContext__anoncc54a5490111::EffectiveContext83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // C++11 [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++11 [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       // We want to add canonical declarations to the EC lists for
101       // simplicity of checking, but we need to walk up through the
102       // actual current DC chain.  Otherwise, something like a local
103       // extern or friend which happens to be the canonical
104       // declaration will really mess us up.
105 
106       if (isa<CXXRecordDecl>(DC)) {
107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108         Records.push_back(Record->getCanonicalDecl());
109         DC = Record->getDeclContext();
110       } else if (isa<FunctionDecl>(DC)) {
111         FunctionDecl *Function = cast<FunctionDecl>(DC);
112         Functions.push_back(Function->getCanonicalDecl());
113         if (Function->getFriendObjectKind())
114           DC = Function->getLexicalDeclContext();
115         else
116           DC = Function->getDeclContext();
117       } else if (DC->isFileContext()) {
118         break;
119       } else {
120         DC = DC->getParent();
121       }
122     }
123   }
124 
isDependent__anoncc54a5490111::EffectiveContext125   bool isDependent() const { return Dependent; }
126 
includesClass__anoncc54a5490111::EffectiveContext127   bool includesClass(const CXXRecordDecl *R) const {
128     R = R->getCanonicalDecl();
129     return std::find(Records.begin(), Records.end(), R)
130              != Records.end();
131   }
132 
133   /// Retrieves the innermost "useful" context.  Can be null if we're
134   /// doing access-control without privileges.
getInnerContext__anoncc54a5490111::EffectiveContext135   DeclContext *getInnerContext() const {
136     return Inner;
137   }
138 
139   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140 
141   DeclContext *Inner;
142   SmallVector<FunctionDecl*, 4> Functions;
143   SmallVector<CXXRecordDecl*, 4> Records;
144   bool Dependent;
145 };
146 
147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
148 /// it.
149 struct AccessTarget : public AccessedEntity {
AccessTarget__anoncc54a5490111::AccessTarget150   AccessTarget(const AccessedEntity &Entity)
151     : AccessedEntity(Entity) {
152     initialize();
153   }
154 
AccessTarget__anoncc54a5490111::AccessTarget155   AccessTarget(ASTContext &Context,
156                MemberNonce _,
157                CXXRecordDecl *NamingClass,
158                DeclAccessPair FoundDecl,
159                QualType BaseObjectType)
160     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                      FoundDecl, BaseObjectType) {
162     initialize();
163   }
164 
AccessTarget__anoncc54a5490111::AccessTarget165   AccessTarget(ASTContext &Context,
166                BaseNonce _,
167                CXXRecordDecl *BaseClass,
168                CXXRecordDecl *DerivedClass,
169                AccessSpecifier Access)
170     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                      Access) {
172     initialize();
173   }
174 
isInstanceMember__anoncc54a5490111::AccessTarget175   bool isInstanceMember() const {
176     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177   }
178 
hasInstanceContext__anoncc54a5490111::AccessTarget179   bool hasInstanceContext() const {
180     return HasInstanceContext;
181   }
182 
183   class SavedInstanceContext {
184   public:
SavedInstanceContext(SavedInstanceContext && S)185     SavedInstanceContext(SavedInstanceContext &&S)
186         : Target(S.Target), Has(S.Has) {
187       S.Target = nullptr;
188     }
~SavedInstanceContext()189     ~SavedInstanceContext() {
190       if (Target)
191         Target->HasInstanceContext = Has;
192     }
193 
194   private:
195     friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)196     explicit SavedInstanceContext(AccessTarget &Target)
197         : Target(&Target), Has(Target.HasInstanceContext) {}
198     AccessTarget *Target;
199     bool Has;
200   };
201 
saveInstanceContext__anoncc54a5490111::AccessTarget202   SavedInstanceContext saveInstanceContext() {
203     return SavedInstanceContext(*this);
204   }
205 
suppressInstanceContext__anoncc54a5490111::AccessTarget206   void suppressInstanceContext() {
207     HasInstanceContext = false;
208   }
209 
resolveInstanceContext__anoncc54a5490111::AccessTarget210   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
211     assert(HasInstanceContext);
212     if (CalculatedInstanceContext)
213       return InstanceContext;
214 
215     CalculatedInstanceContext = true;
216     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
217     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
218                           : nullptr);
219     return InstanceContext;
220   }
221 
getDeclaringClass__anoncc54a5490111::AccessTarget222   const CXXRecordDecl *getDeclaringClass() const {
223     return DeclaringClass;
224   }
225 
226   /// The "effective" naming class is the canonical non-anonymous
227   /// class containing the actual naming class.
getEffectiveNamingClass__anoncc54a5490111::AccessTarget228   const CXXRecordDecl *getEffectiveNamingClass() const {
229     const CXXRecordDecl *namingClass = getNamingClass();
230     while (namingClass->isAnonymousStructOrUnion())
231       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
232     return namingClass->getCanonicalDecl();
233   }
234 
235 private:
initialize__anoncc54a5490111::AccessTarget236   void initialize() {
237     HasInstanceContext = (isMemberAccess() &&
238                           !getBaseObjectType().isNull() &&
239                           getTargetDecl()->isCXXInstanceMember());
240     CalculatedInstanceContext = false;
241     InstanceContext = nullptr;
242 
243     if (isMemberAccess())
244       DeclaringClass = FindDeclaringClass(getTargetDecl());
245     else
246       DeclaringClass = getBaseClass();
247     DeclaringClass = DeclaringClass->getCanonicalDecl();
248   }
249 
250   bool HasInstanceContext : 1;
251   mutable bool CalculatedInstanceContext : 1;
252   mutable const CXXRecordDecl *InstanceContext;
253   const CXXRecordDecl *DeclaringClass;
254 };
255 
256 }
257 
258 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)259 static bool MightInstantiateTo(const CXXRecordDecl *From,
260                                const CXXRecordDecl *To) {
261   // Declaration names are always preserved by instantiation.
262   if (From->getDeclName() != To->getDeclName())
263     return false;
264 
265   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
266   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
267   if (FromDC == ToDC) return true;
268   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
269 
270   // Be conservative.
271   return true;
272 }
273 
274 /// Checks whether one class is derived from another, inclusively.
275 /// Properly indicates when it couldn't be determined due to
276 /// dependence.
277 ///
278 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)279 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
280                                            const CXXRecordDecl *Target) {
281   assert(Derived->getCanonicalDecl() == Derived);
282   assert(Target->getCanonicalDecl() == Target);
283 
284   if (Derived == Target) return AR_accessible;
285 
286   bool CheckDependent = Derived->isDependentContext();
287   if (CheckDependent && MightInstantiateTo(Derived, Target))
288     return AR_dependent;
289 
290   AccessResult OnFailure = AR_inaccessible;
291   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
292 
293   while (true) {
294     if (Derived->isDependentContext() && !Derived->hasDefinition() &&
295         !Derived->isLambda())
296       return AR_dependent;
297 
298     for (const auto &I : Derived->bases()) {
299       const CXXRecordDecl *RD;
300 
301       QualType T = I.getType();
302       if (const RecordType *RT = T->getAs<RecordType>()) {
303         RD = cast<CXXRecordDecl>(RT->getDecl());
304       } else if (const InjectedClassNameType *IT
305                    = T->getAs<InjectedClassNameType>()) {
306         RD = IT->getDecl();
307       } else {
308         assert(T->isDependentType() && "non-dependent base wasn't a record?");
309         OnFailure = AR_dependent;
310         continue;
311       }
312 
313       RD = RD->getCanonicalDecl();
314       if (RD == Target) return AR_accessible;
315       if (CheckDependent && MightInstantiateTo(RD, Target))
316         OnFailure = AR_dependent;
317 
318       Queue.push_back(RD);
319     }
320 
321     if (Queue.empty()) break;
322 
323     Derived = Queue.pop_back_val();
324   }
325 
326   return OnFailure;
327 }
328 
329 
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)330 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
331                                DeclContext *Friend) {
332   if (Friend == Context)
333     return true;
334 
335   assert(!Friend->isDependentContext() &&
336          "can't handle friends with dependent contexts here");
337 
338   if (!Context->isDependentContext())
339     return false;
340 
341   if (Friend->isFileContext())
342     return false;
343 
344   // TODO: this is very conservative
345   return true;
346 }
347 
348 // Asks whether the type in 'context' can ever instantiate to the type
349 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)350 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
351   if (Friend == Context)
352     return true;
353 
354   if (!Friend->isDependentType() && !Context->isDependentType())
355     return false;
356 
357   // TODO: this is very conservative.
358   return true;
359 }
360 
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)361 static bool MightInstantiateTo(Sema &S,
362                                FunctionDecl *Context,
363                                FunctionDecl *Friend) {
364   if (Context->getDeclName() != Friend->getDeclName())
365     return false;
366 
367   if (!MightInstantiateTo(S,
368                           Context->getDeclContext(),
369                           Friend->getDeclContext()))
370     return false;
371 
372   CanQual<FunctionProtoType> FriendTy
373     = S.Context.getCanonicalType(Friend->getType())
374          ->getAs<FunctionProtoType>();
375   CanQual<FunctionProtoType> ContextTy
376     = S.Context.getCanonicalType(Context->getType())
377          ->getAs<FunctionProtoType>();
378 
379   // There isn't any way that I know of to add qualifiers
380   // during instantiation.
381   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
382     return false;
383 
384   if (FriendTy->getNumParams() != ContextTy->getNumParams())
385     return false;
386 
387   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
388                           FriendTy->getReturnType()))
389     return false;
390 
391   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
392     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
393                             FriendTy->getParamType(I)))
394       return false;
395 
396   return true;
397 }
398 
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)399 static bool MightInstantiateTo(Sema &S,
400                                FunctionTemplateDecl *Context,
401                                FunctionTemplateDecl *Friend) {
402   return MightInstantiateTo(S,
403                             Context->getTemplatedDecl(),
404                             Friend->getTemplatedDecl());
405 }
406 
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)407 static AccessResult MatchesFriend(Sema &S,
408                                   const EffectiveContext &EC,
409                                   const CXXRecordDecl *Friend) {
410   if (EC.includesClass(Friend))
411     return AR_accessible;
412 
413   if (EC.isDependent()) {
414     for (const CXXRecordDecl *Context : EC.Records) {
415       if (MightInstantiateTo(Context, Friend))
416         return AR_dependent;
417     }
418   }
419 
420   return AR_inaccessible;
421 }
422 
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)423 static AccessResult MatchesFriend(Sema &S,
424                                   const EffectiveContext &EC,
425                                   CanQualType Friend) {
426   if (const RecordType *RT = Friend->getAs<RecordType>())
427     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
428 
429   // TODO: we can do better than this
430   if (Friend->isDependentType())
431     return AR_dependent;
432 
433   return AR_inaccessible;
434 }
435 
436 /// Determines whether the given friend class template matches
437 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)438 static AccessResult MatchesFriend(Sema &S,
439                                   const EffectiveContext &EC,
440                                   ClassTemplateDecl *Friend) {
441   AccessResult OnFailure = AR_inaccessible;
442 
443   // Check whether the friend is the template of a class in the
444   // context chain.
445   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
446          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
447     CXXRecordDecl *Record = *I;
448 
449     // Figure out whether the current class has a template:
450     ClassTemplateDecl *CTD;
451 
452     // A specialization of the template...
453     if (isa<ClassTemplateSpecializationDecl>(Record)) {
454       CTD = cast<ClassTemplateSpecializationDecl>(Record)
455         ->getSpecializedTemplate();
456 
457     // ... or the template pattern itself.
458     } else {
459       CTD = Record->getDescribedClassTemplate();
460       if (!CTD) continue;
461     }
462 
463     // It's a match.
464     if (Friend == CTD->getCanonicalDecl())
465       return AR_accessible;
466 
467     // If the context isn't dependent, it can't be a dependent match.
468     if (!EC.isDependent())
469       continue;
470 
471     // If the template names don't match, it can't be a dependent
472     // match.
473     if (CTD->getDeclName() != Friend->getDeclName())
474       continue;
475 
476     // If the class's context can't instantiate to the friend's
477     // context, it can't be a dependent match.
478     if (!MightInstantiateTo(S, CTD->getDeclContext(),
479                             Friend->getDeclContext()))
480       continue;
481 
482     // Otherwise, it's a dependent match.
483     OnFailure = AR_dependent;
484   }
485 
486   return OnFailure;
487 }
488 
489 /// Determines whether the given friend function matches anything in
490 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)491 static AccessResult MatchesFriend(Sema &S,
492                                   const EffectiveContext &EC,
493                                   FunctionDecl *Friend) {
494   AccessResult OnFailure = AR_inaccessible;
495 
496   for (SmallVectorImpl<FunctionDecl*>::const_iterator
497          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
498     if (Friend == *I)
499       return AR_accessible;
500 
501     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
502       OnFailure = AR_dependent;
503   }
504 
505   return OnFailure;
506 }
507 
508 /// Determines whether the given friend function template matches
509 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)510 static AccessResult MatchesFriend(Sema &S,
511                                   const EffectiveContext &EC,
512                                   FunctionTemplateDecl *Friend) {
513   if (EC.Functions.empty()) return AR_inaccessible;
514 
515   AccessResult OnFailure = AR_inaccessible;
516 
517   for (SmallVectorImpl<FunctionDecl*>::const_iterator
518          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
519 
520     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
521     if (!FTD)
522       FTD = (*I)->getDescribedFunctionTemplate();
523     if (!FTD)
524       continue;
525 
526     FTD = FTD->getCanonicalDecl();
527 
528     if (Friend == FTD)
529       return AR_accessible;
530 
531     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
532       OnFailure = AR_dependent;
533   }
534 
535   return OnFailure;
536 }
537 
538 /// Determines whether the given friend declaration matches anything
539 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)540 static AccessResult MatchesFriend(Sema &S,
541                                   const EffectiveContext &EC,
542                                   FriendDecl *FriendD) {
543   // Whitelist accesses if there's an invalid or unsupported friend
544   // declaration.
545   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
546     return AR_accessible;
547 
548   if (TypeSourceInfo *T = FriendD->getFriendType())
549     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
550 
551   NamedDecl *Friend
552     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
553 
554   // FIXME: declarations with dependent or templated scope.
555 
556   if (isa<ClassTemplateDecl>(Friend))
557     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
558 
559   if (isa<FunctionTemplateDecl>(Friend))
560     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
561 
562   if (isa<CXXRecordDecl>(Friend))
563     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
564 
565   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
566   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
567 }
568 
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)569 static AccessResult GetFriendKind(Sema &S,
570                                   const EffectiveContext &EC,
571                                   const CXXRecordDecl *Class) {
572   AccessResult OnFailure = AR_inaccessible;
573 
574   // Okay, check friends.
575   for (auto *Friend : Class->friends()) {
576     switch (MatchesFriend(S, EC, Friend)) {
577     case AR_accessible:
578       return AR_accessible;
579 
580     case AR_inaccessible:
581       continue;
582 
583     case AR_dependent:
584       OnFailure = AR_dependent;
585       break;
586     }
587   }
588 
589   // That's it, give up.
590   return OnFailure;
591 }
592 
593 namespace {
594 
595 /// A helper class for checking for a friend which will grant access
596 /// to a protected instance member.
597 struct ProtectedFriendContext {
598   Sema &S;
599   const EffectiveContext &EC;
600   const CXXRecordDecl *NamingClass;
601   bool CheckDependent;
602   bool EverDependent;
603 
604   /// The path down to the current base class.
605   SmallVector<const CXXRecordDecl*, 20> CurPath;
606 
ProtectedFriendContext__anoncc54a5490211::ProtectedFriendContext607   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
608                          const CXXRecordDecl *InstanceContext,
609                          const CXXRecordDecl *NamingClass)
610     : S(S), EC(EC), NamingClass(NamingClass),
611       CheckDependent(InstanceContext->isDependentContext() ||
612                      NamingClass->isDependentContext()),
613       EverDependent(false) {}
614 
615   /// Check classes in the current path for friendship, starting at
616   /// the given index.
checkFriendshipAlongPath__anoncc54a5490211::ProtectedFriendContext617   bool checkFriendshipAlongPath(unsigned I) {
618     assert(I < CurPath.size());
619     for (unsigned E = CurPath.size(); I != E; ++I) {
620       switch (GetFriendKind(S, EC, CurPath[I])) {
621       case AR_accessible:   return true;
622       case AR_inaccessible: continue;
623       case AR_dependent:    EverDependent = true; continue;
624       }
625     }
626     return false;
627   }
628 
629   /// Perform a search starting at the given class.
630   ///
631   /// PrivateDepth is the index of the last (least derived) class
632   /// along the current path such that a notional public member of
633   /// the final class in the path would have access in that class.
findFriendship__anoncc54a5490211::ProtectedFriendContext634   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
635     // If we ever reach the naming class, check the current path for
636     // friendship.  We can also stop recursing because we obviously
637     // won't find the naming class there again.
638     if (Cur == NamingClass)
639       return checkFriendshipAlongPath(PrivateDepth);
640 
641     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
642       EverDependent = true;
643 
644     // Recurse into the base classes.
645     for (const auto &I : Cur->bases()) {
646       // If this is private inheritance, then a public member of the
647       // base will not have any access in classes derived from Cur.
648       unsigned BasePrivateDepth = PrivateDepth;
649       if (I.getAccessSpecifier() == AS_private)
650         BasePrivateDepth = CurPath.size() - 1;
651 
652       const CXXRecordDecl *RD;
653 
654       QualType T = I.getType();
655       if (const RecordType *RT = T->getAs<RecordType>()) {
656         RD = cast<CXXRecordDecl>(RT->getDecl());
657       } else if (const InjectedClassNameType *IT
658                    = T->getAs<InjectedClassNameType>()) {
659         RD = IT->getDecl();
660       } else {
661         assert(T->isDependentType() && "non-dependent base wasn't a record?");
662         EverDependent = true;
663         continue;
664       }
665 
666       // Recurse.  We don't need to clean up if this returns true.
667       CurPath.push_back(RD);
668       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
669         return true;
670       CurPath.pop_back();
671     }
672 
673     return false;
674   }
675 
findFriendship__anoncc54a5490211::ProtectedFriendContext676   bool findFriendship(const CXXRecordDecl *Cur) {
677     assert(CurPath.empty());
678     CurPath.push_back(Cur);
679     return findFriendship(Cur, 0);
680   }
681 };
682 }
683 
684 /// Search for a class P that EC is a friend of, under the constraint
685 ///   InstanceContext <= P
686 /// if InstanceContext exists, or else
687 ///   NamingClass <= P
688 /// and with the additional restriction that a protected member of
689 /// NamingClass would have some natural access in P, which implicitly
690 /// imposes the constraint that P <= NamingClass.
691 ///
692 /// This isn't quite the condition laid out in the standard.
693 /// Instead of saying that a notional protected member of NamingClass
694 /// would have to have some natural access in P, it says the actual
695 /// target has to have some natural access in P, which opens up the
696 /// possibility that the target (which is not necessarily a member
697 /// of NamingClass) might be more accessible along some path not
698 /// passing through it.  That's really a bad idea, though, because it
699 /// introduces two problems:
700 ///   - Most importantly, it breaks encapsulation because you can
701 ///     access a forbidden base class's members by directly subclassing
702 ///     it elsewhere.
703 ///   - It also makes access substantially harder to compute because it
704 ///     breaks the hill-climbing algorithm: knowing that the target is
705 ///     accessible in some base class would no longer let you change
706 ///     the question solely to whether the base class is accessible,
707 ///     because the original target might have been more accessible
708 ///     because of crazy subclassing.
709 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)710 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
711                                            const CXXRecordDecl *InstanceContext,
712                                            const CXXRecordDecl *NamingClass) {
713   assert(InstanceContext == nullptr ||
714          InstanceContext->getCanonicalDecl() == InstanceContext);
715   assert(NamingClass->getCanonicalDecl() == NamingClass);
716 
717   // If we don't have an instance context, our constraints give us
718   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
719   // This is just the usual friendship check.
720   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
721 
722   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
723   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
724   if (PRC.EverDependent) return AR_dependent;
725   return AR_inaccessible;
726 }
727 
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)728 static AccessResult HasAccess(Sema &S,
729                               const EffectiveContext &EC,
730                               const CXXRecordDecl *NamingClass,
731                               AccessSpecifier Access,
732                               const AccessTarget &Target) {
733   assert(NamingClass->getCanonicalDecl() == NamingClass &&
734          "declaration should be canonicalized before being passed here");
735 
736   if (Access == AS_public) return AR_accessible;
737   assert(Access == AS_private || Access == AS_protected);
738 
739   AccessResult OnFailure = AR_inaccessible;
740 
741   for (EffectiveContext::record_iterator
742          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
743     // All the declarations in EC have been canonicalized, so pointer
744     // equality from this point on will work fine.
745     const CXXRecordDecl *ECRecord = *I;
746 
747     // [B2] and [M2]
748     if (Access == AS_private) {
749       if (ECRecord == NamingClass)
750         return AR_accessible;
751 
752       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
753         OnFailure = AR_dependent;
754 
755     // [B3] and [M3]
756     } else {
757       assert(Access == AS_protected);
758       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
759       case AR_accessible: break;
760       case AR_inaccessible: continue;
761       case AR_dependent: OnFailure = AR_dependent; continue;
762       }
763 
764       // C++ [class.protected]p1:
765       //   An additional access check beyond those described earlier in
766       //   [class.access] is applied when a non-static data member or
767       //   non-static member function is a protected member of its naming
768       //   class.  As described earlier, access to a protected member is
769       //   granted because the reference occurs in a friend or member of
770       //   some class C.  If the access is to form a pointer to member,
771       //   the nested-name-specifier shall name C or a class derived from
772       //   C. All other accesses involve a (possibly implicit) object
773       //   expression. In this case, the class of the object expression
774       //   shall be C or a class derived from C.
775       //
776       // We interpret this as a restriction on [M3].
777 
778       // In this part of the code, 'C' is just our context class ECRecord.
779 
780       // These rules are different if we don't have an instance context.
781       if (!Target.hasInstanceContext()) {
782         // If it's not an instance member, these restrictions don't apply.
783         if (!Target.isInstanceMember()) return AR_accessible;
784 
785         // If it's an instance member, use the pointer-to-member rule
786         // that the naming class has to be derived from the effective
787         // context.
788 
789         // Emulate a MSVC bug where the creation of pointer-to-member
790         // to protected member of base class is allowed but only from
791         // static member functions.
792         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
793           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
794             if (MD->isStatic()) return AR_accessible;
795 
796         // Despite the standard's confident wording, there is a case
797         // where you can have an instance member that's neither in a
798         // pointer-to-member expression nor in a member access:  when
799         // it names a field in an unevaluated context that can't be an
800         // implicit member.  Pending clarification, we just apply the
801         // same naming-class restriction here.
802         //   FIXME: we're probably not correctly adding the
803         //   protected-member restriction when we retroactively convert
804         //   an expression to being evaluated.
805 
806         // We know that ECRecord derives from NamingClass.  The
807         // restriction says to check whether NamingClass derives from
808         // ECRecord, but that's not really necessary: two distinct
809         // classes can't be recursively derived from each other.  So
810         // along this path, we just need to check whether the classes
811         // are equal.
812         if (NamingClass == ECRecord) return AR_accessible;
813 
814         // Otherwise, this context class tells us nothing;  on to the next.
815         continue;
816       }
817 
818       assert(Target.isInstanceMember());
819 
820       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
821       if (!InstanceContext) {
822         OnFailure = AR_dependent;
823         continue;
824       }
825 
826       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
827       case AR_accessible: return AR_accessible;
828       case AR_inaccessible: continue;
829       case AR_dependent: OnFailure = AR_dependent; continue;
830       }
831     }
832   }
833 
834   // [M3] and [B3] say that, if the target is protected in N, we grant
835   // access if the access occurs in a friend or member of some class P
836   // that's a subclass of N and where the target has some natural
837   // access in P.  The 'member' aspect is easy to handle because P
838   // would necessarily be one of the effective-context records, and we
839   // address that above.  The 'friend' aspect is completely ridiculous
840   // to implement because there are no restrictions at all on P
841   // *unless* the [class.protected] restriction applies.  If it does,
842   // however, we should ignore whether the naming class is a friend,
843   // and instead rely on whether any potential P is a friend.
844   if (Access == AS_protected && Target.isInstanceMember()) {
845     // Compute the instance context if possible.
846     const CXXRecordDecl *InstanceContext = nullptr;
847     if (Target.hasInstanceContext()) {
848       InstanceContext = Target.resolveInstanceContext(S);
849       if (!InstanceContext) return AR_dependent;
850     }
851 
852     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
853     case AR_accessible: return AR_accessible;
854     case AR_inaccessible: return OnFailure;
855     case AR_dependent: return AR_dependent;
856     }
857     llvm_unreachable("impossible friendship kind");
858   }
859 
860   switch (GetFriendKind(S, EC, NamingClass)) {
861   case AR_accessible: return AR_accessible;
862   case AR_inaccessible: return OnFailure;
863   case AR_dependent: return AR_dependent;
864   }
865 
866   // Silence bogus warnings
867   llvm_unreachable("impossible friendship kind");
868 }
869 
870 /// Finds the best path from the naming class to the declaring class,
871 /// taking friend declarations into account.
872 ///
873 /// C++0x [class.access.base]p5:
874 ///   A member m is accessible at the point R when named in class N if
875 ///   [M1] m as a member of N is public, or
876 ///   [M2] m as a member of N is private, and R occurs in a member or
877 ///        friend of class N, or
878 ///   [M3] m as a member of N is protected, and R occurs in a member or
879 ///        friend of class N, or in a member or friend of a class P
880 ///        derived from N, where m as a member of P is public, private,
881 ///        or protected, or
882 ///   [M4] there exists a base class B of N that is accessible at R, and
883 ///        m is accessible at R when named in class B.
884 ///
885 /// C++0x [class.access.base]p4:
886 ///   A base class B of N is accessible at R, if
887 ///   [B1] an invented public member of B would be a public member of N, or
888 ///   [B2] R occurs in a member or friend of class N, and an invented public
889 ///        member of B would be a private or protected member of N, or
890 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
891 ///        invented public member of B would be a private or protected member
892 ///        of P, or
893 ///   [B4] there exists a class S such that B is a base class of S accessible
894 ///        at R and S is a base class of N accessible at R.
895 ///
896 /// Along a single inheritance path we can restate both of these
897 /// iteratively:
898 ///
899 /// First, we note that M1-4 are equivalent to B1-4 if the member is
900 /// treated as a notional base of its declaring class with inheritance
901 /// access equivalent to the member's access.  Therefore we need only
902 /// ask whether a class B is accessible from a class N in context R.
903 ///
904 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
905 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
906 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
907 /// closest accessible base in the path:
908 ///   Access(a, b) = (* access on the base specifier from a to b *)
909 ///   Merge(a, forbidden) = forbidden
910 ///   Merge(a, private) = forbidden
911 ///   Merge(a, b) = min(a,b)
912 ///   Accessible(c, forbidden) = false
913 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
914 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
915 ///   Accessible(c, public) = true
916 ///   ACAB(n) = public
917 ///   ACAB(i) =
918 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
919 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
920 ///
921 /// B is an accessible base of N at R iff ACAB(1) = public.
922 ///
923 /// \param FinalAccess the access of the "final step", or AS_public if
924 ///   there is no final step.
925 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)926 static CXXBasePath *FindBestPath(Sema &S,
927                                  const EffectiveContext &EC,
928                                  AccessTarget &Target,
929                                  AccessSpecifier FinalAccess,
930                                  CXXBasePaths &Paths) {
931   // Derive the paths to the desired base.
932   const CXXRecordDecl *Derived = Target.getNamingClass();
933   const CXXRecordDecl *Base = Target.getDeclaringClass();
934 
935   // FIXME: fail correctly when there are dependent paths.
936   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
937                                           Paths);
938   assert(isDerived && "derived class not actually derived from base");
939   (void) isDerived;
940 
941   CXXBasePath *BestPath = nullptr;
942 
943   assert(FinalAccess != AS_none && "forbidden access after declaring class");
944 
945   bool AnyDependent = false;
946 
947   // Derive the friend-modified access along each path.
948   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
949          PI != PE; ++PI) {
950     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
951 
952     // Walk through the path backwards.
953     AccessSpecifier PathAccess = FinalAccess;
954     CXXBasePath::iterator I = PI->end(), E = PI->begin();
955     while (I != E) {
956       --I;
957 
958       assert(PathAccess != AS_none);
959 
960       // If the declaration is a private member of a base class, there
961       // is no level of friendship in derived classes that can make it
962       // accessible.
963       if (PathAccess == AS_private) {
964         PathAccess = AS_none;
965         break;
966       }
967 
968       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
969 
970       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
971       PathAccess = std::max(PathAccess, BaseAccess);
972 
973       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
974       case AR_inaccessible: break;
975       case AR_accessible:
976         PathAccess = AS_public;
977 
978         // Future tests are not against members and so do not have
979         // instance context.
980         Target.suppressInstanceContext();
981         break;
982       case AR_dependent:
983         AnyDependent = true;
984         goto Next;
985       }
986     }
987 
988     // Note that we modify the path's Access field to the
989     // friend-modified access.
990     if (BestPath == nullptr || PathAccess < BestPath->Access) {
991       BestPath = &*PI;
992       BestPath->Access = PathAccess;
993 
994       // Short-circuit if we found a public path.
995       if (BestPath->Access == AS_public)
996         return BestPath;
997     }
998 
999   Next: ;
1000   }
1001 
1002   assert((!BestPath || BestPath->Access != AS_public) &&
1003          "fell out of loop with public path");
1004 
1005   // We didn't find a public path, but at least one path was subject
1006   // to dependent friendship, so delay the check.
1007   if (AnyDependent)
1008     return nullptr;
1009 
1010   return BestPath;
1011 }
1012 
1013 /// Given that an entity has protected natural access, check whether
1014 /// access might be denied because of the protected member access
1015 /// restriction.
1016 ///
1017 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1018 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1019                                        AccessTarget &Target) {
1020   // Only applies to instance accesses.
1021   if (!Target.isInstanceMember())
1022     return false;
1023 
1024   assert(Target.isMemberAccess());
1025 
1026   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1027 
1028   for (EffectiveContext::record_iterator
1029          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1030     const CXXRecordDecl *ECRecord = *I;
1031     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1032     case AR_accessible: break;
1033     case AR_inaccessible: continue;
1034     case AR_dependent: continue;
1035     }
1036 
1037     // The effective context is a subclass of the declaring class.
1038     // Check whether the [class.protected] restriction is limiting
1039     // access.
1040 
1041     // To get this exactly right, this might need to be checked more
1042     // holistically;  it's not necessarily the case that gaining
1043     // access here would grant us access overall.
1044 
1045     NamedDecl *D = Target.getTargetDecl();
1046 
1047     // If we don't have an instance context, [class.protected] says the
1048     // naming class has to equal the context class.
1049     if (!Target.hasInstanceContext()) {
1050       // If it does, the restriction doesn't apply.
1051       if (NamingClass == ECRecord) continue;
1052 
1053       // TODO: it would be great to have a fixit here, since this is
1054       // such an obvious error.
1055       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1056         << S.Context.getTypeDeclType(ECRecord);
1057       return true;
1058     }
1059 
1060     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1061     assert(InstanceContext && "diagnosing dependent access");
1062 
1063     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1064     case AR_accessible: continue;
1065     case AR_dependent: continue;
1066     case AR_inaccessible:
1067       break;
1068     }
1069 
1070     // Okay, the restriction seems to be what's limiting us.
1071 
1072     // Use a special diagnostic for constructors and destructors.
1073     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1074         (isa<FunctionTemplateDecl>(D) &&
1075          isa<CXXConstructorDecl>(
1076                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1077       return S.Diag(D->getLocation(),
1078                     diag::note_access_protected_restricted_ctordtor)
1079              << isa<CXXDestructorDecl>(D->getAsFunction());
1080     }
1081 
1082     // Otherwise, use the generic diagnostic.
1083     return S.Diag(D->getLocation(),
1084                   diag::note_access_protected_restricted_object)
1085            << S.Context.getTypeDeclType(ECRecord);
1086   }
1087 
1088   return false;
1089 }
1090 
1091 /// We are unable to access a given declaration due to its direct
1092 /// access control;  diagnose that.
diagnoseBadDirectAccess(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1093 static void diagnoseBadDirectAccess(Sema &S,
1094                                     const EffectiveContext &EC,
1095                                     AccessTarget &entity) {
1096   assert(entity.isMemberAccess());
1097   NamedDecl *D = entity.getTargetDecl();
1098 
1099   if (D->getAccess() == AS_protected &&
1100       TryDiagnoseProtectedAccess(S, EC, entity))
1101     return;
1102 
1103   // Find an original declaration.
1104   while (D->isOutOfLine()) {
1105     NamedDecl *PrevDecl = nullptr;
1106     if (VarDecl *VD = dyn_cast<VarDecl>(D))
1107       PrevDecl = VD->getPreviousDecl();
1108     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1109       PrevDecl = FD->getPreviousDecl();
1110     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1111       PrevDecl = TND->getPreviousDecl();
1112     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1113       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1114         break;
1115       PrevDecl = TD->getPreviousDecl();
1116     }
1117     if (!PrevDecl) break;
1118     D = PrevDecl;
1119   }
1120 
1121   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1122   Decl *ImmediateChild;
1123   if (D->getDeclContext() == DeclaringClass)
1124     ImmediateChild = D;
1125   else {
1126     DeclContext *DC = D->getDeclContext();
1127     while (DC->getParent() != DeclaringClass)
1128       DC = DC->getParent();
1129     ImmediateChild = cast<Decl>(DC);
1130   }
1131 
1132   // Check whether there's an AccessSpecDecl preceding this in the
1133   // chain of the DeclContext.
1134   bool isImplicit = true;
1135   for (const auto *I : DeclaringClass->decls()) {
1136     if (I == ImmediateChild) break;
1137     if (isa<AccessSpecDecl>(I)) {
1138       isImplicit = false;
1139       break;
1140     }
1141   }
1142 
1143   S.Diag(D->getLocation(), diag::note_access_natural)
1144     << (unsigned) (D->getAccess() == AS_protected)
1145     << isImplicit;
1146 }
1147 
1148 /// Diagnose the path which caused the given declaration or base class
1149 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1150 static void DiagnoseAccessPath(Sema &S,
1151                                const EffectiveContext &EC,
1152                                AccessTarget &entity) {
1153   // Save the instance context to preserve invariants.
1154   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1155 
1156   // This basically repeats the main algorithm but keeps some more
1157   // information.
1158 
1159   // The natural access so far.
1160   AccessSpecifier accessSoFar = AS_public;
1161 
1162   // Check whether we have special rights to the declaring class.
1163   if (entity.isMemberAccess()) {
1164     NamedDecl *D = entity.getTargetDecl();
1165     accessSoFar = D->getAccess();
1166     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1167 
1168     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1169     // If the declaration is accessible when named in its declaring
1170     // class, then we must be constrained by the path.
1171     case AR_accessible:
1172       accessSoFar = AS_public;
1173       entity.suppressInstanceContext();
1174       break;
1175 
1176     case AR_inaccessible:
1177       if (accessSoFar == AS_private ||
1178           declaringClass == entity.getEffectiveNamingClass())
1179         return diagnoseBadDirectAccess(S, EC, entity);
1180       break;
1181 
1182     case AR_dependent:
1183       llvm_unreachable("cannot diagnose dependent access");
1184     }
1185   }
1186 
1187   CXXBasePaths paths;
1188   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1189   assert(path.Access != AS_public);
1190 
1191   CXXBasePath::iterator i = path.end(), e = path.begin();
1192   CXXBasePath::iterator constrainingBase = i;
1193   while (i != e) {
1194     --i;
1195 
1196     assert(accessSoFar != AS_none && accessSoFar != AS_private);
1197 
1198     // Is the entity accessible when named in the deriving class, as
1199     // modified by the base specifier?
1200     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1201     const CXXBaseSpecifier *base = i->Base;
1202 
1203     // If the access to this base is worse than the access we have to
1204     // the declaration, remember it.
1205     AccessSpecifier baseAccess = base->getAccessSpecifier();
1206     if (baseAccess > accessSoFar) {
1207       constrainingBase = i;
1208       accessSoFar = baseAccess;
1209     }
1210 
1211     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1212     case AR_inaccessible: break;
1213     case AR_accessible:
1214       accessSoFar = AS_public;
1215       entity.suppressInstanceContext();
1216       constrainingBase = nullptr;
1217       break;
1218     case AR_dependent:
1219       llvm_unreachable("cannot diagnose dependent access");
1220     }
1221 
1222     // If this was private inheritance, but we don't have access to
1223     // the deriving class, we're done.
1224     if (accessSoFar == AS_private) {
1225       assert(baseAccess == AS_private);
1226       assert(constrainingBase == i);
1227       break;
1228     }
1229   }
1230 
1231   // If we don't have a constraining base, the access failure must be
1232   // due to the original declaration.
1233   if (constrainingBase == path.end())
1234     return diagnoseBadDirectAccess(S, EC, entity);
1235 
1236   // We're constrained by inheritance, but we want to say
1237   // "declared private here" if we're diagnosing a hierarchy
1238   // conversion and this is the final step.
1239   unsigned diagnostic;
1240   if (entity.isMemberAccess() ||
1241       constrainingBase + 1 != path.end()) {
1242     diagnostic = diag::note_access_constrained_by_path;
1243   } else {
1244     diagnostic = diag::note_access_natural;
1245   }
1246 
1247   const CXXBaseSpecifier *base = constrainingBase->Base;
1248 
1249   S.Diag(base->getSourceRange().getBegin(), diagnostic)
1250     << base->getSourceRange()
1251     << (base->getAccessSpecifier() == AS_protected)
1252     << (base->getAccessSpecifierAsWritten() == AS_none);
1253 
1254   if (entity.isMemberAccess())
1255     S.Diag(entity.getTargetDecl()->getLocation(),
1256            diag::note_member_declared_at);
1257 }
1258 
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1259 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1260                               const EffectiveContext &EC,
1261                               AccessTarget &Entity) {
1262   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1263   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1264   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1265 
1266   S.Diag(Loc, Entity.getDiag())
1267     << (Entity.getAccess() == AS_protected)
1268     << (D ? D->getDeclName() : DeclarationName())
1269     << S.Context.getTypeDeclType(NamingClass)
1270     << S.Context.getTypeDeclType(DeclaringClass);
1271   DiagnoseAccessPath(S, EC, Entity);
1272 }
1273 
1274 /// MSVC has a bug where if during an using declaration name lookup,
1275 /// the declaration found is unaccessible (private) and that declaration
1276 /// was bring into scope via another using declaration whose target
1277 /// declaration is accessible (public) then no error is generated.
1278 /// Example:
1279 ///   class A {
1280 ///   public:
1281 ///     int f();
1282 ///   };
1283 ///   class B : public A {
1284 ///   private:
1285 ///     using A::f;
1286 ///   };
1287 ///   class C : public B {
1288 ///   private:
1289 ///     using B::f;
1290 ///   };
1291 ///
1292 /// Here, B::f is private so this should fail in Standard C++, but
1293 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1294 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1295                                                  SourceLocation AccessLoc,
1296                                                  AccessTarget &Entity) {
1297   if (UsingShadowDecl *Shadow =
1298                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1299     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1300     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1301         (OrigDecl->getAccess() == AS_public ||
1302          OrigDecl->getAccess() == AS_protected)) {
1303       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1304         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1305         << OrigDecl->getQualifiedNameAsString();
1306       return true;
1307     }
1308   }
1309   return false;
1310 }
1311 
1312 /// Determines whether the accessed entity is accessible.  Public members
1313 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1314 static AccessResult IsAccessible(Sema &S,
1315                                  const EffectiveContext &EC,
1316                                  AccessTarget &Entity) {
1317   // Determine the actual naming class.
1318   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1319 
1320   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1321   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1322 
1323   // Before we try to recalculate access paths, try to white-list
1324   // accesses which just trade in on the final step, i.e. accesses
1325   // which don't require [M4] or [B4]. These are by far the most
1326   // common forms of privileged access.
1327   if (UnprivilegedAccess != AS_none) {
1328     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1329     case AR_dependent:
1330       // This is actually an interesting policy decision.  We don't
1331       // *have* to delay immediately here: we can do the full access
1332       // calculation in the hope that friendship on some intermediate
1333       // class will make the declaration accessible non-dependently.
1334       // But that's not cheap, and odds are very good (note: assertion
1335       // made without data) that the friend declaration will determine
1336       // access.
1337       return AR_dependent;
1338 
1339     case AR_accessible: return AR_accessible;
1340     case AR_inaccessible: break;
1341     }
1342   }
1343 
1344   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1345 
1346   // We lower member accesses to base accesses by pretending that the
1347   // member is a base class of its declaring class.
1348   AccessSpecifier FinalAccess;
1349 
1350   if (Entity.isMemberAccess()) {
1351     // Determine if the declaration is accessible from EC when named
1352     // in its declaring class.
1353     NamedDecl *Target = Entity.getTargetDecl();
1354     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1355 
1356     FinalAccess = Target->getAccess();
1357     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1358     case AR_accessible:
1359       // Target is accessible at EC when named in its declaring class.
1360       // We can now hill-climb and simply check whether the declaring
1361       // class is accessible as a base of the naming class.  This is
1362       // equivalent to checking the access of a notional public
1363       // member with no instance context.
1364       FinalAccess = AS_public;
1365       Entity.suppressInstanceContext();
1366       break;
1367     case AR_inaccessible: break;
1368     case AR_dependent: return AR_dependent; // see above
1369     }
1370 
1371     if (DeclaringClass == NamingClass)
1372       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1373   } else {
1374     FinalAccess = AS_public;
1375   }
1376 
1377   assert(Entity.getDeclaringClass() != NamingClass);
1378 
1379   // Append the declaration's access if applicable.
1380   CXXBasePaths Paths;
1381   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1382   if (!Path)
1383     return AR_dependent;
1384 
1385   assert(Path->Access <= UnprivilegedAccess &&
1386          "access along best path worse than direct?");
1387   if (Path->Access == AS_public)
1388     return AR_accessible;
1389   return AR_inaccessible;
1390 }
1391 
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1392 static void DelayDependentAccess(Sema &S,
1393                                  const EffectiveContext &EC,
1394                                  SourceLocation Loc,
1395                                  const AccessTarget &Entity) {
1396   assert(EC.isDependent() && "delaying non-dependent access");
1397   DeclContext *DC = EC.getInnerContext();
1398   assert(DC->isDependentContext() && "delaying non-dependent access");
1399   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1400                               Loc,
1401                               Entity.isMemberAccess(),
1402                               Entity.getAccess(),
1403                               Entity.getTargetDecl(),
1404                               Entity.getNamingClass(),
1405                               Entity.getBaseObjectType(),
1406                               Entity.getDiag());
1407 }
1408 
1409 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1410 static AccessResult CheckEffectiveAccess(Sema &S,
1411                                          const EffectiveContext &EC,
1412                                          SourceLocation Loc,
1413                                          AccessTarget &Entity) {
1414   assert(Entity.getAccess() != AS_public && "called for public access!");
1415 
1416   switch (IsAccessible(S, EC, Entity)) {
1417   case AR_dependent:
1418     DelayDependentAccess(S, EC, Loc, Entity);
1419     return AR_dependent;
1420 
1421   case AR_inaccessible:
1422     if (S.getLangOpts().MSVCCompat &&
1423         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1424       return AR_accessible;
1425     if (!Entity.isQuiet())
1426       DiagnoseBadAccess(S, Loc, EC, Entity);
1427     return AR_inaccessible;
1428 
1429   case AR_accessible:
1430     return AR_accessible;
1431   }
1432 
1433   // silence unnecessary warning
1434   llvm_unreachable("invalid access result");
1435 }
1436 
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1437 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1438                                       AccessTarget &Entity) {
1439   // If the access path is public, it's accessible everywhere.
1440   if (Entity.getAccess() == AS_public)
1441     return Sema::AR_accessible;
1442 
1443   // If we're currently parsing a declaration, we may need to delay
1444   // access control checking, because our effective context might be
1445   // different based on what the declaration comes out as.
1446   //
1447   // For example, we might be parsing a declaration with a scope
1448   // specifier, like this:
1449   //   A::private_type A::foo() { ... }
1450   //
1451   // Or we might be parsing something that will turn out to be a friend:
1452   //   void foo(A::private_type);
1453   //   void B::foo(A::private_type);
1454   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1455     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1456     return Sema::AR_delayed;
1457   }
1458 
1459   EffectiveContext EC(S.CurContext);
1460   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1461   case AR_accessible: return Sema::AR_accessible;
1462   case AR_inaccessible: return Sema::AR_inaccessible;
1463   case AR_dependent: return Sema::AR_dependent;
1464   }
1465   llvm_unreachable("invalid access result");
1466 }
1467 
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * D)1468 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1469   // Access control for names used in the declarations of functions
1470   // and function templates should normally be evaluated in the context
1471   // of the declaration, just in case it's a friend of something.
1472   // However, this does not apply to local extern declarations.
1473 
1474   DeclContext *DC = D->getDeclContext();
1475   if (D->isLocalExternDecl()) {
1476     DC = D->getLexicalDeclContext();
1477   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1478     DC = FN;
1479   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1480     DC = cast<DeclContext>(TD->getTemplatedDecl());
1481   }
1482 
1483   EffectiveContext EC(DC);
1484 
1485   AccessTarget Target(DD.getAccessData());
1486 
1487   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1488     DD.Triggered = true;
1489 }
1490 
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1491 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1492                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1493   SourceLocation Loc = DD.getAccessLoc();
1494   AccessSpecifier Access = DD.getAccess();
1495 
1496   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1497                                        TemplateArgs);
1498   if (!NamingD) return;
1499   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1500                                        TemplateArgs);
1501   if (!TargetD) return;
1502 
1503   if (DD.isAccessToMember()) {
1504     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1505     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1506     QualType BaseObjectType = DD.getAccessBaseObjectType();
1507     if (!BaseObjectType.isNull()) {
1508       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1509                                  DeclarationName());
1510       if (BaseObjectType.isNull()) return;
1511     }
1512 
1513     AccessTarget Entity(Context,
1514                         AccessTarget::Member,
1515                         NamingClass,
1516                         DeclAccessPair::make(TargetDecl, Access),
1517                         BaseObjectType);
1518     Entity.setDiag(DD.getDiagnostic());
1519     CheckAccess(*this, Loc, Entity);
1520   } else {
1521     AccessTarget Entity(Context,
1522                         AccessTarget::Base,
1523                         cast<CXXRecordDecl>(TargetD),
1524                         cast<CXXRecordDecl>(NamingD),
1525                         Access);
1526     Entity.setDiag(DD.getDiagnostic());
1527     CheckAccess(*this, Loc, Entity);
1528   }
1529 }
1530 
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1531 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1532                                                      DeclAccessPair Found) {
1533   if (!getLangOpts().AccessControl ||
1534       !E->getNamingClass() ||
1535       Found.getAccess() == AS_public)
1536     return AR_accessible;
1537 
1538   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1539                       Found, QualType());
1540   Entity.setDiag(diag::err_access) << E->getSourceRange();
1541 
1542   return CheckAccess(*this, E->getNameLoc(), Entity);
1543 }
1544 
1545 /// Perform access-control checking on a previously-unresolved member
1546 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1547 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1548                                                      DeclAccessPair Found) {
1549   if (!getLangOpts().AccessControl ||
1550       Found.getAccess() == AS_public)
1551     return AR_accessible;
1552 
1553   QualType BaseType = E->getBaseType();
1554   if (E->isArrow())
1555     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1556 
1557   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1558                       Found, BaseType);
1559   Entity.setDiag(diag::err_access) << E->getSourceRange();
1560 
1561   return CheckAccess(*this, E->getMemberLoc(), Entity);
1562 }
1563 
1564 /// Is the given special member function accessible for the purposes of
1565 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1566 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1567                                                 AccessSpecifier access,
1568                                                 QualType objectType) {
1569   // Fast path.
1570   if (access == AS_public || !getLangOpts().AccessControl) return true;
1571 
1572   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1573                       DeclAccessPair::make(decl, access), objectType);
1574 
1575   // Suppress diagnostics.
1576   entity.setDiag(PDiag());
1577 
1578   switch (CheckAccess(*this, SourceLocation(), entity)) {
1579   case AR_accessible: return true;
1580   case AR_inaccessible: return false;
1581   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1582   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1583   }
1584   llvm_unreachable("bad access result");
1585 }
1586 
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1587 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1588                                                CXXDestructorDecl *Dtor,
1589                                                const PartialDiagnostic &PDiag,
1590                                                QualType ObjectTy) {
1591   if (!getLangOpts().AccessControl)
1592     return AR_accessible;
1593 
1594   // There's never a path involved when checking implicit destructor access.
1595   AccessSpecifier Access = Dtor->getAccess();
1596   if (Access == AS_public)
1597     return AR_accessible;
1598 
1599   CXXRecordDecl *NamingClass = Dtor->getParent();
1600   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1601 
1602   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1603                       DeclAccessPair::make(Dtor, Access),
1604                       ObjectTy);
1605   Entity.setDiag(PDiag); // TODO: avoid copy
1606 
1607   return CheckAccess(*this, Loc, Entity);
1608 }
1609 
1610 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,DeclAccessPair Found,const InitializedEntity & Entity,bool IsCopyBindingRefToTemp)1611 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1612                                                 CXXConstructorDecl *Constructor,
1613                                                 DeclAccessPair Found,
1614                                                 const InitializedEntity &Entity,
1615                                                 bool IsCopyBindingRefToTemp) {
1616   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1617     return AR_accessible;
1618 
1619   PartialDiagnostic PD(PDiag());
1620   switch (Entity.getKind()) {
1621   default:
1622     PD = PDiag(IsCopyBindingRefToTemp
1623                  ? diag::ext_rvalue_to_reference_access_ctor
1624                  : diag::err_access_ctor);
1625 
1626     break;
1627 
1628   case InitializedEntity::EK_Base:
1629     PD = PDiag(diag::err_access_base_ctor);
1630     PD << Entity.isInheritedVirtualBase()
1631        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1632     break;
1633 
1634   case InitializedEntity::EK_Member: {
1635     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1636     PD = PDiag(diag::err_access_field_ctor);
1637     PD << Field->getType() << getSpecialMember(Constructor);
1638     break;
1639   }
1640 
1641   case InitializedEntity::EK_LambdaCapture: {
1642     StringRef VarName = Entity.getCapturedVarName();
1643     PD = PDiag(diag::err_access_lambda_capture);
1644     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1645     break;
1646   }
1647 
1648   }
1649 
1650   return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
1651 }
1652 
1653 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,DeclAccessPair Found,const InitializedEntity & Entity,const PartialDiagnostic & PD)1654 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1655                                                 CXXConstructorDecl *Constructor,
1656                                                 DeclAccessPair Found,
1657                                                 const InitializedEntity &Entity,
1658                                                 const PartialDiagnostic &PD) {
1659   if (!getLangOpts().AccessControl ||
1660       Found.getAccess() == AS_public)
1661     return AR_accessible;
1662 
1663   CXXRecordDecl *NamingClass = Constructor->getParent();
1664 
1665   // Initializing a base sub-object is an instance method call on an
1666   // object of the derived class.  Otherwise, we have an instance method
1667   // call on an object of the constructed type.
1668   //
1669   // FIXME: If we have a parent, we're initializing the base class subobject
1670   // in aggregate initialization. It's not clear whether the object class
1671   // should be the base class or the derived class in that case.
1672   CXXRecordDecl *ObjectClass;
1673   if ((Entity.getKind() == InitializedEntity::EK_Base ||
1674        Entity.getKind() == InitializedEntity::EK_Delegating) &&
1675       !Entity.getParent()) {
1676     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1677   } else if (auto *Shadow =
1678                  dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
1679     // If we're using an inheriting constructor to construct an object,
1680     // the object class is the derived class, not the base class.
1681     ObjectClass = Shadow->getParent();
1682   } else {
1683     ObjectClass = NamingClass;
1684   }
1685 
1686   AccessTarget AccessEntity(
1687       Context, AccessTarget::Member, NamingClass,
1688       DeclAccessPair::make(Constructor, Found.getAccess()),
1689       Context.getTypeDeclType(ObjectClass));
1690   AccessEntity.setDiag(PD);
1691 
1692   return CheckAccess(*this, UseLoc, AccessEntity);
1693 }
1694 
1695 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1696 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1697                                                SourceRange PlacementRange,
1698                                                CXXRecordDecl *NamingClass,
1699                                                DeclAccessPair Found,
1700                                                bool Diagnose) {
1701   if (!getLangOpts().AccessControl ||
1702       !NamingClass ||
1703       Found.getAccess() == AS_public)
1704     return AR_accessible;
1705 
1706   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1707                       QualType());
1708   if (Diagnose)
1709     Entity.setDiag(diag::err_access)
1710       << PlacementRange;
1711 
1712   return CheckAccess(*this, OpLoc, Entity);
1713 }
1714 
1715 /// \brief Checks access to a member.
CheckMemberAccess(SourceLocation UseLoc,CXXRecordDecl * NamingClass,DeclAccessPair Found)1716 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1717                                            CXXRecordDecl *NamingClass,
1718                                            DeclAccessPair Found) {
1719   if (!getLangOpts().AccessControl ||
1720       !NamingClass ||
1721       Found.getAccess() == AS_public)
1722     return AR_accessible;
1723 
1724   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1725                       Found, QualType());
1726 
1727   return CheckAccess(*this, UseLoc, Entity);
1728 }
1729 
1730 /// Checks access to an overloaded member operator, including
1731 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1732 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1733                                                    Expr *ObjectExpr,
1734                                                    Expr *ArgExpr,
1735                                                    DeclAccessPair Found) {
1736   if (!getLangOpts().AccessControl ||
1737       Found.getAccess() == AS_public)
1738     return AR_accessible;
1739 
1740   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1741   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1742 
1743   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1744                       ObjectExpr->getType());
1745   Entity.setDiag(diag::err_access)
1746     << ObjectExpr->getSourceRange()
1747     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1748 
1749   return CheckAccess(*this, OpLoc, Entity);
1750 }
1751 
1752 /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1753 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1754   assert(isa<CXXMethodDecl>(target->getAsFunction()));
1755 
1756   // Friendship lookup is a redeclaration lookup, so there's never an
1757   // inheritance path modifying access.
1758   AccessSpecifier access = target->getAccess();
1759 
1760   if (!getLangOpts().AccessControl || access == AS_public)
1761     return AR_accessible;
1762 
1763   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1764 
1765   AccessTarget entity(Context, AccessTarget::Member,
1766                       cast<CXXRecordDecl>(target->getDeclContext()),
1767                       DeclAccessPair::make(target, access),
1768                       /*no instance context*/ QualType());
1769   entity.setDiag(diag::err_access_friend_function)
1770       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1771                                  : method->getNameInfo().getSourceRange());
1772 
1773   // We need to bypass delayed-diagnostics because we might be called
1774   // while the ParsingDeclarator is active.
1775   EffectiveContext EC(CurContext);
1776   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1777   case ::AR_accessible: return Sema::AR_accessible;
1778   case ::AR_inaccessible: return Sema::AR_inaccessible;
1779   case ::AR_dependent: return Sema::AR_dependent;
1780   }
1781   llvm_unreachable("invalid access result");
1782 }
1783 
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1784 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1785                                                     DeclAccessPair Found) {
1786   if (!getLangOpts().AccessControl ||
1787       Found.getAccess() == AS_none ||
1788       Found.getAccess() == AS_public)
1789     return AR_accessible;
1790 
1791   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1792   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1793 
1794   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1795                       /*no instance context*/ QualType());
1796   Entity.setDiag(diag::err_access)
1797     << Ovl->getSourceRange();
1798 
1799   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1800 }
1801 
1802 /// Checks access for a hierarchy conversion.
1803 ///
1804 /// \param ForceCheck true if this check should be performed even if access
1805 ///     control is disabled;  some things rely on this for semantics
1806 /// \param ForceUnprivileged true if this check should proceed as if the
1807 ///     context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1808 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1809                                               QualType Base,
1810                                               QualType Derived,
1811                                               const CXXBasePath &Path,
1812                                               unsigned DiagID,
1813                                               bool ForceCheck,
1814                                               bool ForceUnprivileged) {
1815   if (!ForceCheck && !getLangOpts().AccessControl)
1816     return AR_accessible;
1817 
1818   if (Path.Access == AS_public)
1819     return AR_accessible;
1820 
1821   CXXRecordDecl *BaseD, *DerivedD;
1822   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1823   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1824 
1825   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1826                       Path.Access);
1827   if (DiagID)
1828     Entity.setDiag(DiagID) << Derived << Base;
1829 
1830   if (ForceUnprivileged) {
1831     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1832                                  AccessLoc, Entity)) {
1833     case ::AR_accessible: return Sema::AR_accessible;
1834     case ::AR_inaccessible: return Sema::AR_inaccessible;
1835     case ::AR_dependent: return Sema::AR_dependent;
1836     }
1837     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1838   }
1839   return CheckAccess(*this, AccessLoc, Entity);
1840 }
1841 
1842 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1843 void Sema::CheckLookupAccess(const LookupResult &R) {
1844   assert(getLangOpts().AccessControl
1845          && "performing access check without access control");
1846   assert(R.getNamingClass() && "performing access check without naming class");
1847 
1848   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1849     if (I.getAccess() != AS_public) {
1850       AccessTarget Entity(Context, AccessedEntity::Member,
1851                           R.getNamingClass(), I.getPair(),
1852                           R.getBaseObjectType());
1853       Entity.setDiag(diag::err_access);
1854       CheckAccess(*this, R.getNameLoc(), Entity);
1855     }
1856   }
1857 }
1858 
1859 /// Checks access to Decl from the given class. The check will take access
1860 /// specifiers into account, but no member access expressions and such.
1861 ///
1862 /// \param Decl the declaration to check if it can be accessed
1863 /// \param Ctx the class/context from which to start the search
1864 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1865 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1866   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1867     if (!Decl->isCXXClassMember())
1868       return true;
1869 
1870     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1871     AccessTarget Entity(Context, AccessedEntity::Member, Class,
1872                         DeclAccessPair::make(Decl, Decl->getAccess()),
1873                         qType);
1874     if (Entity.getAccess() == AS_public)
1875       return true;
1876 
1877     EffectiveContext EC(CurContext);
1878     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1879   }
1880 
1881   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1882     // @public and @package ivars are always accessible.
1883     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1884         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1885       return true;
1886 
1887     // If we are inside a class or category implementation, determine the
1888     // interface we're in.
1889     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1890     if (ObjCMethodDecl *MD = getCurMethodDecl())
1891       ClassOfMethodDecl =  MD->getClassInterface();
1892     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1893       if (ObjCImplDecl *Impl
1894             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1895         if (ObjCImplementationDecl *IMPD
1896               = dyn_cast<ObjCImplementationDecl>(Impl))
1897           ClassOfMethodDecl = IMPD->getClassInterface();
1898         else if (ObjCCategoryImplDecl* CatImplClass
1899                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1900           ClassOfMethodDecl = CatImplClass->getClassInterface();
1901       }
1902     }
1903 
1904     // If we're not in an interface, this ivar is inaccessible.
1905     if (!ClassOfMethodDecl)
1906       return false;
1907 
1908     // If we're inside the same interface that owns the ivar, we're fine.
1909     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1910       return true;
1911 
1912     // If the ivar is private, it's inaccessible.
1913     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1914       return false;
1915 
1916     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1917   }
1918 
1919   return true;
1920 }
1921