1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39 
40 namespace {
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49 
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55 
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV,
64   FUNCTION_INST_GEP_ABBREV,
65 };
66 
67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
68 /// file type. Owns the BitstreamWriter, and includes the main entry point for
69 /// writing.
70 class BitcodeWriter {
71 protected:
72   /// Pointer to the buffer allocated by caller for bitcode writing.
73   const SmallVectorImpl<char> &Buffer;
74 
75   /// The stream created and owned by the BitodeWriter.
76   BitstreamWriter Stream;
77 
78   /// Saves the offset of the VSTOffset record that must eventually be
79   /// backpatched with the offset of the actual VST.
80   uint64_t VSTOffsetPlaceholder = 0;
81 
82 public:
83   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
84   /// writing to the provided \p Buffer.
BitcodeWriter(SmallVectorImpl<char> & Buffer)85   BitcodeWriter(SmallVectorImpl<char> &Buffer)
86       : Buffer(Buffer), Stream(Buffer) {}
87 
88   virtual ~BitcodeWriter() = default;
89 
90   /// Main entry point to write the bitcode file, which writes the bitcode
91   /// header and will then invoke the virtual writeBlocks() method.
92   void write();
93 
94 private:
95   /// Derived classes must implement this to write the corresponding blocks for
96   /// that bitcode file type.
97   virtual void writeBlocks() = 0;
98 
99 protected:
hasVSTOffsetPlaceholder()100   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
101   void writeValueSymbolTableForwardDecl();
102   void writeBitcodeHeader();
103 };
104 
105 /// Class to manage the bitcode writing for a module.
106 class ModuleBitcodeWriter : public BitcodeWriter {
107   /// The Module to write to bitcode.
108   const Module &M;
109 
110   /// Enumerates ids for all values in the module.
111   ValueEnumerator VE;
112 
113   /// Optional per-module index to write for ThinLTO.
114   const ModuleSummaryIndex *Index;
115 
116   /// True if a module hash record should be written.
117   bool GenerateHash;
118 
119   /// The start bit of the module block, for use in generating a module hash
120   uint64_t BitcodeStartBit = 0;
121 
122 public:
123   /// Constructs a ModuleBitcodeWriter object for the given Module,
124   /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module * M,SmallVectorImpl<char> & Buffer,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash)125   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
126                       bool ShouldPreserveUseListOrder,
127                       const ModuleSummaryIndex *Index, bool GenerateHash)
128       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
129         Index(Index), GenerateHash(GenerateHash) {
130     // Save the start bit of the actual bitcode, in case there is space
131     // saved at the start for the darwin header above. The reader stream
132     // will start at the bitcode, and we need the offset of the VST
133     // to line up.
134     BitcodeStartBit = Stream.GetCurrentBitNo();
135   }
136 
137 private:
138   /// Main entry point for writing a module to bitcode, invoked by
139   /// BitcodeWriter::write() after it writes the header.
140   void writeBlocks() override;
141 
142   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
143   /// current llvm version, and a record for the epoch number.
144   void writeIdentificationBlock();
145 
146   /// Emit the current module to the bitstream.
147   void writeModule();
148 
bitcodeStartBit()149   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
150 
151   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
152   void writeAttributeGroupTable();
153   void writeAttributeTable();
154   void writeTypeTable();
155   void writeComdats();
156   void writeModuleInfo();
157   void writeValueAsMetadata(const ValueAsMetadata *MD,
158                             SmallVectorImpl<uint64_t> &Record);
159   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
160                     unsigned Abbrev);
161   unsigned createDILocationAbbrev();
162   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
163                        unsigned &Abbrev);
164   unsigned createGenericDINodeAbbrev();
165   void writeGenericDINode(const GenericDINode *N,
166                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
167   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
168                        unsigned Abbrev);
169   void writeDIEnumerator(const DIEnumerator *N,
170                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
171   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
172                         unsigned Abbrev);
173   void writeDIDerivedType(const DIDerivedType *N,
174                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
175   void writeDICompositeType(const DICompositeType *N,
176                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
177   void writeDISubroutineType(const DISubroutineType *N,
178                              SmallVectorImpl<uint64_t> &Record,
179                              unsigned Abbrev);
180   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
181                    unsigned Abbrev);
182   void writeDICompileUnit(const DICompileUnit *N,
183                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
184   void writeDISubprogram(const DISubprogram *N,
185                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
186   void writeDILexicalBlock(const DILexicalBlock *N,
187                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
188   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
189                                SmallVectorImpl<uint64_t> &Record,
190                                unsigned Abbrev);
191   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
192                         unsigned Abbrev);
193   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
194                     unsigned Abbrev);
195   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
196                         unsigned Abbrev);
197   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
198                      unsigned Abbrev);
199   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
200                                     SmallVectorImpl<uint64_t> &Record,
201                                     unsigned Abbrev);
202   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
203                                      SmallVectorImpl<uint64_t> &Record,
204                                      unsigned Abbrev);
205   void writeDIGlobalVariable(const DIGlobalVariable *N,
206                              SmallVectorImpl<uint64_t> &Record,
207                              unsigned Abbrev);
208   void writeDILocalVariable(const DILocalVariable *N,
209                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
210   void writeDIExpression(const DIExpression *N,
211                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
212   void writeDIObjCProperty(const DIObjCProperty *N,
213                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
214   void writeDIImportedEntity(const DIImportedEntity *N,
215                              SmallVectorImpl<uint64_t> &Record,
216                              unsigned Abbrev);
217   unsigned createNamedMetadataAbbrev();
218   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
219   unsigned createMetadataStringsAbbrev();
220   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
221                             SmallVectorImpl<uint64_t> &Record);
222   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
223                             SmallVectorImpl<uint64_t> &Record);
224   void writeModuleMetadata();
225   void writeFunctionMetadata(const Function &F);
226   void writeFunctionMetadataAttachment(const Function &F);
227   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
228   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
229                                     const GlobalObject &GO);
230   void writeModuleMetadataKinds();
231   void writeOperandBundleTags();
232   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
233   void writeModuleConstants();
234   bool pushValueAndType(const Value *V, unsigned InstID,
235                         SmallVectorImpl<unsigned> &Vals);
236   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
237   void pushValue(const Value *V, unsigned InstID,
238                  SmallVectorImpl<unsigned> &Vals);
239   void pushValueSigned(const Value *V, unsigned InstID,
240                        SmallVectorImpl<uint64_t> &Vals);
241   void writeInstruction(const Instruction &I, unsigned InstID,
242                         SmallVectorImpl<unsigned> &Vals);
243   void writeValueSymbolTable(
244       const ValueSymbolTable &VST, bool IsModuleLevel = false,
245       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
246   void writeUseList(UseListOrder &&Order);
247   void writeUseListBlock(const Function *F);
248   void
249   writeFunction(const Function &F,
250                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
251   void writeBlockInfo();
252   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
253                                            GlobalValueSummary *Summary,
254                                            unsigned ValueID,
255                                            unsigned FSCallsAbbrev,
256                                            unsigned FSCallsProfileAbbrev,
257                                            const Function &F);
258   void writeModuleLevelReferences(const GlobalVariable &V,
259                                   SmallVector<uint64_t, 64> &NameVals,
260                                   unsigned FSModRefsAbbrev);
261   void writePerModuleGlobalValueSummary();
262   void writeModuleHash(size_t BlockStartPos);
263 };
264 
265 /// Class to manage the bitcode writing for a combined index.
266 class IndexBitcodeWriter : public BitcodeWriter {
267   /// The combined index to write to bitcode.
268   const ModuleSummaryIndex &Index;
269 
270   /// When writing a subset of the index for distributed backends, client
271   /// provides a map of modules to the corresponding GUIDs/summaries to write.
272   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
273 
274   /// Map that holds the correspondence between the GUID used in the combined
275   /// index and a value id generated by this class to use in references.
276   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
277 
278   /// Tracks the last value id recorded in the GUIDToValueMap.
279   unsigned GlobalValueId = 0;
280 
281 public:
282   /// Constructs a IndexBitcodeWriter object for the given combined index,
283   /// writing to the provided \p Buffer. When writing a subset of the index
284   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(SmallVectorImpl<char> & Buffer,const ModuleSummaryIndex & Index,std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)285   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
286                      const ModuleSummaryIndex &Index,
287                      std::map<std::string, GVSummaryMapTy>
288                          *ModuleToSummariesForIndex = nullptr)
289       : BitcodeWriter(Buffer), Index(Index),
290         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
291     // Assign unique value ids to all summaries to be written, for use
292     // in writing out the call graph edges. Save the mapping from GUID
293     // to the new global value id to use when writing those edges, which
294     // are currently saved in the index in terms of GUID.
295     for (const auto &I : *this)
296       GUIDToValueIdMap[I.first] = ++GlobalValueId;
297   }
298 
299   /// The below iterator returns the GUID and associated summary.
300   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
301 
302   /// Iterator over the value GUID and summaries to be written to bitcode,
303   /// hides the details of whether they are being pulled from the entire
304   /// index or just those in a provided ModuleToSummariesForIndex map.
305   class iterator
306       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
307                                           GVInfo> {
308     /// Enables access to parent class.
309     const IndexBitcodeWriter &Writer;
310 
311     // Iterators used when writing only those summaries in a provided
312     // ModuleToSummariesForIndex map:
313 
314     /// Points to the last element in outer ModuleToSummariesForIndex map.
315     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
316     /// Iterator on outer ModuleToSummariesForIndex map.
317     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
318     /// Iterator on an inner global variable summary map.
319     GVSummaryMapTy::iterator ModuleGVSummariesIter;
320 
321     // Iterators used when writing all summaries in the index:
322 
323     /// Points to the last element in the Index outer GlobalValueMap.
324     const_gvsummary_iterator IndexSummariesBack;
325     /// Iterator on outer GlobalValueMap.
326     const_gvsummary_iterator IndexSummariesIter;
327     /// Iterator on an inner GlobalValueSummaryList.
328     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
329 
330   public:
331     /// Construct iterator from parent \p Writer and indicate if we are
332     /// constructing the end iterator.
iterator(const IndexBitcodeWriter & Writer,bool IsAtEnd)333     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
334       // Set up the appropriate set of iterators given whether we are writing
335       // the full index or just a subset.
336       // Can't setup the Back or inner iterators if the corresponding map
337       // is empty. This will be handled specially in operator== as well.
338       if (Writer.ModuleToSummariesForIndex &&
339           !Writer.ModuleToSummariesForIndex->empty()) {
340         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
341              std::next(ModuleSummariesBack) !=
342              Writer.ModuleToSummariesForIndex->end();
343              ModuleSummariesBack++)
344           ;
345         ModuleSummariesIter = !IsAtEnd
346                                   ? Writer.ModuleToSummariesForIndex->begin()
347                                   : ModuleSummariesBack;
348         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
349                                          : ModuleSummariesBack->second.end();
350       } else if (!Writer.ModuleToSummariesForIndex &&
351                  Writer.Index.begin() != Writer.Index.end()) {
352         for (IndexSummariesBack = Writer.Index.begin();
353              std::next(IndexSummariesBack) != Writer.Index.end();
354              IndexSummariesBack++)
355           ;
356         IndexSummariesIter =
357             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
358         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
359                                         : IndexSummariesBack->second.end();
360       }
361     }
362 
363     /// Increment the appropriate set of iterators.
operator ++()364     iterator &operator++() {
365       // First the inner iterator is incremented, then if it is at the end
366       // and there are more outer iterations to go, the inner is reset to
367       // the start of the next inner list.
368       if (Writer.ModuleToSummariesForIndex) {
369         ++ModuleGVSummariesIter;
370         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
371             ModuleSummariesIter != ModuleSummariesBack) {
372           ++ModuleSummariesIter;
373           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
374         }
375       } else {
376         ++IndexGVSummariesIter;
377         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
378             IndexSummariesIter != IndexSummariesBack) {
379           ++IndexSummariesIter;
380           IndexGVSummariesIter = IndexSummariesIter->second.begin();
381         }
382       }
383       return *this;
384     }
385 
386     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
387     /// outer and inner iterator positions.
operator *()388     GVInfo operator*() {
389       if (Writer.ModuleToSummariesForIndex)
390         return std::make_pair(ModuleGVSummariesIter->first,
391                               ModuleGVSummariesIter->second);
392       return std::make_pair(IndexSummariesIter->first,
393                             IndexGVSummariesIter->get());
394     }
395 
396     /// Checks if the iterators are equal, with special handling for empty
397     /// indexes.
operator ==(const iterator & RHS) const398     bool operator==(const iterator &RHS) const {
399       if (Writer.ModuleToSummariesForIndex) {
400         // First ensure that both are writing the same subset.
401         if (Writer.ModuleToSummariesForIndex !=
402             RHS.Writer.ModuleToSummariesForIndex)
403           return false;
404         // Already determined above that maps are the same, so if one is
405         // empty, they both are.
406         if (Writer.ModuleToSummariesForIndex->empty())
407           return true;
408         // Ensure the ModuleGVSummariesIter are iterating over the same
409         // container before checking them below.
410         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
411           return false;
412         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
413       }
414       // First ensure RHS also writing the full index, and that both are
415       // writing the same full index.
416       if (RHS.Writer.ModuleToSummariesForIndex ||
417           &Writer.Index != &RHS.Writer.Index)
418         return false;
419       // Already determined above that maps are the same, so if one is
420       // empty, they both are.
421       if (Writer.Index.begin() == Writer.Index.end())
422         return true;
423       // Ensure the IndexGVSummariesIter are iterating over the same
424       // container before checking them below.
425       if (IndexSummariesIter != RHS.IndexSummariesIter)
426         return false;
427       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
428     }
429   };
430 
431   /// Obtain the start iterator over the summaries to be written.
begin()432   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
433   /// Obtain the end iterator over the summaries to be written.
end()434   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
435 
436 private:
437   /// Main entry point for writing a combined index to bitcode, invoked by
438   /// BitcodeWriter::write() after it writes the header.
439   void writeBlocks() override;
440 
441   void writeIndex();
442   void writeModStrings();
443   void writeCombinedValueSymbolTable();
444   void writeCombinedGlobalValueSummary();
445 
446   /// Indicates whether the provided \p ModulePath should be written into
447   /// the module string table, e.g. if full index written or if it is in
448   /// the provided subset.
doIncludeModule(StringRef ModulePath)449   bool doIncludeModule(StringRef ModulePath) {
450     return !ModuleToSummariesForIndex ||
451            ModuleToSummariesForIndex->count(ModulePath);
452   }
453 
hasValueId(GlobalValue::GUID ValGUID)454   bool hasValueId(GlobalValue::GUID ValGUID) {
455     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
456     return VMI != GUIDToValueIdMap.end();
457   }
getValueId(GlobalValue::GUID ValGUID)458   unsigned getValueId(GlobalValue::GUID ValGUID) {
459     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
460     // If this GUID doesn't have an entry, assign one.
461     if (VMI == GUIDToValueIdMap.end()) {
462       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
463       return GlobalValueId;
464     } else {
465       return VMI->second;
466     }
467   }
valueIds()468   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
469 };
470 } // end anonymous namespace
471 
getEncodedCastOpcode(unsigned Opcode)472 static unsigned getEncodedCastOpcode(unsigned Opcode) {
473   switch (Opcode) {
474   default: llvm_unreachable("Unknown cast instruction!");
475   case Instruction::Trunc   : return bitc::CAST_TRUNC;
476   case Instruction::ZExt    : return bitc::CAST_ZEXT;
477   case Instruction::SExt    : return bitc::CAST_SEXT;
478   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
479   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
480   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
481   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
482   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
483   case Instruction::FPExt   : return bitc::CAST_FPEXT;
484   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
485   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
486   case Instruction::BitCast : return bitc::CAST_BITCAST;
487   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
488   }
489 }
490 
getEncodedBinaryOpcode(unsigned Opcode)491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
492   switch (Opcode) {
493   default: llvm_unreachable("Unknown binary instruction!");
494   case Instruction::Add:
495   case Instruction::FAdd: return bitc::BINOP_ADD;
496   case Instruction::Sub:
497   case Instruction::FSub: return bitc::BINOP_SUB;
498   case Instruction::Mul:
499   case Instruction::FMul: return bitc::BINOP_MUL;
500   case Instruction::UDiv: return bitc::BINOP_UDIV;
501   case Instruction::FDiv:
502   case Instruction::SDiv: return bitc::BINOP_SDIV;
503   case Instruction::URem: return bitc::BINOP_UREM;
504   case Instruction::FRem:
505   case Instruction::SRem: return bitc::BINOP_SREM;
506   case Instruction::Shl:  return bitc::BINOP_SHL;
507   case Instruction::LShr: return bitc::BINOP_LSHR;
508   case Instruction::AShr: return bitc::BINOP_ASHR;
509   case Instruction::And:  return bitc::BINOP_AND;
510   case Instruction::Or:   return bitc::BINOP_OR;
511   case Instruction::Xor:  return bitc::BINOP_XOR;
512   }
513 }
514 
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
516   switch (Op) {
517   default: llvm_unreachable("Unknown RMW operation!");
518   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
519   case AtomicRMWInst::Add: return bitc::RMW_ADD;
520   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
521   case AtomicRMWInst::And: return bitc::RMW_AND;
522   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
523   case AtomicRMWInst::Or: return bitc::RMW_OR;
524   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
525   case AtomicRMWInst::Max: return bitc::RMW_MAX;
526   case AtomicRMWInst::Min: return bitc::RMW_MIN;
527   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
528   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
529   }
530 }
531 
getEncodedOrdering(AtomicOrdering Ordering)532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
533   switch (Ordering) {
534   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
535   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
536   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
537   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
538   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
539   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
540   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
541   }
542   llvm_unreachable("Invalid ordering");
543 }
544 
getEncodedSynchScope(SynchronizationScope SynchScope)545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
546   switch (SynchScope) {
547   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
548   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
549   }
550   llvm_unreachable("Invalid synch scope");
551 }
552 
writeStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse)553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
554                                             unsigned AbbrevToUse) {
555   SmallVector<unsigned, 64> Vals;
556 
557   // Code: [strchar x N]
558   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
559     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
560       AbbrevToUse = 0;
561     Vals.push_back(Str[i]);
562   }
563 
564   // Emit the finished record.
565   Stream.EmitRecord(Code, Vals, AbbrevToUse);
566 }
567 
getAttrKindEncoding(Attribute::AttrKind Kind)568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
569   switch (Kind) {
570   case Attribute::Alignment:
571     return bitc::ATTR_KIND_ALIGNMENT;
572   case Attribute::AllocSize:
573     return bitc::ATTR_KIND_ALLOC_SIZE;
574   case Attribute::AlwaysInline:
575     return bitc::ATTR_KIND_ALWAYS_INLINE;
576   case Attribute::ArgMemOnly:
577     return bitc::ATTR_KIND_ARGMEMONLY;
578   case Attribute::Builtin:
579     return bitc::ATTR_KIND_BUILTIN;
580   case Attribute::ByVal:
581     return bitc::ATTR_KIND_BY_VAL;
582   case Attribute::Convergent:
583     return bitc::ATTR_KIND_CONVERGENT;
584   case Attribute::InAlloca:
585     return bitc::ATTR_KIND_IN_ALLOCA;
586   case Attribute::Cold:
587     return bitc::ATTR_KIND_COLD;
588   case Attribute::InaccessibleMemOnly:
589     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
590   case Attribute::InaccessibleMemOrArgMemOnly:
591     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
592   case Attribute::InlineHint:
593     return bitc::ATTR_KIND_INLINE_HINT;
594   case Attribute::InReg:
595     return bitc::ATTR_KIND_IN_REG;
596   case Attribute::JumpTable:
597     return bitc::ATTR_KIND_JUMP_TABLE;
598   case Attribute::MinSize:
599     return bitc::ATTR_KIND_MIN_SIZE;
600   case Attribute::Naked:
601     return bitc::ATTR_KIND_NAKED;
602   case Attribute::Nest:
603     return bitc::ATTR_KIND_NEST;
604   case Attribute::NoAlias:
605     return bitc::ATTR_KIND_NO_ALIAS;
606   case Attribute::NoBuiltin:
607     return bitc::ATTR_KIND_NO_BUILTIN;
608   case Attribute::NoCapture:
609     return bitc::ATTR_KIND_NO_CAPTURE;
610   case Attribute::NoDuplicate:
611     return bitc::ATTR_KIND_NO_DUPLICATE;
612   case Attribute::NoImplicitFloat:
613     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
614   case Attribute::NoInline:
615     return bitc::ATTR_KIND_NO_INLINE;
616   case Attribute::NoRecurse:
617     return bitc::ATTR_KIND_NO_RECURSE;
618   case Attribute::NonLazyBind:
619     return bitc::ATTR_KIND_NON_LAZY_BIND;
620   case Attribute::NonNull:
621     return bitc::ATTR_KIND_NON_NULL;
622   case Attribute::Dereferenceable:
623     return bitc::ATTR_KIND_DEREFERENCEABLE;
624   case Attribute::DereferenceableOrNull:
625     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
626   case Attribute::NoRedZone:
627     return bitc::ATTR_KIND_NO_RED_ZONE;
628   case Attribute::NoReturn:
629     return bitc::ATTR_KIND_NO_RETURN;
630   case Attribute::NoUnwind:
631     return bitc::ATTR_KIND_NO_UNWIND;
632   case Attribute::OptimizeForSize:
633     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
634   case Attribute::OptimizeNone:
635     return bitc::ATTR_KIND_OPTIMIZE_NONE;
636   case Attribute::ReadNone:
637     return bitc::ATTR_KIND_READ_NONE;
638   case Attribute::ReadOnly:
639     return bitc::ATTR_KIND_READ_ONLY;
640   case Attribute::Returned:
641     return bitc::ATTR_KIND_RETURNED;
642   case Attribute::ReturnsTwice:
643     return bitc::ATTR_KIND_RETURNS_TWICE;
644   case Attribute::SExt:
645     return bitc::ATTR_KIND_S_EXT;
646   case Attribute::StackAlignment:
647     return bitc::ATTR_KIND_STACK_ALIGNMENT;
648   case Attribute::StackProtect:
649     return bitc::ATTR_KIND_STACK_PROTECT;
650   case Attribute::StackProtectReq:
651     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
652   case Attribute::StackProtectStrong:
653     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
654   case Attribute::SafeStack:
655     return bitc::ATTR_KIND_SAFESTACK;
656   case Attribute::StructRet:
657     return bitc::ATTR_KIND_STRUCT_RET;
658   case Attribute::SanitizeAddress:
659     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
660   case Attribute::SanitizeThread:
661     return bitc::ATTR_KIND_SANITIZE_THREAD;
662   case Attribute::SanitizeMemory:
663     return bitc::ATTR_KIND_SANITIZE_MEMORY;
664   case Attribute::SwiftError:
665     return bitc::ATTR_KIND_SWIFT_ERROR;
666   case Attribute::SwiftSelf:
667     return bitc::ATTR_KIND_SWIFT_SELF;
668   case Attribute::UWTable:
669     return bitc::ATTR_KIND_UW_TABLE;
670   case Attribute::WriteOnly:
671     return bitc::ATTR_KIND_WRITEONLY;
672   case Attribute::ZExt:
673     return bitc::ATTR_KIND_Z_EXT;
674   case Attribute::EndAttrKinds:
675     llvm_unreachable("Can not encode end-attribute kinds marker.");
676   case Attribute::None:
677     llvm_unreachable("Can not encode none-attribute.");
678   }
679 
680   llvm_unreachable("Trying to encode unknown attribute");
681 }
682 
writeAttributeGroupTable()683 void ModuleBitcodeWriter::writeAttributeGroupTable() {
684   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
685   if (AttrGrps.empty()) return;
686 
687   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
688 
689   SmallVector<uint64_t, 64> Record;
690   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
691     AttributeSet AS = AttrGrps[i];
692     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
693       AttributeSet A = AS.getSlotAttributes(i);
694 
695       Record.push_back(VE.getAttributeGroupID(A));
696       Record.push_back(AS.getSlotIndex(i));
697 
698       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
699            I != E; ++I) {
700         Attribute Attr = *I;
701         if (Attr.isEnumAttribute()) {
702           Record.push_back(0);
703           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
704         } else if (Attr.isIntAttribute()) {
705           Record.push_back(1);
706           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
707           Record.push_back(Attr.getValueAsInt());
708         } else {
709           StringRef Kind = Attr.getKindAsString();
710           StringRef Val = Attr.getValueAsString();
711 
712           Record.push_back(Val.empty() ? 3 : 4);
713           Record.append(Kind.begin(), Kind.end());
714           Record.push_back(0);
715           if (!Val.empty()) {
716             Record.append(Val.begin(), Val.end());
717             Record.push_back(0);
718           }
719         }
720       }
721 
722       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
723       Record.clear();
724     }
725   }
726 
727   Stream.ExitBlock();
728 }
729 
writeAttributeTable()730 void ModuleBitcodeWriter::writeAttributeTable() {
731   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
732   if (Attrs.empty()) return;
733 
734   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
735 
736   SmallVector<uint64_t, 64> Record;
737   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
738     const AttributeSet &A = Attrs[i];
739     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
740       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
741 
742     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
743     Record.clear();
744   }
745 
746   Stream.ExitBlock();
747 }
748 
749 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()750 void ModuleBitcodeWriter::writeTypeTable() {
751   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
752 
753   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
754   SmallVector<uint64_t, 64> TypeVals;
755 
756   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
757 
758   // Abbrev for TYPE_CODE_POINTER.
759   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
760   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
762   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
763   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
764 
765   // Abbrev for TYPE_CODE_FUNCTION.
766   Abbv = new BitCodeAbbrev();
767   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
771 
772   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
773 
774   // Abbrev for TYPE_CODE_STRUCT_ANON.
775   Abbv = new BitCodeAbbrev();
776   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
780 
781   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
782 
783   // Abbrev for TYPE_CODE_STRUCT_NAME.
784   Abbv = new BitCodeAbbrev();
785   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
786   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
787   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
788   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
789 
790   // Abbrev for TYPE_CODE_STRUCT_NAMED.
791   Abbv = new BitCodeAbbrev();
792   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
796 
797   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
798 
799   // Abbrev for TYPE_CODE_ARRAY.
800   Abbv = new BitCodeAbbrev();
801   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
804 
805   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
806 
807   // Emit an entry count so the reader can reserve space.
808   TypeVals.push_back(TypeList.size());
809   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
810   TypeVals.clear();
811 
812   // Loop over all of the types, emitting each in turn.
813   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
814     Type *T = TypeList[i];
815     int AbbrevToUse = 0;
816     unsigned Code = 0;
817 
818     switch (T->getTypeID()) {
819     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
820     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
821     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
822     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
823     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
824     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
825     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
826     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
827     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
828     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
829     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
830     case Type::IntegerTyID:
831       // INTEGER: [width]
832       Code = bitc::TYPE_CODE_INTEGER;
833       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
834       break;
835     case Type::PointerTyID: {
836       PointerType *PTy = cast<PointerType>(T);
837       // POINTER: [pointee type, address space]
838       Code = bitc::TYPE_CODE_POINTER;
839       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
840       unsigned AddressSpace = PTy->getAddressSpace();
841       TypeVals.push_back(AddressSpace);
842       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
843       break;
844     }
845     case Type::FunctionTyID: {
846       FunctionType *FT = cast<FunctionType>(T);
847       // FUNCTION: [isvararg, retty, paramty x N]
848       Code = bitc::TYPE_CODE_FUNCTION;
849       TypeVals.push_back(FT->isVarArg());
850       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
851       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
852         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
853       AbbrevToUse = FunctionAbbrev;
854       break;
855     }
856     case Type::StructTyID: {
857       StructType *ST = cast<StructType>(T);
858       // STRUCT: [ispacked, eltty x N]
859       TypeVals.push_back(ST->isPacked());
860       // Output all of the element types.
861       for (StructType::element_iterator I = ST->element_begin(),
862            E = ST->element_end(); I != E; ++I)
863         TypeVals.push_back(VE.getTypeID(*I));
864 
865       if (ST->isLiteral()) {
866         Code = bitc::TYPE_CODE_STRUCT_ANON;
867         AbbrevToUse = StructAnonAbbrev;
868       } else {
869         if (ST->isOpaque()) {
870           Code = bitc::TYPE_CODE_OPAQUE;
871         } else {
872           Code = bitc::TYPE_CODE_STRUCT_NAMED;
873           AbbrevToUse = StructNamedAbbrev;
874         }
875 
876         // Emit the name if it is present.
877         if (!ST->getName().empty())
878           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
879                             StructNameAbbrev);
880       }
881       break;
882     }
883     case Type::ArrayTyID: {
884       ArrayType *AT = cast<ArrayType>(T);
885       // ARRAY: [numelts, eltty]
886       Code = bitc::TYPE_CODE_ARRAY;
887       TypeVals.push_back(AT->getNumElements());
888       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
889       AbbrevToUse = ArrayAbbrev;
890       break;
891     }
892     case Type::VectorTyID: {
893       VectorType *VT = cast<VectorType>(T);
894       // VECTOR [numelts, eltty]
895       Code = bitc::TYPE_CODE_VECTOR;
896       TypeVals.push_back(VT->getNumElements());
897       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
898       break;
899     }
900     }
901 
902     // Emit the finished record.
903     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
904     TypeVals.clear();
905   }
906 
907   Stream.ExitBlock();
908 }
909 
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)910 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
911   switch (Linkage) {
912   case GlobalValue::ExternalLinkage:
913     return 0;
914   case GlobalValue::WeakAnyLinkage:
915     return 16;
916   case GlobalValue::AppendingLinkage:
917     return 2;
918   case GlobalValue::InternalLinkage:
919     return 3;
920   case GlobalValue::LinkOnceAnyLinkage:
921     return 18;
922   case GlobalValue::ExternalWeakLinkage:
923     return 7;
924   case GlobalValue::CommonLinkage:
925     return 8;
926   case GlobalValue::PrivateLinkage:
927     return 9;
928   case GlobalValue::WeakODRLinkage:
929     return 17;
930   case GlobalValue::LinkOnceODRLinkage:
931     return 19;
932   case GlobalValue::AvailableExternallyLinkage:
933     return 12;
934   }
935   llvm_unreachable("Invalid linkage");
936 }
937 
getEncodedLinkage(const GlobalValue & GV)938 static unsigned getEncodedLinkage(const GlobalValue &GV) {
939   return getEncodedLinkage(GV.getLinkage());
940 }
941 
942 // Decode the flags for GlobalValue in the summary
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)943 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
944   uint64_t RawFlags = 0;
945 
946   RawFlags |= Flags.HasSection; // bool
947 
948   // Linkage don't need to be remapped at that time for the summary. Any future
949   // change to the getEncodedLinkage() function will need to be taken into
950   // account here as well.
951   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
952 
953   return RawFlags;
954 }
955 
getEncodedVisibility(const GlobalValue & GV)956 static unsigned getEncodedVisibility(const GlobalValue &GV) {
957   switch (GV.getVisibility()) {
958   case GlobalValue::DefaultVisibility:   return 0;
959   case GlobalValue::HiddenVisibility:    return 1;
960   case GlobalValue::ProtectedVisibility: return 2;
961   }
962   llvm_unreachable("Invalid visibility");
963 }
964 
getEncodedDLLStorageClass(const GlobalValue & GV)965 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
966   switch (GV.getDLLStorageClass()) {
967   case GlobalValue::DefaultStorageClass:   return 0;
968   case GlobalValue::DLLImportStorageClass: return 1;
969   case GlobalValue::DLLExportStorageClass: return 2;
970   }
971   llvm_unreachable("Invalid DLL storage class");
972 }
973 
getEncodedThreadLocalMode(const GlobalValue & GV)974 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
975   switch (GV.getThreadLocalMode()) {
976     case GlobalVariable::NotThreadLocal:         return 0;
977     case GlobalVariable::GeneralDynamicTLSModel: return 1;
978     case GlobalVariable::LocalDynamicTLSModel:   return 2;
979     case GlobalVariable::InitialExecTLSModel:    return 3;
980     case GlobalVariable::LocalExecTLSModel:      return 4;
981   }
982   llvm_unreachable("Invalid TLS model");
983 }
984 
getEncodedComdatSelectionKind(const Comdat & C)985 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
986   switch (C.getSelectionKind()) {
987   case Comdat::Any:
988     return bitc::COMDAT_SELECTION_KIND_ANY;
989   case Comdat::ExactMatch:
990     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
991   case Comdat::Largest:
992     return bitc::COMDAT_SELECTION_KIND_LARGEST;
993   case Comdat::NoDuplicates:
994     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
995   case Comdat::SameSize:
996     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
997   }
998   llvm_unreachable("Invalid selection kind");
999 }
1000 
getEncodedUnnamedAddr(const GlobalValue & GV)1001 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1002   switch (GV.getUnnamedAddr()) {
1003   case GlobalValue::UnnamedAddr::None:   return 0;
1004   case GlobalValue::UnnamedAddr::Local:  return 2;
1005   case GlobalValue::UnnamedAddr::Global: return 1;
1006   }
1007   llvm_unreachable("Invalid unnamed_addr");
1008 }
1009 
writeComdats()1010 void ModuleBitcodeWriter::writeComdats() {
1011   SmallVector<unsigned, 64> Vals;
1012   for (const Comdat *C : VE.getComdats()) {
1013     // COMDAT: [selection_kind, name]
1014     Vals.push_back(getEncodedComdatSelectionKind(*C));
1015     size_t Size = C->getName().size();
1016     assert(isUInt<32>(Size));
1017     Vals.push_back(Size);
1018     for (char Chr : C->getName())
1019       Vals.push_back((unsigned char)Chr);
1020     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1021     Vals.clear();
1022   }
1023 }
1024 
1025 /// Write a record that will eventually hold the word offset of the
1026 /// module-level VST. For now the offset is 0, which will be backpatched
1027 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1028 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
1029   // Write a placeholder value in for the offset of the real VST,
1030   // which is written after the function blocks so that it can include
1031   // the offset of each function. The placeholder offset will be
1032   // updated when the real VST is written.
1033   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1034   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1035   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1036   // hold the real VST offset. Must use fixed instead of VBR as we don't
1037   // know how many VBR chunks to reserve ahead of time.
1038   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1039   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1040 
1041   // Emit the placeholder
1042   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1043   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1044 
1045   // Compute and save the bit offset to the placeholder, which will be
1046   // patched when the real VST is written. We can simply subtract the 32-bit
1047   // fixed size from the current bit number to get the location to backpatch.
1048   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1049 }
1050 
1051 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1052 
1053 /// Determine the encoding to use for the given string name and length.
getStringEncoding(const char * Str,unsigned StrLen)1054 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1055   bool isChar6 = true;
1056   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1057     if (isChar6)
1058       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1059     if ((unsigned char)*C & 128)
1060       // don't bother scanning the rest.
1061       return SE_Fixed8;
1062   }
1063   if (isChar6)
1064     return SE_Char6;
1065   else
1066     return SE_Fixed7;
1067 }
1068 
1069 /// Emit top-level description of module, including target triple, inline asm,
1070 /// descriptors for global variables, and function prototype info.
1071 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1072 void ModuleBitcodeWriter::writeModuleInfo() {
1073   // Emit various pieces of data attached to a module.
1074   if (!M.getTargetTriple().empty())
1075     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1076                       0 /*TODO*/);
1077   const std::string &DL = M.getDataLayoutStr();
1078   if (!DL.empty())
1079     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1080   if (!M.getModuleInlineAsm().empty())
1081     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1082                       0 /*TODO*/);
1083 
1084   // Emit information about sections and GC, computing how many there are. Also
1085   // compute the maximum alignment value.
1086   std::map<std::string, unsigned> SectionMap;
1087   std::map<std::string, unsigned> GCMap;
1088   unsigned MaxAlignment = 0;
1089   unsigned MaxGlobalType = 0;
1090   for (const GlobalValue &GV : M.globals()) {
1091     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1092     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1093     if (GV.hasSection()) {
1094       // Give section names unique ID's.
1095       unsigned &Entry = SectionMap[GV.getSection()];
1096       if (!Entry) {
1097         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1098                           0 /*TODO*/);
1099         Entry = SectionMap.size();
1100       }
1101     }
1102   }
1103   for (const Function &F : M) {
1104     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1105     if (F.hasSection()) {
1106       // Give section names unique ID's.
1107       unsigned &Entry = SectionMap[F.getSection()];
1108       if (!Entry) {
1109         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1110                           0 /*TODO*/);
1111         Entry = SectionMap.size();
1112       }
1113     }
1114     if (F.hasGC()) {
1115       // Same for GC names.
1116       unsigned &Entry = GCMap[F.getGC()];
1117       if (!Entry) {
1118         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
1119         Entry = GCMap.size();
1120       }
1121     }
1122   }
1123 
1124   // Emit abbrev for globals, now that we know # sections and max alignment.
1125   unsigned SimpleGVarAbbrev = 0;
1126   if (!M.global_empty()) {
1127     // Add an abbrev for common globals with no visibility or thread localness.
1128     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1131                               Log2_32_Ceil(MaxGlobalType+1)));
1132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1133                                                            //| explicitType << 1
1134                                                            //| constant
1135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1137     if (MaxAlignment == 0)                                 // Alignment.
1138       Abbv->Add(BitCodeAbbrevOp(0));
1139     else {
1140       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1141       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1142                                Log2_32_Ceil(MaxEncAlignment+1)));
1143     }
1144     if (SectionMap.empty())                                    // Section.
1145       Abbv->Add(BitCodeAbbrevOp(0));
1146     else
1147       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1148                                Log2_32_Ceil(SectionMap.size()+1)));
1149     // Don't bother emitting vis + thread local.
1150     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1151   }
1152 
1153   // Emit the global variable information.
1154   SmallVector<unsigned, 64> Vals;
1155   for (const GlobalVariable &GV : M.globals()) {
1156     unsigned AbbrevToUse = 0;
1157 
1158     // GLOBALVAR: [type, isconst, initid,
1159     //             linkage, alignment, section, visibility, threadlocal,
1160     //             unnamed_addr, externally_initialized, dllstorageclass,
1161     //             comdat]
1162     Vals.push_back(VE.getTypeID(GV.getValueType()));
1163     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1164     Vals.push_back(GV.isDeclaration() ? 0 :
1165                    (VE.getValueID(GV.getInitializer()) + 1));
1166     Vals.push_back(getEncodedLinkage(GV));
1167     Vals.push_back(Log2_32(GV.getAlignment())+1);
1168     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1169     if (GV.isThreadLocal() ||
1170         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1171         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1172         GV.isExternallyInitialized() ||
1173         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1174         GV.hasComdat()) {
1175       Vals.push_back(getEncodedVisibility(GV));
1176       Vals.push_back(getEncodedThreadLocalMode(GV));
1177       Vals.push_back(getEncodedUnnamedAddr(GV));
1178       Vals.push_back(GV.isExternallyInitialized());
1179       Vals.push_back(getEncodedDLLStorageClass(GV));
1180       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1181     } else {
1182       AbbrevToUse = SimpleGVarAbbrev;
1183     }
1184 
1185     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1186     Vals.clear();
1187   }
1188 
1189   // Emit the function proto information.
1190   for (const Function &F : M) {
1191     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1192     //             section, visibility, gc, unnamed_addr, prologuedata,
1193     //             dllstorageclass, comdat, prefixdata, personalityfn]
1194     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1195     Vals.push_back(F.getCallingConv());
1196     Vals.push_back(F.isDeclaration());
1197     Vals.push_back(getEncodedLinkage(F));
1198     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1199     Vals.push_back(Log2_32(F.getAlignment())+1);
1200     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1201     Vals.push_back(getEncodedVisibility(F));
1202     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1203     Vals.push_back(getEncodedUnnamedAddr(F));
1204     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1205                                        : 0);
1206     Vals.push_back(getEncodedDLLStorageClass(F));
1207     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1208     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1209                                      : 0);
1210     Vals.push_back(
1211         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1212 
1213     unsigned AbbrevToUse = 0;
1214     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1215     Vals.clear();
1216   }
1217 
1218   // Emit the alias information.
1219   for (const GlobalAlias &A : M.aliases()) {
1220     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
1221     //         threadlocal, unnamed_addr]
1222     Vals.push_back(VE.getTypeID(A.getValueType()));
1223     Vals.push_back(A.getType()->getAddressSpace());
1224     Vals.push_back(VE.getValueID(A.getAliasee()));
1225     Vals.push_back(getEncodedLinkage(A));
1226     Vals.push_back(getEncodedVisibility(A));
1227     Vals.push_back(getEncodedDLLStorageClass(A));
1228     Vals.push_back(getEncodedThreadLocalMode(A));
1229     Vals.push_back(getEncodedUnnamedAddr(A));
1230     unsigned AbbrevToUse = 0;
1231     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1232     Vals.clear();
1233   }
1234 
1235   // Emit the ifunc information.
1236   for (const GlobalIFunc &I : M.ifuncs()) {
1237     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1238     Vals.push_back(VE.getTypeID(I.getValueType()));
1239     Vals.push_back(I.getType()->getAddressSpace());
1240     Vals.push_back(VE.getValueID(I.getResolver()));
1241     Vals.push_back(getEncodedLinkage(I));
1242     Vals.push_back(getEncodedVisibility(I));
1243     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1244     Vals.clear();
1245   }
1246 
1247   // Emit the module's source file name.
1248   {
1249     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1250                                             M.getSourceFileName().size());
1251     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1252     if (Bits == SE_Char6)
1253       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1254     else if (Bits == SE_Fixed7)
1255       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1256 
1257     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1258     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1259     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1260     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1261     Abbv->Add(AbbrevOpToUse);
1262     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1263 
1264     for (const auto P : M.getSourceFileName())
1265       Vals.push_back((unsigned char)P);
1266 
1267     // Emit the finished record.
1268     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1269     Vals.clear();
1270   }
1271 
1272   // If we have a VST, write the VSTOFFSET record placeholder.
1273   if (M.getValueSymbolTable().empty())
1274     return;
1275   writeValueSymbolTableForwardDecl();
1276 }
1277 
getOptimizationFlags(const Value * V)1278 static uint64_t getOptimizationFlags(const Value *V) {
1279   uint64_t Flags = 0;
1280 
1281   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1282     if (OBO->hasNoSignedWrap())
1283       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1284     if (OBO->hasNoUnsignedWrap())
1285       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1286   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1287     if (PEO->isExact())
1288       Flags |= 1 << bitc::PEO_EXACT;
1289   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1290     if (FPMO->hasUnsafeAlgebra())
1291       Flags |= FastMathFlags::UnsafeAlgebra;
1292     if (FPMO->hasNoNaNs())
1293       Flags |= FastMathFlags::NoNaNs;
1294     if (FPMO->hasNoInfs())
1295       Flags |= FastMathFlags::NoInfs;
1296     if (FPMO->hasNoSignedZeros())
1297       Flags |= FastMathFlags::NoSignedZeros;
1298     if (FPMO->hasAllowReciprocal())
1299       Flags |= FastMathFlags::AllowReciprocal;
1300   }
1301 
1302   return Flags;
1303 }
1304 
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1305 void ModuleBitcodeWriter::writeValueAsMetadata(
1306     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1307   // Mimic an MDNode with a value as one operand.
1308   Value *V = MD->getValue();
1309   Record.push_back(VE.getTypeID(V->getType()));
1310   Record.push_back(VE.getValueID(V));
1311   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1312   Record.clear();
1313 }
1314 
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1315 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1316                                        SmallVectorImpl<uint64_t> &Record,
1317                                        unsigned Abbrev) {
1318   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1319     Metadata *MD = N->getOperand(i);
1320     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1321            "Unexpected function-local metadata");
1322     Record.push_back(VE.getMetadataOrNullID(MD));
1323   }
1324   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1325                                     : bitc::METADATA_NODE,
1326                     Record, Abbrev);
1327   Record.clear();
1328 }
1329 
createDILocationAbbrev()1330 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1331   // Assume the column is usually under 128, and always output the inlined-at
1332   // location (it's never more expensive than building an array size 1).
1333   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1334   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1335   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1340   return Stream.EmitAbbrev(Abbv);
1341 }
1342 
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1343 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1344                                           SmallVectorImpl<uint64_t> &Record,
1345                                           unsigned &Abbrev) {
1346   if (!Abbrev)
1347     Abbrev = createDILocationAbbrev();
1348 
1349   Record.push_back(N->isDistinct());
1350   Record.push_back(N->getLine());
1351   Record.push_back(N->getColumn());
1352   Record.push_back(VE.getMetadataID(N->getScope()));
1353   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1354 
1355   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1356   Record.clear();
1357 }
1358 
createGenericDINodeAbbrev()1359 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1360   // Assume the column is usually under 128, and always output the inlined-at
1361   // location (it's never more expensive than building an array size 1).
1362   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1363   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1370   return Stream.EmitAbbrev(Abbv);
1371 }
1372 
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1373 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1374                                              SmallVectorImpl<uint64_t> &Record,
1375                                              unsigned &Abbrev) {
1376   if (!Abbrev)
1377     Abbrev = createGenericDINodeAbbrev();
1378 
1379   Record.push_back(N->isDistinct());
1380   Record.push_back(N->getTag());
1381   Record.push_back(0); // Per-tag version field; unused for now.
1382 
1383   for (auto &I : N->operands())
1384     Record.push_back(VE.getMetadataOrNullID(I));
1385 
1386   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1387   Record.clear();
1388 }
1389 
rotateSign(int64_t I)1390 static uint64_t rotateSign(int64_t I) {
1391   uint64_t U = I;
1392   return I < 0 ? ~(U << 1) : U << 1;
1393 }
1394 
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1395 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1396                                           SmallVectorImpl<uint64_t> &Record,
1397                                           unsigned Abbrev) {
1398   Record.push_back(N->isDistinct());
1399   Record.push_back(N->getCount());
1400   Record.push_back(rotateSign(N->getLowerBound()));
1401 
1402   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1403   Record.clear();
1404 }
1405 
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1406 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1407                                             SmallVectorImpl<uint64_t> &Record,
1408                                             unsigned Abbrev) {
1409   Record.push_back(N->isDistinct());
1410   Record.push_back(rotateSign(N->getValue()));
1411   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1412 
1413   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1414   Record.clear();
1415 }
1416 
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1417 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1418                                            SmallVectorImpl<uint64_t> &Record,
1419                                            unsigned Abbrev) {
1420   Record.push_back(N->isDistinct());
1421   Record.push_back(N->getTag());
1422   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1423   Record.push_back(N->getSizeInBits());
1424   Record.push_back(N->getAlignInBits());
1425   Record.push_back(N->getEncoding());
1426 
1427   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1428   Record.clear();
1429 }
1430 
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1431 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1432                                              SmallVectorImpl<uint64_t> &Record,
1433                                              unsigned Abbrev) {
1434   Record.push_back(N->isDistinct());
1435   Record.push_back(N->getTag());
1436   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1437   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1438   Record.push_back(N->getLine());
1439   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1440   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1441   Record.push_back(N->getSizeInBits());
1442   Record.push_back(N->getAlignInBits());
1443   Record.push_back(N->getOffsetInBits());
1444   Record.push_back(N->getFlags());
1445   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1446 
1447   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1448   Record.clear();
1449 }
1450 
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1451 void ModuleBitcodeWriter::writeDICompositeType(
1452     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1453     unsigned Abbrev) {
1454   const unsigned IsNotUsedInOldTypeRef = 0x2;
1455   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1456   Record.push_back(N->getTag());
1457   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1458   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1459   Record.push_back(N->getLine());
1460   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1461   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1462   Record.push_back(N->getSizeInBits());
1463   Record.push_back(N->getAlignInBits());
1464   Record.push_back(N->getOffsetInBits());
1465   Record.push_back(N->getFlags());
1466   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1467   Record.push_back(N->getRuntimeLang());
1468   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1469   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1470   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1471 
1472   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1473   Record.clear();
1474 }
1475 
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1476 void ModuleBitcodeWriter::writeDISubroutineType(
1477     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1478     unsigned Abbrev) {
1479   const unsigned HasNoOldTypeRefs = 0x2;
1480   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1481   Record.push_back(N->getFlags());
1482   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1483   Record.push_back(N->getCC());
1484 
1485   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1486   Record.clear();
1487 }
1488 
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1489 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1490                                       SmallVectorImpl<uint64_t> &Record,
1491                                       unsigned Abbrev) {
1492   Record.push_back(N->isDistinct());
1493   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1494   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1495 
1496   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1497   Record.clear();
1498 }
1499 
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1500 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1501                                              SmallVectorImpl<uint64_t> &Record,
1502                                              unsigned Abbrev) {
1503   assert(N->isDistinct() && "Expected distinct compile units");
1504   Record.push_back(/* IsDistinct */ true);
1505   Record.push_back(N->getSourceLanguage());
1506   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1507   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1508   Record.push_back(N->isOptimized());
1509   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1510   Record.push_back(N->getRuntimeVersion());
1511   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1512   Record.push_back(N->getEmissionKind());
1513   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1514   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1515   Record.push_back(/* subprograms */ 0);
1516   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1517   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1518   Record.push_back(N->getDWOId());
1519   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1520 
1521   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1522   Record.clear();
1523 }
1524 
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1525 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1526                                             SmallVectorImpl<uint64_t> &Record,
1527                                             unsigned Abbrev) {
1528   uint64_t HasUnitFlag = 1 << 1;
1529   Record.push_back(N->isDistinct() | HasUnitFlag);
1530   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1531   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1532   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1533   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1534   Record.push_back(N->getLine());
1535   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1536   Record.push_back(N->isLocalToUnit());
1537   Record.push_back(N->isDefinition());
1538   Record.push_back(N->getScopeLine());
1539   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1540   Record.push_back(N->getVirtuality());
1541   Record.push_back(N->getVirtualIndex());
1542   Record.push_back(N->getFlags());
1543   Record.push_back(N->isOptimized());
1544   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1545   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1546   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1547   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1548   Record.push_back(N->getThisAdjustment());
1549 
1550   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1551   Record.clear();
1552 }
1553 
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1554 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1555                                               SmallVectorImpl<uint64_t> &Record,
1556                                               unsigned Abbrev) {
1557   Record.push_back(N->isDistinct());
1558   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1559   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1560   Record.push_back(N->getLine());
1561   Record.push_back(N->getColumn());
1562 
1563   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1564   Record.clear();
1565 }
1566 
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1567 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1568     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1569     unsigned Abbrev) {
1570   Record.push_back(N->isDistinct());
1571   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1572   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1573   Record.push_back(N->getDiscriminator());
1574 
1575   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1576   Record.clear();
1577 }
1578 
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1579 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1580                                            SmallVectorImpl<uint64_t> &Record,
1581                                            unsigned Abbrev) {
1582   Record.push_back(N->isDistinct());
1583   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1584   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1586   Record.push_back(N->getLine());
1587 
1588   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1589   Record.clear();
1590 }
1591 
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1592 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1593                                        SmallVectorImpl<uint64_t> &Record,
1594                                        unsigned Abbrev) {
1595   Record.push_back(N->isDistinct());
1596   Record.push_back(N->getMacinfoType());
1597   Record.push_back(N->getLine());
1598   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1600 
1601   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1602   Record.clear();
1603 }
1604 
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1605 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1606                                            SmallVectorImpl<uint64_t> &Record,
1607                                            unsigned Abbrev) {
1608   Record.push_back(N->isDistinct());
1609   Record.push_back(N->getMacinfoType());
1610   Record.push_back(N->getLine());
1611   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1612   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1613 
1614   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1615   Record.clear();
1616 }
1617 
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1618 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1619                                         SmallVectorImpl<uint64_t> &Record,
1620                                         unsigned Abbrev) {
1621   Record.push_back(N->isDistinct());
1622   for (auto &I : N->operands())
1623     Record.push_back(VE.getMetadataOrNullID(I));
1624 
1625   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1626   Record.clear();
1627 }
1628 
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1629 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1630     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1631     unsigned Abbrev) {
1632   Record.push_back(N->isDistinct());
1633   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1634   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1635 
1636   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1637   Record.clear();
1638 }
1639 
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1640 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1641     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1642     unsigned Abbrev) {
1643   Record.push_back(N->isDistinct());
1644   Record.push_back(N->getTag());
1645   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1646   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1648 
1649   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1650   Record.clear();
1651 }
1652 
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1653 void ModuleBitcodeWriter::writeDIGlobalVariable(
1654     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1655     unsigned Abbrev) {
1656   Record.push_back(N->isDistinct());
1657   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1658   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1660   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1661   Record.push_back(N->getLine());
1662   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1663   Record.push_back(N->isLocalToUnit());
1664   Record.push_back(N->isDefinition());
1665   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1666   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1667 
1668   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1669   Record.clear();
1670 }
1671 
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1672 void ModuleBitcodeWriter::writeDILocalVariable(
1673     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1674     unsigned Abbrev) {
1675   Record.push_back(N->isDistinct());
1676   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1677   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1678   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1679   Record.push_back(N->getLine());
1680   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1681   Record.push_back(N->getArg());
1682   Record.push_back(N->getFlags());
1683 
1684   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1685   Record.clear();
1686 }
1687 
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1688 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1689                                             SmallVectorImpl<uint64_t> &Record,
1690                                             unsigned Abbrev) {
1691   Record.reserve(N->getElements().size() + 1);
1692 
1693   Record.push_back(N->isDistinct());
1694   Record.append(N->elements_begin(), N->elements_end());
1695 
1696   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1697   Record.clear();
1698 }
1699 
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1700 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1701                                               SmallVectorImpl<uint64_t> &Record,
1702                                               unsigned Abbrev) {
1703   Record.push_back(N->isDistinct());
1704   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1705   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1706   Record.push_back(N->getLine());
1707   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1708   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1709   Record.push_back(N->getAttributes());
1710   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1711 
1712   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1713   Record.clear();
1714 }
1715 
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1716 void ModuleBitcodeWriter::writeDIImportedEntity(
1717     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1718     unsigned Abbrev) {
1719   Record.push_back(N->isDistinct());
1720   Record.push_back(N->getTag());
1721   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1722   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1723   Record.push_back(N->getLine());
1724   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1725 
1726   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1727   Record.clear();
1728 }
1729 
createNamedMetadataAbbrev()1730 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1731   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1732   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1734   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1735   return Stream.EmitAbbrev(Abbv);
1736 }
1737 
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)1738 void ModuleBitcodeWriter::writeNamedMetadata(
1739     SmallVectorImpl<uint64_t> &Record) {
1740   if (M.named_metadata_empty())
1741     return;
1742 
1743   unsigned Abbrev = createNamedMetadataAbbrev();
1744   for (const NamedMDNode &NMD : M.named_metadata()) {
1745     // Write name.
1746     StringRef Str = NMD.getName();
1747     Record.append(Str.bytes_begin(), Str.bytes_end());
1748     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1749     Record.clear();
1750 
1751     // Write named metadata operands.
1752     for (const MDNode *N : NMD.operands())
1753       Record.push_back(VE.getMetadataID(N));
1754     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1755     Record.clear();
1756   }
1757 }
1758 
createMetadataStringsAbbrev()1759 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1760   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1761   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1762   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1765   return Stream.EmitAbbrev(Abbv);
1766 }
1767 
1768 /// Write out a record for MDString.
1769 ///
1770 /// All the metadata strings in a metadata block are emitted in a single
1771 /// record.  The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1772 void ModuleBitcodeWriter::writeMetadataStrings(
1773     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1774   if (Strings.empty())
1775     return;
1776 
1777   // Start the record with the number of strings.
1778   Record.push_back(bitc::METADATA_STRINGS);
1779   Record.push_back(Strings.size());
1780 
1781   // Emit the sizes of the strings in the blob.
1782   SmallString<256> Blob;
1783   {
1784     BitstreamWriter W(Blob);
1785     for (const Metadata *MD : Strings)
1786       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1787     W.FlushToWord();
1788   }
1789 
1790   // Add the offset to the strings to the record.
1791   Record.push_back(Blob.size());
1792 
1793   // Add the strings to the blob.
1794   for (const Metadata *MD : Strings)
1795     Blob.append(cast<MDString>(MD)->getString());
1796 
1797   // Emit the final record.
1798   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1799   Record.clear();
1800 }
1801 
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record)1802 void ModuleBitcodeWriter::writeMetadataRecords(
1803     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1804   if (MDs.empty())
1805     return;
1806 
1807   // Initialize MDNode abbreviations.
1808 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1809 #include "llvm/IR/Metadata.def"
1810 
1811   for (const Metadata *MD : MDs) {
1812     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1813       assert(N->isResolved() && "Expected forward references to be resolved");
1814 
1815       switch (N->getMetadataID()) {
1816       default:
1817         llvm_unreachable("Invalid MDNode subclass");
1818 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1819   case Metadata::CLASS##Kind:                                                  \
1820     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
1821     continue;
1822 #include "llvm/IR/Metadata.def"
1823       }
1824     }
1825     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1826   }
1827 }
1828 
writeModuleMetadata()1829 void ModuleBitcodeWriter::writeModuleMetadata() {
1830   if (!VE.hasMDs() && M.named_metadata_empty())
1831     return;
1832 
1833   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1834   SmallVector<uint64_t, 64> Record;
1835   writeMetadataStrings(VE.getMDStrings(), Record);
1836   writeMetadataRecords(VE.getNonMDStrings(), Record);
1837   writeNamedMetadata(Record);
1838 
1839   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
1840     SmallVector<uint64_t, 4> Record;
1841     Record.push_back(VE.getValueID(&GO));
1842     pushGlobalMetadataAttachment(Record, GO);
1843     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
1844   };
1845   for (const Function &F : M)
1846     if (F.isDeclaration() && F.hasMetadata())
1847       AddDeclAttachedMetadata(F);
1848   // FIXME: Only store metadata for declarations here, and move data for global
1849   // variable definitions to a separate block (PR28134).
1850   for (const GlobalVariable &GV : M.globals())
1851     if (GV.hasMetadata())
1852       AddDeclAttachedMetadata(GV);
1853 
1854   Stream.ExitBlock();
1855 }
1856 
writeFunctionMetadata(const Function & F)1857 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1858   if (!VE.hasMDs())
1859     return;
1860 
1861   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1862   SmallVector<uint64_t, 64> Record;
1863   writeMetadataStrings(VE.getMDStrings(), Record);
1864   writeMetadataRecords(VE.getNonMDStrings(), Record);
1865   Stream.ExitBlock();
1866 }
1867 
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)1868 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
1869     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
1870   // [n x [id, mdnode]]
1871   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1872   GO.getAllMetadata(MDs);
1873   for (const auto &I : MDs) {
1874     Record.push_back(I.first);
1875     Record.push_back(VE.getMetadataID(I.second));
1876   }
1877 }
1878 
writeFunctionMetadataAttachment(const Function & F)1879 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1880   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1881 
1882   SmallVector<uint64_t, 64> Record;
1883 
1884   if (F.hasMetadata()) {
1885     pushGlobalMetadataAttachment(Record, F);
1886     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1887     Record.clear();
1888   }
1889 
1890   // Write metadata attachments
1891   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1892   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1893   for (const BasicBlock &BB : F)
1894     for (const Instruction &I : BB) {
1895       MDs.clear();
1896       I.getAllMetadataOtherThanDebugLoc(MDs);
1897 
1898       // If no metadata, ignore instruction.
1899       if (MDs.empty()) continue;
1900 
1901       Record.push_back(VE.getInstructionID(&I));
1902 
1903       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1904         Record.push_back(MDs[i].first);
1905         Record.push_back(VE.getMetadataID(MDs[i].second));
1906       }
1907       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1908       Record.clear();
1909     }
1910 
1911   Stream.ExitBlock();
1912 }
1913 
writeModuleMetadataKinds()1914 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
1915   SmallVector<uint64_t, 64> Record;
1916 
1917   // Write metadata kinds
1918   // METADATA_KIND - [n x [id, name]]
1919   SmallVector<StringRef, 8> Names;
1920   M.getMDKindNames(Names);
1921 
1922   if (Names.empty()) return;
1923 
1924   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1925 
1926   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1927     Record.push_back(MDKindID);
1928     StringRef KName = Names[MDKindID];
1929     Record.append(KName.begin(), KName.end());
1930 
1931     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1932     Record.clear();
1933   }
1934 
1935   Stream.ExitBlock();
1936 }
1937 
writeOperandBundleTags()1938 void ModuleBitcodeWriter::writeOperandBundleTags() {
1939   // Write metadata kinds
1940   //
1941   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1942   //
1943   // OPERAND_BUNDLE_TAG - [strchr x N]
1944 
1945   SmallVector<StringRef, 8> Tags;
1946   M.getOperandBundleTags(Tags);
1947 
1948   if (Tags.empty())
1949     return;
1950 
1951   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1952 
1953   SmallVector<uint64_t, 64> Record;
1954 
1955   for (auto Tag : Tags) {
1956     Record.append(Tag.begin(), Tag.end());
1957 
1958     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1959     Record.clear();
1960   }
1961 
1962   Stream.ExitBlock();
1963 }
1964 
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1965 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1966   if ((int64_t)V >= 0)
1967     Vals.push_back(V << 1);
1968   else
1969     Vals.push_back((-V << 1) | 1);
1970 }
1971 
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)1972 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1973                                          bool isGlobal) {
1974   if (FirstVal == LastVal) return;
1975 
1976   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1977 
1978   unsigned AggregateAbbrev = 0;
1979   unsigned String8Abbrev = 0;
1980   unsigned CString7Abbrev = 0;
1981   unsigned CString6Abbrev = 0;
1982   // If this is a constant pool for the module, emit module-specific abbrevs.
1983   if (isGlobal) {
1984     // Abbrev for CST_CODE_AGGREGATE.
1985     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1986     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1987     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1989     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1990 
1991     // Abbrev for CST_CODE_STRING.
1992     Abbv = new BitCodeAbbrev();
1993     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1994     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1995     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1996     String8Abbrev = Stream.EmitAbbrev(Abbv);
1997     // Abbrev for CST_CODE_CSTRING.
1998     Abbv = new BitCodeAbbrev();
1999     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2001     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2002     CString7Abbrev = Stream.EmitAbbrev(Abbv);
2003     // Abbrev for CST_CODE_CSTRING.
2004     Abbv = new BitCodeAbbrev();
2005     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2008     CString6Abbrev = Stream.EmitAbbrev(Abbv);
2009   }
2010 
2011   SmallVector<uint64_t, 64> Record;
2012 
2013   const ValueEnumerator::ValueList &Vals = VE.getValues();
2014   Type *LastTy = nullptr;
2015   for (unsigned i = FirstVal; i != LastVal; ++i) {
2016     const Value *V = Vals[i].first;
2017     // If we need to switch types, do so now.
2018     if (V->getType() != LastTy) {
2019       LastTy = V->getType();
2020       Record.push_back(VE.getTypeID(LastTy));
2021       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2022                         CONSTANTS_SETTYPE_ABBREV);
2023       Record.clear();
2024     }
2025 
2026     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2027       Record.push_back(unsigned(IA->hasSideEffects()) |
2028                        unsigned(IA->isAlignStack()) << 1 |
2029                        unsigned(IA->getDialect()&1) << 2);
2030 
2031       // Add the asm string.
2032       const std::string &AsmStr = IA->getAsmString();
2033       Record.push_back(AsmStr.size());
2034       Record.append(AsmStr.begin(), AsmStr.end());
2035 
2036       // Add the constraint string.
2037       const std::string &ConstraintStr = IA->getConstraintString();
2038       Record.push_back(ConstraintStr.size());
2039       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2040       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2041       Record.clear();
2042       continue;
2043     }
2044     const Constant *C = cast<Constant>(V);
2045     unsigned Code = -1U;
2046     unsigned AbbrevToUse = 0;
2047     if (C->isNullValue()) {
2048       Code = bitc::CST_CODE_NULL;
2049     } else if (isa<UndefValue>(C)) {
2050       Code = bitc::CST_CODE_UNDEF;
2051     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2052       if (IV->getBitWidth() <= 64) {
2053         uint64_t V = IV->getSExtValue();
2054         emitSignedInt64(Record, V);
2055         Code = bitc::CST_CODE_INTEGER;
2056         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2057       } else {                             // Wide integers, > 64 bits in size.
2058         // We have an arbitrary precision integer value to write whose
2059         // bit width is > 64. However, in canonical unsigned integer
2060         // format it is likely that the high bits are going to be zero.
2061         // So, we only write the number of active words.
2062         unsigned NWords = IV->getValue().getActiveWords();
2063         const uint64_t *RawWords = IV->getValue().getRawData();
2064         for (unsigned i = 0; i != NWords; ++i) {
2065           emitSignedInt64(Record, RawWords[i]);
2066         }
2067         Code = bitc::CST_CODE_WIDE_INTEGER;
2068       }
2069     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2070       Code = bitc::CST_CODE_FLOAT;
2071       Type *Ty = CFP->getType();
2072       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2073         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2074       } else if (Ty->isX86_FP80Ty()) {
2075         // api needed to prevent premature destruction
2076         // bits are not in the same order as a normal i80 APInt, compensate.
2077         APInt api = CFP->getValueAPF().bitcastToAPInt();
2078         const uint64_t *p = api.getRawData();
2079         Record.push_back((p[1] << 48) | (p[0] >> 16));
2080         Record.push_back(p[0] & 0xffffLL);
2081       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2082         APInt api = CFP->getValueAPF().bitcastToAPInt();
2083         const uint64_t *p = api.getRawData();
2084         Record.push_back(p[0]);
2085         Record.push_back(p[1]);
2086       } else {
2087         assert (0 && "Unknown FP type!");
2088       }
2089     } else if (isa<ConstantDataSequential>(C) &&
2090                cast<ConstantDataSequential>(C)->isString()) {
2091       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2092       // Emit constant strings specially.
2093       unsigned NumElts = Str->getNumElements();
2094       // If this is a null-terminated string, use the denser CSTRING encoding.
2095       if (Str->isCString()) {
2096         Code = bitc::CST_CODE_CSTRING;
2097         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2098       } else {
2099         Code = bitc::CST_CODE_STRING;
2100         AbbrevToUse = String8Abbrev;
2101       }
2102       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2103       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2104       for (unsigned i = 0; i != NumElts; ++i) {
2105         unsigned char V = Str->getElementAsInteger(i);
2106         Record.push_back(V);
2107         isCStr7 &= (V & 128) == 0;
2108         if (isCStrChar6)
2109           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2110       }
2111 
2112       if (isCStrChar6)
2113         AbbrevToUse = CString6Abbrev;
2114       else if (isCStr7)
2115         AbbrevToUse = CString7Abbrev;
2116     } else if (const ConstantDataSequential *CDS =
2117                   dyn_cast<ConstantDataSequential>(C)) {
2118       Code = bitc::CST_CODE_DATA;
2119       Type *EltTy = CDS->getType()->getElementType();
2120       if (isa<IntegerType>(EltTy)) {
2121         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2122           Record.push_back(CDS->getElementAsInteger(i));
2123       } else {
2124         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2125           Record.push_back(
2126               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2127       }
2128     } else if (isa<ConstantAggregate>(C)) {
2129       Code = bitc::CST_CODE_AGGREGATE;
2130       for (const Value *Op : C->operands())
2131         Record.push_back(VE.getValueID(Op));
2132       AbbrevToUse = AggregateAbbrev;
2133     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2134       switch (CE->getOpcode()) {
2135       default:
2136         if (Instruction::isCast(CE->getOpcode())) {
2137           Code = bitc::CST_CODE_CE_CAST;
2138           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2139           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2140           Record.push_back(VE.getValueID(C->getOperand(0)));
2141           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2142         } else {
2143           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2144           Code = bitc::CST_CODE_CE_BINOP;
2145           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2146           Record.push_back(VE.getValueID(C->getOperand(0)));
2147           Record.push_back(VE.getValueID(C->getOperand(1)));
2148           uint64_t Flags = getOptimizationFlags(CE);
2149           if (Flags != 0)
2150             Record.push_back(Flags);
2151         }
2152         break;
2153       case Instruction::GetElementPtr: {
2154         Code = bitc::CST_CODE_CE_GEP;
2155         const auto *GO = cast<GEPOperator>(C);
2156         if (GO->isInBounds())
2157           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2158         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2159         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2160           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2161           Record.push_back(VE.getValueID(C->getOperand(i)));
2162         }
2163         break;
2164       }
2165       case Instruction::Select:
2166         Code = bitc::CST_CODE_CE_SELECT;
2167         Record.push_back(VE.getValueID(C->getOperand(0)));
2168         Record.push_back(VE.getValueID(C->getOperand(1)));
2169         Record.push_back(VE.getValueID(C->getOperand(2)));
2170         break;
2171       case Instruction::ExtractElement:
2172         Code = bitc::CST_CODE_CE_EXTRACTELT;
2173         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2174         Record.push_back(VE.getValueID(C->getOperand(0)));
2175         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2176         Record.push_back(VE.getValueID(C->getOperand(1)));
2177         break;
2178       case Instruction::InsertElement:
2179         Code = bitc::CST_CODE_CE_INSERTELT;
2180         Record.push_back(VE.getValueID(C->getOperand(0)));
2181         Record.push_back(VE.getValueID(C->getOperand(1)));
2182         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2183         Record.push_back(VE.getValueID(C->getOperand(2)));
2184         break;
2185       case Instruction::ShuffleVector:
2186         // If the return type and argument types are the same, this is a
2187         // standard shufflevector instruction.  If the types are different,
2188         // then the shuffle is widening or truncating the input vectors, and
2189         // the argument type must also be encoded.
2190         if (C->getType() == C->getOperand(0)->getType()) {
2191           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2192         } else {
2193           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2194           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2195         }
2196         Record.push_back(VE.getValueID(C->getOperand(0)));
2197         Record.push_back(VE.getValueID(C->getOperand(1)));
2198         Record.push_back(VE.getValueID(C->getOperand(2)));
2199         break;
2200       case Instruction::ICmp:
2201       case Instruction::FCmp:
2202         Code = bitc::CST_CODE_CE_CMP;
2203         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2204         Record.push_back(VE.getValueID(C->getOperand(0)));
2205         Record.push_back(VE.getValueID(C->getOperand(1)));
2206         Record.push_back(CE->getPredicate());
2207         break;
2208       }
2209     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2210       Code = bitc::CST_CODE_BLOCKADDRESS;
2211       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2212       Record.push_back(VE.getValueID(BA->getFunction()));
2213       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2214     } else {
2215 #ifndef NDEBUG
2216       C->dump();
2217 #endif
2218       llvm_unreachable("Unknown constant!");
2219     }
2220     Stream.EmitRecord(Code, Record, AbbrevToUse);
2221     Record.clear();
2222   }
2223 
2224   Stream.ExitBlock();
2225 }
2226 
writeModuleConstants()2227 void ModuleBitcodeWriter::writeModuleConstants() {
2228   const ValueEnumerator::ValueList &Vals = VE.getValues();
2229 
2230   // Find the first constant to emit, which is the first non-globalvalue value.
2231   // We know globalvalues have been emitted by WriteModuleInfo.
2232   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2233     if (!isa<GlobalValue>(Vals[i].first)) {
2234       writeConstants(i, Vals.size(), true);
2235       return;
2236     }
2237   }
2238 }
2239 
2240 /// pushValueAndType - The file has to encode both the value and type id for
2241 /// many values, because we need to know what type to create for forward
2242 /// references.  However, most operands are not forward references, so this type
2243 /// field is not needed.
2244 ///
2245 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2246 /// instruction ID, then it is a forward reference, and it also includes the
2247 /// type ID.  The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2248 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2249                                            SmallVectorImpl<unsigned> &Vals) {
2250   unsigned ValID = VE.getValueID(V);
2251   // Make encoding relative to the InstID.
2252   Vals.push_back(InstID - ValID);
2253   if (ValID >= InstID) {
2254     Vals.push_back(VE.getTypeID(V->getType()));
2255     return true;
2256   }
2257   return false;
2258 }
2259 
writeOperandBundles(ImmutableCallSite CS,unsigned InstID)2260 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2261                                               unsigned InstID) {
2262   SmallVector<unsigned, 64> Record;
2263   LLVMContext &C = CS.getInstruction()->getContext();
2264 
2265   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2266     const auto &Bundle = CS.getOperandBundleAt(i);
2267     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2268 
2269     for (auto &Input : Bundle.Inputs)
2270       pushValueAndType(Input, InstID, Record);
2271 
2272     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2273     Record.clear();
2274   }
2275 }
2276 
2277 /// pushValue - Like pushValueAndType, but where the type of the value is
2278 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2279 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2280                                     SmallVectorImpl<unsigned> &Vals) {
2281   unsigned ValID = VE.getValueID(V);
2282   Vals.push_back(InstID - ValID);
2283 }
2284 
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2285 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2286                                           SmallVectorImpl<uint64_t> &Vals) {
2287   unsigned ValID = VE.getValueID(V);
2288   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2289   emitSignedInt64(Vals, diff);
2290 }
2291 
2292 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2293 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2294                                            unsigned InstID,
2295                                            SmallVectorImpl<unsigned> &Vals) {
2296   unsigned Code = 0;
2297   unsigned AbbrevToUse = 0;
2298   VE.setInstructionID(&I);
2299   switch (I.getOpcode()) {
2300   default:
2301     if (Instruction::isCast(I.getOpcode())) {
2302       Code = bitc::FUNC_CODE_INST_CAST;
2303       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2304         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2305       Vals.push_back(VE.getTypeID(I.getType()));
2306       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2307     } else {
2308       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2309       Code = bitc::FUNC_CODE_INST_BINOP;
2310       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2311         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2312       pushValue(I.getOperand(1), InstID, Vals);
2313       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2314       uint64_t Flags = getOptimizationFlags(&I);
2315       if (Flags != 0) {
2316         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2317           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2318         Vals.push_back(Flags);
2319       }
2320     }
2321     break;
2322 
2323   case Instruction::GetElementPtr: {
2324     Code = bitc::FUNC_CODE_INST_GEP;
2325     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2326     auto &GEPInst = cast<GetElementPtrInst>(I);
2327     Vals.push_back(GEPInst.isInBounds());
2328     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2329     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2330       pushValueAndType(I.getOperand(i), InstID, Vals);
2331     break;
2332   }
2333   case Instruction::ExtractValue: {
2334     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2335     pushValueAndType(I.getOperand(0), InstID, Vals);
2336     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2337     Vals.append(EVI->idx_begin(), EVI->idx_end());
2338     break;
2339   }
2340   case Instruction::InsertValue: {
2341     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2342     pushValueAndType(I.getOperand(0), InstID, Vals);
2343     pushValueAndType(I.getOperand(1), InstID, Vals);
2344     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2345     Vals.append(IVI->idx_begin(), IVI->idx_end());
2346     break;
2347   }
2348   case Instruction::Select:
2349     Code = bitc::FUNC_CODE_INST_VSELECT;
2350     pushValueAndType(I.getOperand(1), InstID, Vals);
2351     pushValue(I.getOperand(2), InstID, Vals);
2352     pushValueAndType(I.getOperand(0), InstID, Vals);
2353     break;
2354   case Instruction::ExtractElement:
2355     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2356     pushValueAndType(I.getOperand(0), InstID, Vals);
2357     pushValueAndType(I.getOperand(1), InstID, Vals);
2358     break;
2359   case Instruction::InsertElement:
2360     Code = bitc::FUNC_CODE_INST_INSERTELT;
2361     pushValueAndType(I.getOperand(0), InstID, Vals);
2362     pushValue(I.getOperand(1), InstID, Vals);
2363     pushValueAndType(I.getOperand(2), InstID, Vals);
2364     break;
2365   case Instruction::ShuffleVector:
2366     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2367     pushValueAndType(I.getOperand(0), InstID, Vals);
2368     pushValue(I.getOperand(1), InstID, Vals);
2369     pushValue(I.getOperand(2), InstID, Vals);
2370     break;
2371   case Instruction::ICmp:
2372   case Instruction::FCmp: {
2373     // compare returning Int1Ty or vector of Int1Ty
2374     Code = bitc::FUNC_CODE_INST_CMP2;
2375     pushValueAndType(I.getOperand(0), InstID, Vals);
2376     pushValue(I.getOperand(1), InstID, Vals);
2377     Vals.push_back(cast<CmpInst>(I).getPredicate());
2378     uint64_t Flags = getOptimizationFlags(&I);
2379     if (Flags != 0)
2380       Vals.push_back(Flags);
2381     break;
2382   }
2383 
2384   case Instruction::Ret:
2385     {
2386       Code = bitc::FUNC_CODE_INST_RET;
2387       unsigned NumOperands = I.getNumOperands();
2388       if (NumOperands == 0)
2389         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2390       else if (NumOperands == 1) {
2391         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2392           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2393       } else {
2394         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2395           pushValueAndType(I.getOperand(i), InstID, Vals);
2396       }
2397     }
2398     break;
2399   case Instruction::Br:
2400     {
2401       Code = bitc::FUNC_CODE_INST_BR;
2402       const BranchInst &II = cast<BranchInst>(I);
2403       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2404       if (II.isConditional()) {
2405         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2406         pushValue(II.getCondition(), InstID, Vals);
2407       }
2408     }
2409     break;
2410   case Instruction::Switch:
2411     {
2412       Code = bitc::FUNC_CODE_INST_SWITCH;
2413       const SwitchInst &SI = cast<SwitchInst>(I);
2414       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2415       pushValue(SI.getCondition(), InstID, Vals);
2416       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2417       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2418         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2419         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2420       }
2421     }
2422     break;
2423   case Instruction::IndirectBr:
2424     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2425     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2426     // Encode the address operand as relative, but not the basic blocks.
2427     pushValue(I.getOperand(0), InstID, Vals);
2428     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2429       Vals.push_back(VE.getValueID(I.getOperand(i)));
2430     break;
2431 
2432   case Instruction::Invoke: {
2433     const InvokeInst *II = cast<InvokeInst>(&I);
2434     const Value *Callee = II->getCalledValue();
2435     FunctionType *FTy = II->getFunctionType();
2436 
2437     if (II->hasOperandBundles())
2438       writeOperandBundles(II, InstID);
2439 
2440     Code = bitc::FUNC_CODE_INST_INVOKE;
2441 
2442     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2443     Vals.push_back(II->getCallingConv() | 1 << 13);
2444     Vals.push_back(VE.getValueID(II->getNormalDest()));
2445     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2446     Vals.push_back(VE.getTypeID(FTy));
2447     pushValueAndType(Callee, InstID, Vals);
2448 
2449     // Emit value #'s for the fixed parameters.
2450     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2451       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2452 
2453     // Emit type/value pairs for varargs params.
2454     if (FTy->isVarArg()) {
2455       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2456            i != e; ++i)
2457         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2458     }
2459     break;
2460   }
2461   case Instruction::Resume:
2462     Code = bitc::FUNC_CODE_INST_RESUME;
2463     pushValueAndType(I.getOperand(0), InstID, Vals);
2464     break;
2465   case Instruction::CleanupRet: {
2466     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2467     const auto &CRI = cast<CleanupReturnInst>(I);
2468     pushValue(CRI.getCleanupPad(), InstID, Vals);
2469     if (CRI.hasUnwindDest())
2470       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2471     break;
2472   }
2473   case Instruction::CatchRet: {
2474     Code = bitc::FUNC_CODE_INST_CATCHRET;
2475     const auto &CRI = cast<CatchReturnInst>(I);
2476     pushValue(CRI.getCatchPad(), InstID, Vals);
2477     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2478     break;
2479   }
2480   case Instruction::CleanupPad:
2481   case Instruction::CatchPad: {
2482     const auto &FuncletPad = cast<FuncletPadInst>(I);
2483     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2484                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2485     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2486 
2487     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2488     Vals.push_back(NumArgOperands);
2489     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2490       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2491     break;
2492   }
2493   case Instruction::CatchSwitch: {
2494     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2495     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2496 
2497     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2498 
2499     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2500     Vals.push_back(NumHandlers);
2501     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2502       Vals.push_back(VE.getValueID(CatchPadBB));
2503 
2504     if (CatchSwitch.hasUnwindDest())
2505       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2506     break;
2507   }
2508   case Instruction::Unreachable:
2509     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2510     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2511     break;
2512 
2513   case Instruction::PHI: {
2514     const PHINode &PN = cast<PHINode>(I);
2515     Code = bitc::FUNC_CODE_INST_PHI;
2516     // With the newer instruction encoding, forward references could give
2517     // negative valued IDs.  This is most common for PHIs, so we use
2518     // signed VBRs.
2519     SmallVector<uint64_t, 128> Vals64;
2520     Vals64.push_back(VE.getTypeID(PN.getType()));
2521     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2522       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2523       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2524     }
2525     // Emit a Vals64 vector and exit.
2526     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2527     Vals64.clear();
2528     return;
2529   }
2530 
2531   case Instruction::LandingPad: {
2532     const LandingPadInst &LP = cast<LandingPadInst>(I);
2533     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2534     Vals.push_back(VE.getTypeID(LP.getType()));
2535     Vals.push_back(LP.isCleanup());
2536     Vals.push_back(LP.getNumClauses());
2537     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2538       if (LP.isCatch(I))
2539         Vals.push_back(LandingPadInst::Catch);
2540       else
2541         Vals.push_back(LandingPadInst::Filter);
2542       pushValueAndType(LP.getClause(I), InstID, Vals);
2543     }
2544     break;
2545   }
2546 
2547   case Instruction::Alloca: {
2548     Code = bitc::FUNC_CODE_INST_ALLOCA;
2549     const AllocaInst &AI = cast<AllocaInst>(I);
2550     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2551     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2552     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2553     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2554     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2555            "not enough bits for maximum alignment");
2556     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2557     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2558     AlignRecord |= 1 << 6;
2559     AlignRecord |= AI.isSwiftError() << 7;
2560     Vals.push_back(AlignRecord);
2561     break;
2562   }
2563 
2564   case Instruction::Load:
2565     if (cast<LoadInst>(I).isAtomic()) {
2566       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2567       pushValueAndType(I.getOperand(0), InstID, Vals);
2568     } else {
2569       Code = bitc::FUNC_CODE_INST_LOAD;
2570       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2571         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2572     }
2573     Vals.push_back(VE.getTypeID(I.getType()));
2574     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2575     Vals.push_back(cast<LoadInst>(I).isVolatile());
2576     if (cast<LoadInst>(I).isAtomic()) {
2577       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2578       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2579     }
2580     break;
2581   case Instruction::Store:
2582     if (cast<StoreInst>(I).isAtomic())
2583       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2584     else
2585       Code = bitc::FUNC_CODE_INST_STORE;
2586     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2587     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2588     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2589     Vals.push_back(cast<StoreInst>(I).isVolatile());
2590     if (cast<StoreInst>(I).isAtomic()) {
2591       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2592       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2593     }
2594     break;
2595   case Instruction::AtomicCmpXchg:
2596     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2597     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2598     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2599     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2600     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2601     Vals.push_back(
2602         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2603     Vals.push_back(
2604         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2605     Vals.push_back(
2606         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2607     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2608     break;
2609   case Instruction::AtomicRMW:
2610     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2611     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2612     pushValue(I.getOperand(1), InstID, Vals);        // val.
2613     Vals.push_back(
2614         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2615     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2616     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2617     Vals.push_back(
2618         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2619     break;
2620   case Instruction::Fence:
2621     Code = bitc::FUNC_CODE_INST_FENCE;
2622     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2623     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2624     break;
2625   case Instruction::Call: {
2626     const CallInst &CI = cast<CallInst>(I);
2627     FunctionType *FTy = CI.getFunctionType();
2628 
2629     if (CI.hasOperandBundles())
2630       writeOperandBundles(&CI, InstID);
2631 
2632     Code = bitc::FUNC_CODE_INST_CALL;
2633 
2634     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2635 
2636     unsigned Flags = getOptimizationFlags(&I);
2637     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2638                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2639                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2640                    1 << bitc::CALL_EXPLICIT_TYPE |
2641                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2642                    unsigned(Flags != 0) << bitc::CALL_FMF);
2643     if (Flags != 0)
2644       Vals.push_back(Flags);
2645 
2646     Vals.push_back(VE.getTypeID(FTy));
2647     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2648 
2649     // Emit value #'s for the fixed parameters.
2650     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2651       // Check for labels (can happen with asm labels).
2652       if (FTy->getParamType(i)->isLabelTy())
2653         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2654       else
2655         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2656     }
2657 
2658     // Emit type/value pairs for varargs params.
2659     if (FTy->isVarArg()) {
2660       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2661            i != e; ++i)
2662         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2663     }
2664     break;
2665   }
2666   case Instruction::VAArg:
2667     Code = bitc::FUNC_CODE_INST_VAARG;
2668     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2669     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2670     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2671     break;
2672   }
2673 
2674   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2675   Vals.clear();
2676 }
2677 
2678 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2679 /// we are writing the module-level VST, where we are including a function
2680 /// bitcode index and need to backpatch the VST forward declaration record.
writeValueSymbolTable(const ValueSymbolTable & VST,bool IsModuleLevel,DenseMap<const Function *,uint64_t> * FunctionToBitcodeIndex)2681 void ModuleBitcodeWriter::writeValueSymbolTable(
2682     const ValueSymbolTable &VST, bool IsModuleLevel,
2683     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2684   if (VST.empty()) {
2685     // writeValueSymbolTableForwardDecl should have returned early as
2686     // well. Ensure this handling remains in sync by asserting that
2687     // the placeholder offset is not set.
2688     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2689     return;
2690   }
2691 
2692   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2693     // Get the offset of the VST we are writing, and backpatch it into
2694     // the VST forward declaration record.
2695     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2696     // The BitcodeStartBit was the stream offset of the actual bitcode
2697     // (e.g. excluding any initial darwin header).
2698     VSTOffset -= bitcodeStartBit();
2699     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2700     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2701   }
2702 
2703   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2704 
2705   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2706   // records, which are not used in the per-function VSTs.
2707   unsigned FnEntry8BitAbbrev;
2708   unsigned FnEntry7BitAbbrev;
2709   unsigned FnEntry6BitAbbrev;
2710   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2711     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2712     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2713     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2714     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2715     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2716     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2717     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2718     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2719 
2720     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2721     Abbv = new BitCodeAbbrev();
2722     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2723     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2724     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2725     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2726     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2727     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2728 
2729     // 6-bit char6 VST_CODE_FNENTRY function strings.
2730     Abbv = new BitCodeAbbrev();
2731     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2736     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2737   }
2738 
2739   // FIXME: Set up the abbrev, we know how many values there are!
2740   // FIXME: We know if the type names can use 7-bit ascii.
2741   SmallVector<unsigned, 64> NameVals;
2742 
2743   for (const ValueName &Name : VST) {
2744     // Figure out the encoding to use for the name.
2745     StringEncoding Bits =
2746         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2747 
2748     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2749     NameVals.push_back(VE.getValueID(Name.getValue()));
2750 
2751     Function *F = dyn_cast<Function>(Name.getValue());
2752     if (!F) {
2753       // If value is an alias, need to get the aliased base object to
2754       // see if it is a function.
2755       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2756       if (GA && GA->getBaseObject())
2757         F = dyn_cast<Function>(GA->getBaseObject());
2758     }
2759 
2760     // VST_CODE_ENTRY:   [valueid, namechar x N]
2761     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2762     // VST_CODE_BBENTRY: [bbid, namechar x N]
2763     unsigned Code;
2764     if (isa<BasicBlock>(Name.getValue())) {
2765       Code = bitc::VST_CODE_BBENTRY;
2766       if (Bits == SE_Char6)
2767         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2768     } else if (F && !F->isDeclaration()) {
2769       // Must be the module-level VST, where we pass in the Index and
2770       // have a VSTOffsetPlaceholder. The function-level VST should not
2771       // contain any Function symbols.
2772       assert(FunctionToBitcodeIndex);
2773       assert(hasVSTOffsetPlaceholder());
2774 
2775       // Save the word offset of the function (from the start of the
2776       // actual bitcode written to the stream).
2777       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2778       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2779       NameVals.push_back(BitcodeIndex / 32);
2780 
2781       Code = bitc::VST_CODE_FNENTRY;
2782       AbbrevToUse = FnEntry8BitAbbrev;
2783       if (Bits == SE_Char6)
2784         AbbrevToUse = FnEntry6BitAbbrev;
2785       else if (Bits == SE_Fixed7)
2786         AbbrevToUse = FnEntry7BitAbbrev;
2787     } else {
2788       Code = bitc::VST_CODE_ENTRY;
2789       if (Bits == SE_Char6)
2790         AbbrevToUse = VST_ENTRY_6_ABBREV;
2791       else if (Bits == SE_Fixed7)
2792         AbbrevToUse = VST_ENTRY_7_ABBREV;
2793     }
2794 
2795     for (const auto P : Name.getKey())
2796       NameVals.push_back((unsigned char)P);
2797 
2798     // Emit the finished record.
2799     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2800     NameVals.clear();
2801   }
2802   Stream.ExitBlock();
2803 }
2804 
2805 /// Emit function names and summary offsets for the combined index
2806 /// used by ThinLTO.
writeCombinedValueSymbolTable()2807 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2808   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2809   // Get the offset of the VST we are writing, and backpatch it into
2810   // the VST forward declaration record.
2811   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2812   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2813   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2814 
2815   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2816 
2817   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2818   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2821   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2822 
2823   SmallVector<uint64_t, 64> NameVals;
2824   for (const auto &GVI : valueIds()) {
2825     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2826     NameVals.push_back(GVI.second);
2827     NameVals.push_back(GVI.first);
2828 
2829     // Emit the finished record.
2830     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2831     NameVals.clear();
2832   }
2833   Stream.ExitBlock();
2834 }
2835 
writeUseList(UseListOrder && Order)2836 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2837   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2838   unsigned Code;
2839   if (isa<BasicBlock>(Order.V))
2840     Code = bitc::USELIST_CODE_BB;
2841   else
2842     Code = bitc::USELIST_CODE_DEFAULT;
2843 
2844   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2845   Record.push_back(VE.getValueID(Order.V));
2846   Stream.EmitRecord(Code, Record);
2847 }
2848 
writeUseListBlock(const Function * F)2849 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2850   assert(VE.shouldPreserveUseListOrder() &&
2851          "Expected to be preserving use-list order");
2852 
2853   auto hasMore = [&]() {
2854     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2855   };
2856   if (!hasMore())
2857     // Nothing to do.
2858     return;
2859 
2860   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2861   while (hasMore()) {
2862     writeUseList(std::move(VE.UseListOrders.back()));
2863     VE.UseListOrders.pop_back();
2864   }
2865   Stream.ExitBlock();
2866 }
2867 
2868 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)2869 void ModuleBitcodeWriter::writeFunction(
2870     const Function &F,
2871     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2872   // Save the bitcode index of the start of this function block for recording
2873   // in the VST.
2874   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2875 
2876   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2877   VE.incorporateFunction(F);
2878 
2879   SmallVector<unsigned, 64> Vals;
2880 
2881   // Emit the number of basic blocks, so the reader can create them ahead of
2882   // time.
2883   Vals.push_back(VE.getBasicBlocks().size());
2884   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2885   Vals.clear();
2886 
2887   // If there are function-local constants, emit them now.
2888   unsigned CstStart, CstEnd;
2889   VE.getFunctionConstantRange(CstStart, CstEnd);
2890   writeConstants(CstStart, CstEnd, false);
2891 
2892   // If there is function-local metadata, emit it now.
2893   writeFunctionMetadata(F);
2894 
2895   // Keep a running idea of what the instruction ID is.
2896   unsigned InstID = CstEnd;
2897 
2898   bool NeedsMetadataAttachment = F.hasMetadata();
2899 
2900   DILocation *LastDL = nullptr;
2901   // Finally, emit all the instructions, in order.
2902   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2903     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2904          I != E; ++I) {
2905       writeInstruction(*I, InstID, Vals);
2906 
2907       if (!I->getType()->isVoidTy())
2908         ++InstID;
2909 
2910       // If the instruction has metadata, write a metadata attachment later.
2911       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2912 
2913       // If the instruction has a debug location, emit it.
2914       DILocation *DL = I->getDebugLoc();
2915       if (!DL)
2916         continue;
2917 
2918       if (DL == LastDL) {
2919         // Just repeat the same debug loc as last time.
2920         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2921         continue;
2922       }
2923 
2924       Vals.push_back(DL->getLine());
2925       Vals.push_back(DL->getColumn());
2926       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2927       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2928       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2929       Vals.clear();
2930 
2931       LastDL = DL;
2932     }
2933 
2934   // Emit names for all the instructions etc.
2935   writeValueSymbolTable(F.getValueSymbolTable());
2936 
2937   if (NeedsMetadataAttachment)
2938     writeFunctionMetadataAttachment(F);
2939   if (VE.shouldPreserveUseListOrder())
2940     writeUseListBlock(&F);
2941   VE.purgeFunction();
2942   Stream.ExitBlock();
2943 }
2944 
2945 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()2946 void ModuleBitcodeWriter::writeBlockInfo() {
2947   // We only want to emit block info records for blocks that have multiple
2948   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2949   // Other blocks can define their abbrevs inline.
2950   Stream.EnterBlockInfoBlock(2);
2951 
2952   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2953     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2956     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2958     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2959         VST_ENTRY_8_ABBREV)
2960       llvm_unreachable("Unexpected abbrev ordering!");
2961   }
2962 
2963   { // 7-bit fixed width VST_CODE_ENTRY strings.
2964     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2965     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2966     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2967     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2968     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2969     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2970         VST_ENTRY_7_ABBREV)
2971       llvm_unreachable("Unexpected abbrev ordering!");
2972   }
2973   { // 6-bit char6 VST_CODE_ENTRY strings.
2974     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2975     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2976     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2977     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2978     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2979     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2980         VST_ENTRY_6_ABBREV)
2981       llvm_unreachable("Unexpected abbrev ordering!");
2982   }
2983   { // 6-bit char6 VST_CODE_BBENTRY strings.
2984     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2985     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2986     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2987     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2989     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2990         VST_BBENTRY_6_ABBREV)
2991       llvm_unreachable("Unexpected abbrev ordering!");
2992   }
2993 
2994 
2995 
2996   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2997     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2998     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3000                               VE.computeBitsRequiredForTypeIndicies()));
3001     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3002         CONSTANTS_SETTYPE_ABBREV)
3003       llvm_unreachable("Unexpected abbrev ordering!");
3004   }
3005 
3006   { // INTEGER abbrev for CONSTANTS_BLOCK.
3007     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3008     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3009     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3010     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3011         CONSTANTS_INTEGER_ABBREV)
3012       llvm_unreachable("Unexpected abbrev ordering!");
3013   }
3014 
3015   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3016     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3017     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3020                               VE.computeBitsRequiredForTypeIndicies()));
3021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3022 
3023     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3024         CONSTANTS_CE_CAST_Abbrev)
3025       llvm_unreachable("Unexpected abbrev ordering!");
3026   }
3027   { // NULL abbrev for CONSTANTS_BLOCK.
3028     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3029     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3030     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3031         CONSTANTS_NULL_Abbrev)
3032       llvm_unreachable("Unexpected abbrev ordering!");
3033   }
3034 
3035   // FIXME: This should only use space for first class types!
3036 
3037   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3038     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3039     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3040     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3041     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3042                               VE.computeBitsRequiredForTypeIndicies()));
3043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3044     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3045     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3046         FUNCTION_INST_LOAD_ABBREV)
3047       llvm_unreachable("Unexpected abbrev ordering!");
3048   }
3049   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3050     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3051     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3052     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3054     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3055     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3056         FUNCTION_INST_BINOP_ABBREV)
3057       llvm_unreachable("Unexpected abbrev ordering!");
3058   }
3059   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3060     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3061     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3062     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3063     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3064     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3065     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3066     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3067         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3068       llvm_unreachable("Unexpected abbrev ordering!");
3069   }
3070   { // INST_CAST abbrev for FUNCTION_BLOCK.
3071     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3072     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3073     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3074     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3075                               VE.computeBitsRequiredForTypeIndicies()));
3076     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3077     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3078         FUNCTION_INST_CAST_ABBREV)
3079       llvm_unreachable("Unexpected abbrev ordering!");
3080   }
3081 
3082   { // INST_RET abbrev for FUNCTION_BLOCK.
3083     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3084     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3085     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3086         FUNCTION_INST_RET_VOID_ABBREV)
3087       llvm_unreachable("Unexpected abbrev ordering!");
3088   }
3089   { // INST_RET abbrev for FUNCTION_BLOCK.
3090     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3091     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3093     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3094         FUNCTION_INST_RET_VAL_ABBREV)
3095       llvm_unreachable("Unexpected abbrev ordering!");
3096   }
3097   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3098     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3099     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3100     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3101         FUNCTION_INST_UNREACHABLE_ABBREV)
3102       llvm_unreachable("Unexpected abbrev ordering!");
3103   }
3104   {
3105     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3106     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3108     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3109                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3112     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3113         FUNCTION_INST_GEP_ABBREV)
3114       llvm_unreachable("Unexpected abbrev ordering!");
3115   }
3116 
3117   Stream.ExitBlock();
3118 }
3119 
3120 /// Write the module path strings, currently only used when generating
3121 /// a combined index file.
writeModStrings()3122 void IndexBitcodeWriter::writeModStrings() {
3123   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3124 
3125   // TODO: See which abbrev sizes we actually need to emit
3126 
3127   // 8-bit fixed-width MST_ENTRY strings.
3128   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3129   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3130   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3131   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3132   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3133   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3134 
3135   // 7-bit fixed width MST_ENTRY strings.
3136   Abbv = new BitCodeAbbrev();
3137   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3138   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3139   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3140   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3141   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3142 
3143   // 6-bit char6 MST_ENTRY strings.
3144   Abbv = new BitCodeAbbrev();
3145   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3148   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3149   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3150 
3151   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3152   Abbv = new BitCodeAbbrev();
3153   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3157   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3159   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3160 
3161   SmallVector<unsigned, 64> Vals;
3162   for (const auto &MPSE : Index.modulePaths()) {
3163     if (!doIncludeModule(MPSE.getKey()))
3164       continue;
3165     StringEncoding Bits =
3166         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3167     unsigned AbbrevToUse = Abbrev8Bit;
3168     if (Bits == SE_Char6)
3169       AbbrevToUse = Abbrev6Bit;
3170     else if (Bits == SE_Fixed7)
3171       AbbrevToUse = Abbrev7Bit;
3172 
3173     Vals.push_back(MPSE.getValue().first);
3174 
3175     for (const auto P : MPSE.getKey())
3176       Vals.push_back((unsigned char)P);
3177 
3178     // Emit the finished record.
3179     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3180 
3181     Vals.clear();
3182     // Emit an optional hash for the module now
3183     auto &Hash = MPSE.getValue().second;
3184     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3185     for (auto Val : Hash) {
3186       if (Val)
3187         AllZero = false;
3188       Vals.push_back(Val);
3189     }
3190     if (!AllZero) {
3191       // Emit the hash record.
3192       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3193     }
3194 
3195     Vals.clear();
3196   }
3197   Stream.ExitBlock();
3198 }
3199 
3200 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3201 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3202     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3203     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3204     const Function &F) {
3205   NameVals.push_back(ValueID);
3206 
3207   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3208   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3209   NameVals.push_back(FS->instCount());
3210   NameVals.push_back(FS->refs().size());
3211 
3212   unsigned SizeBeforeRefs = NameVals.size();
3213   for (auto &RI : FS->refs())
3214     NameVals.push_back(VE.getValueID(RI.getValue()));
3215   // Sort the refs for determinism output, the vector returned by FS->refs() has
3216   // been initialized from a DenseSet.
3217   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3218 
3219   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
3220   std::sort(Calls.begin(), Calls.end(),
3221             [this](const FunctionSummary::EdgeTy &L,
3222                    const FunctionSummary::EdgeTy &R) {
3223               return VE.getValueID(L.first.getValue()) <
3224                      VE.getValueID(R.first.getValue());
3225             });
3226   bool HasProfileData = F.getEntryCount().hasValue();
3227   for (auto &ECI : Calls) {
3228     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
3229     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
3230     NameVals.push_back(ECI.second.CallsiteCount);
3231     if (HasProfileData)
3232       NameVals.push_back(ECI.second.ProfileCount);
3233   }
3234 
3235   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3236   unsigned Code =
3237       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3238 
3239   // Emit the finished record.
3240   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3241   NameVals.clear();
3242 }
3243 
3244 // Collect the global value references in the given variable's initializer,
3245 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev)3246 void ModuleBitcodeWriter::writeModuleLevelReferences(
3247     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3248     unsigned FSModRefsAbbrev) {
3249   // Only interested in recording variable defs in the summary.
3250   if (V.isDeclaration())
3251     return;
3252   NameVals.push_back(VE.getValueID(&V));
3253   NameVals.push_back(getEncodedGVSummaryFlags(V));
3254   auto *Summary = Index->getGlobalValueSummary(V);
3255   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3256 
3257   unsigned SizeBeforeRefs = NameVals.size();
3258   for (auto &RI : VS->refs())
3259     NameVals.push_back(VE.getValueID(RI.getValue()));
3260   // Sort the refs for determinism output, the vector returned by FS->refs() has
3261   // been initialized from a DenseSet.
3262   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3263 
3264   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3265                     FSModRefsAbbrev);
3266   NameVals.clear();
3267 }
3268 
3269 // Current version for the summary.
3270 // This is bumped whenever we introduce changes in the way some record are
3271 // interpreted, like flags for instance.
3272 static const uint64_t INDEX_VERSION = 1;
3273 
3274 /// Emit the per-module summary section alongside the rest of
3275 /// the module's bitcode.
writePerModuleGlobalValueSummary()3276 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3277   if (Index->begin() == Index->end())
3278     return;
3279 
3280   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3281 
3282   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3283 
3284   // Abbrev for FS_PERMODULE.
3285   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3286   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3291   // numrefs x valueid, n x (valueid, callsitecount)
3292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3294   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3295 
3296   // Abbrev for FS_PERMODULE_PROFILE.
3297   Abbv = new BitCodeAbbrev();
3298   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3303   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3304   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3306   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3307 
3308   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3309   Abbv = new BitCodeAbbrev();
3310   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3311   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3312   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3313   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3315   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3316 
3317   // Abbrev for FS_ALIAS.
3318   Abbv = new BitCodeAbbrev();
3319   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3321   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3323   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3324 
3325   SmallVector<uint64_t, 64> NameVals;
3326   // Iterate over the list of functions instead of the Index to
3327   // ensure the ordering is stable.
3328   for (const Function &F : M) {
3329     if (F.isDeclaration())
3330       continue;
3331     // Summary emission does not support anonymous functions, they have to
3332     // renamed using the anonymous function renaming pass.
3333     if (!F.hasName())
3334       report_fatal_error("Unexpected anonymous function when writing summary");
3335 
3336     auto *Summary = Index->getGlobalValueSummary(F);
3337     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3338                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3339   }
3340 
3341   // Capture references from GlobalVariable initializers, which are outside
3342   // of a function scope.
3343   for (const GlobalVariable &G : M.globals())
3344     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3345 
3346   for (const GlobalAlias &A : M.aliases()) {
3347     auto *Aliasee = A.getBaseObject();
3348     if (!Aliasee->hasName())
3349       // Nameless function don't have an entry in the summary, skip it.
3350       continue;
3351     auto AliasId = VE.getValueID(&A);
3352     auto AliaseeId = VE.getValueID(Aliasee);
3353     NameVals.push_back(AliasId);
3354     NameVals.push_back(getEncodedGVSummaryFlags(A));
3355     NameVals.push_back(AliaseeId);
3356     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3357     NameVals.clear();
3358   }
3359 
3360   Stream.ExitBlock();
3361 }
3362 
3363 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()3364 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3365   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3366   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3367 
3368   // Abbrev for FS_COMBINED.
3369   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3370   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3376   // numrefs x valueid, n x (valueid, callsitecount)
3377   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3378   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3379   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3380 
3381   // Abbrev for FS_COMBINED_PROFILE.
3382   Abbv = new BitCodeAbbrev();
3383   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3389   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3392   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3393 
3394   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3395   Abbv = new BitCodeAbbrev();
3396   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3402   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3403 
3404   // Abbrev for FS_COMBINED_ALIAS.
3405   Abbv = new BitCodeAbbrev();
3406   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3407   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3408   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3411   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3412 
3413   // The aliases are emitted as a post-pass, and will point to the value
3414   // id of the aliasee. Save them in a vector for post-processing.
3415   SmallVector<AliasSummary *, 64> Aliases;
3416 
3417   // Save the value id for each summary for alias emission.
3418   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3419 
3420   SmallVector<uint64_t, 64> NameVals;
3421 
3422   // For local linkage, we also emit the original name separately
3423   // immediately after the record.
3424   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3425     if (!GlobalValue::isLocalLinkage(S.linkage()))
3426       return;
3427     NameVals.push_back(S.getOriginalName());
3428     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3429     NameVals.clear();
3430   };
3431 
3432   for (const auto &I : *this) {
3433     GlobalValueSummary *S = I.second;
3434     assert(S);
3435 
3436     assert(hasValueId(I.first));
3437     unsigned ValueId = getValueId(I.first);
3438     SummaryToValueIdMap[S] = ValueId;
3439 
3440     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3441       // Will process aliases as a post-pass because the reader wants all
3442       // global to be loaded first.
3443       Aliases.push_back(AS);
3444       continue;
3445     }
3446 
3447     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3448       NameVals.push_back(ValueId);
3449       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3450       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3451       for (auto &RI : VS->refs()) {
3452         NameVals.push_back(getValueId(RI.getGUID()));
3453       }
3454 
3455       // Emit the finished record.
3456       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3457                         FSModRefsAbbrev);
3458       NameVals.clear();
3459       MaybeEmitOriginalName(*S);
3460       continue;
3461     }
3462 
3463     auto *FS = cast<FunctionSummary>(S);
3464     NameVals.push_back(ValueId);
3465     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3466     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3467     NameVals.push_back(FS->instCount());
3468     NameVals.push_back(FS->refs().size());
3469 
3470     for (auto &RI : FS->refs()) {
3471       NameVals.push_back(getValueId(RI.getGUID()));
3472     }
3473 
3474     bool HasProfileData = false;
3475     for (auto &EI : FS->calls()) {
3476       HasProfileData |= EI.second.ProfileCount != 0;
3477       if (HasProfileData)
3478         break;
3479     }
3480 
3481     for (auto &EI : FS->calls()) {
3482       // If this GUID doesn't have a value id, it doesn't have a function
3483       // summary and we don't need to record any calls to it.
3484       if (!hasValueId(EI.first.getGUID()))
3485         continue;
3486       NameVals.push_back(getValueId(EI.first.getGUID()));
3487       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3488       NameVals.push_back(EI.second.CallsiteCount);
3489       if (HasProfileData)
3490         NameVals.push_back(EI.second.ProfileCount);
3491     }
3492 
3493     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3494     unsigned Code =
3495         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3496 
3497     // Emit the finished record.
3498     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3499     NameVals.clear();
3500     MaybeEmitOriginalName(*S);
3501   }
3502 
3503   for (auto *AS : Aliases) {
3504     auto AliasValueId = SummaryToValueIdMap[AS];
3505     assert(AliasValueId);
3506     NameVals.push_back(AliasValueId);
3507     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3508     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3509     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3510     assert(AliaseeValueId);
3511     NameVals.push_back(AliaseeValueId);
3512 
3513     // Emit the finished record.
3514     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3515     NameVals.clear();
3516     MaybeEmitOriginalName(*AS);
3517   }
3518 
3519   Stream.ExitBlock();
3520 }
3521 
writeIdentificationBlock()3522 void ModuleBitcodeWriter::writeIdentificationBlock() {
3523   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3524 
3525   // Write the "user readable" string identifying the bitcode producer
3526   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3527   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3528   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3529   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3530   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3531   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3532                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3533 
3534   // Write the epoch version
3535   Abbv = new BitCodeAbbrev();
3536   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3537   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3538   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3539   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3540   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3541   Stream.ExitBlock();
3542 }
3543 
writeModuleHash(size_t BlockStartPos)3544 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3545   // Emit the module's hash.
3546   // MODULE_CODE_HASH: [5*i32]
3547   SHA1 Hasher;
3548   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3549                                   Buffer.size() - BlockStartPos));
3550   auto Hash = Hasher.result();
3551   SmallVector<uint64_t, 20> Vals;
3552   auto LShift = [&](unsigned char Val, unsigned Amount)
3553                     -> uint64_t { return ((uint64_t)Val) << Amount; };
3554   for (int Pos = 0; Pos < 20; Pos += 4) {
3555     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
3556     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
3557                (unsigned)(unsigned char)Hash[Pos + 3];
3558     Vals.push_back(SubHash);
3559   }
3560 
3561   // Emit the finished record.
3562   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3563 }
3564 
write()3565 void BitcodeWriter::write() {
3566   // Emit the file header first.
3567   writeBitcodeHeader();
3568 
3569   writeBlocks();
3570 }
3571 
writeBlocks()3572 void ModuleBitcodeWriter::writeBlocks() {
3573   writeIdentificationBlock();
3574   writeModule();
3575 }
3576 
writeBlocks()3577 void IndexBitcodeWriter::writeBlocks() {
3578   // Index contains only a single outer (module) block.
3579   writeIndex();
3580 }
3581 
writeModule()3582 void ModuleBitcodeWriter::writeModule() {
3583   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3584   size_t BlockStartPos = Buffer.size();
3585 
3586   SmallVector<unsigned, 1> Vals;
3587   unsigned CurVersion = 1;
3588   Vals.push_back(CurVersion);
3589   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3590 
3591   // Emit blockinfo, which defines the standard abbreviations etc.
3592   writeBlockInfo();
3593 
3594   // Emit information about attribute groups.
3595   writeAttributeGroupTable();
3596 
3597   // Emit information about parameter attributes.
3598   writeAttributeTable();
3599 
3600   // Emit information describing all of the types in the module.
3601   writeTypeTable();
3602 
3603   writeComdats();
3604 
3605   // Emit top-level description of module, including target triple, inline asm,
3606   // descriptors for global variables, and function prototype info.
3607   writeModuleInfo();
3608 
3609   // Emit constants.
3610   writeModuleConstants();
3611 
3612   // Emit metadata kind names.
3613   writeModuleMetadataKinds();
3614 
3615   // Emit metadata.
3616   writeModuleMetadata();
3617 
3618   // Emit module-level use-lists.
3619   if (VE.shouldPreserveUseListOrder())
3620     writeUseListBlock(nullptr);
3621 
3622   writeOperandBundleTags();
3623 
3624   // Emit function bodies.
3625   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3626   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3627     if (!F->isDeclaration())
3628       writeFunction(*F, FunctionToBitcodeIndex);
3629 
3630   // Need to write after the above call to WriteFunction which populates
3631   // the summary information in the index.
3632   if (Index)
3633     writePerModuleGlobalValueSummary();
3634 
3635   writeValueSymbolTable(M.getValueSymbolTable(),
3636                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3637 
3638   if (GenerateHash) {
3639     writeModuleHash(BlockStartPos);
3640   }
3641 
3642   Stream.ExitBlock();
3643 }
3644 
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)3645 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3646                                uint32_t &Position) {
3647   support::endian::write32le(&Buffer[Position], Value);
3648   Position += 4;
3649 }
3650 
3651 /// If generating a bc file on darwin, we have to emit a
3652 /// header and trailer to make it compatible with the system archiver.  To do
3653 /// this we emit the following header, and then emit a trailer that pads the
3654 /// file out to be a multiple of 16 bytes.
3655 ///
3656 /// struct bc_header {
3657 ///   uint32_t Magic;         // 0x0B17C0DE
3658 ///   uint32_t Version;       // Version, currently always 0.
3659 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3660 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3661 ///   uint32_t CPUType;       // CPU specifier.
3662 ///   ... potentially more later ...
3663 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)3664 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3665                                          const Triple &TT) {
3666   unsigned CPUType = ~0U;
3667 
3668   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3669   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3670   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3671   // specific constants here because they are implicitly part of the Darwin ABI.
3672   enum {
3673     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3674     DARWIN_CPU_TYPE_X86        = 7,
3675     DARWIN_CPU_TYPE_ARM        = 12,
3676     DARWIN_CPU_TYPE_POWERPC    = 18
3677   };
3678 
3679   Triple::ArchType Arch = TT.getArch();
3680   if (Arch == Triple::x86_64)
3681     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3682   else if (Arch == Triple::x86)
3683     CPUType = DARWIN_CPU_TYPE_X86;
3684   else if (Arch == Triple::ppc)
3685     CPUType = DARWIN_CPU_TYPE_POWERPC;
3686   else if (Arch == Triple::ppc64)
3687     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3688   else if (Arch == Triple::arm || Arch == Triple::thumb)
3689     CPUType = DARWIN_CPU_TYPE_ARM;
3690 
3691   // Traditional Bitcode starts after header.
3692   assert(Buffer.size() >= BWH_HeaderSize &&
3693          "Expected header size to be reserved");
3694   unsigned BCOffset = BWH_HeaderSize;
3695   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3696 
3697   // Write the magic and version.
3698   unsigned Position = 0;
3699   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3700   writeInt32ToBuffer(0, Buffer, Position); // Version.
3701   writeInt32ToBuffer(BCOffset, Buffer, Position);
3702   writeInt32ToBuffer(BCSize, Buffer, Position);
3703   writeInt32ToBuffer(CPUType, Buffer, Position);
3704 
3705   // If the file is not a multiple of 16 bytes, insert dummy padding.
3706   while (Buffer.size() & 15)
3707     Buffer.push_back(0);
3708 }
3709 
3710 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader()3711 void BitcodeWriter::writeBitcodeHeader() {
3712   // Emit the file header.
3713   Stream.Emit((unsigned)'B', 8);
3714   Stream.Emit((unsigned)'C', 8);
3715   Stream.Emit(0x0, 4);
3716   Stream.Emit(0xC, 4);
3717   Stream.Emit(0xE, 4);
3718   Stream.Emit(0xD, 4);
3719 }
3720 
3721 /// WriteBitcodeToFile - Write the specified module to the specified output
3722 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash)3723 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3724                               bool ShouldPreserveUseListOrder,
3725                               const ModuleSummaryIndex *Index,
3726                               bool GenerateHash) {
3727   SmallVector<char, 0> Buffer;
3728   Buffer.reserve(256*1024);
3729 
3730   // If this is darwin or another generic macho target, reserve space for the
3731   // header.
3732   Triple TT(M->getTargetTriple());
3733   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3734     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3735 
3736   // Emit the module into the buffer.
3737   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
3738                                    GenerateHash);
3739   ModuleWriter.write();
3740 
3741   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3742     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3743 
3744   // Write the generated bitstream to "Out".
3745   Out.write((char*)&Buffer.front(), Buffer.size());
3746 }
3747 
writeIndex()3748 void IndexBitcodeWriter::writeIndex() {
3749   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3750 
3751   SmallVector<unsigned, 1> Vals;
3752   unsigned CurVersion = 1;
3753   Vals.push_back(CurVersion);
3754   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3755 
3756   // If we have a VST, write the VSTOFFSET record placeholder.
3757   writeValueSymbolTableForwardDecl();
3758 
3759   // Write the module paths in the combined index.
3760   writeModStrings();
3761 
3762   // Write the summary combined index records.
3763   writeCombinedGlobalValueSummary();
3764 
3765   // Need a special VST writer for the combined index (we don't have a
3766   // real VST and real values when this is invoked).
3767   writeCombinedValueSymbolTable();
3768 
3769   Stream.ExitBlock();
3770 }
3771 
3772 // Write the specified module summary index to the given raw output stream,
3773 // where it will be written in a new bitcode block. This is used when
3774 // writing the combined index file for ThinLTO. When writing a subset of the
3775 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
WriteIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)3776 void llvm::WriteIndexToFile(
3777     const ModuleSummaryIndex &Index, raw_ostream &Out,
3778     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3779   SmallVector<char, 0> Buffer;
3780   Buffer.reserve(256 * 1024);
3781 
3782   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
3783   IndexWriter.write();
3784 
3785   Out.write((char *)&Buffer.front(), Buffer.size());
3786 }
3787