1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34 
35 static void
emit_lrm(struct anv_batch * batch,uint32_t reg,struct anv_bo * bo,uint32_t offset)36 emit_lrm(struct anv_batch *batch,
37          uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40       lrm.RegisterAddress  = reg;
41       lrm.MemoryAddress    = (struct anv_address) { bo, offset };
42    }
43 }
44 
45 static void
emit_lri(struct anv_batch * batch,uint32_t reg,uint32_t imm)46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49       lri.RegisterOffset   = reg;
50       lri.DataDWord        = imm;
51    }
52 }
53 
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
emit_lrr(struct anv_batch * batch,uint32_t dst,uint32_t src)56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59       lrr.SourceRegisterAddress        = src;
60       lrr.DestinationRegisterAddress   = dst;
61    }
62 }
63 #endif
64 
65 void
genX(cmd_buffer_emit_state_base_address)66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68    struct anv_device *device = cmd_buffer->device;
69 
70    /* Emit a render target cache flush.
71     *
72     * This isn't documented anywhere in the PRM.  However, it seems to be
73     * necessary prior to changing the surface state base adress.  Without
74     * this, we get GPU hangs when using multi-level command buffers which
75     * clear depth, reset state base address, and then go render stuff.
76     */
77    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78       pc.DCFlushEnable = true;
79       pc.RenderTargetCacheFlushEnable = true;
80       pc.CommandStreamerStallEnable = true;
81    }
82 
83    anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84       sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85       sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86       sba.GeneralStateBaseAddressModifyEnable = true;
87 
88       sba.SurfaceStateBaseAddress =
89          anv_cmd_buffer_surface_base_address(cmd_buffer);
90       sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91       sba.SurfaceStateBaseAddressModifyEnable = true;
92 
93       sba.DynamicStateBaseAddress =
94          (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95       sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96       sba.DynamicStateBaseAddressModifyEnable = true;
97 
98       sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99       sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100       sba.IndirectObjectBaseAddressModifyEnable = true;
101 
102       sba.InstructionBaseAddress =
103          (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104       sba.InstructionMemoryObjectControlState = GENX(MOCS);
105       sba.InstructionBaseAddressModifyEnable = true;
106 
107 #  if (GEN_GEN >= 8)
108       /* Broadwell requires that we specify a buffer size for a bunch of
109        * these fields.  However, since we will be growing the BO's live, we
110        * just set them all to the maximum.
111        */
112       sba.GeneralStateBufferSize                = 0xfffff;
113       sba.GeneralStateBufferSizeModifyEnable    = true;
114       sba.DynamicStateBufferSize                = 0xfffff;
115       sba.DynamicStateBufferSizeModifyEnable    = true;
116       sba.IndirectObjectBufferSize              = 0xfffff;
117       sba.IndirectObjectBufferSizeModifyEnable  = true;
118       sba.InstructionBufferSize                 = 0xfffff;
119       sba.InstructionBuffersizeModifyEnable     = true;
120 #  endif
121    }
122 
123    /* After re-setting the surface state base address, we have to do some
124     * cache flusing so that the sampler engine will pick up the new
125     * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126     * Shared Function > 3D Sampler > State > State Caching (page 96):
127     *
128     *    Coherency with system memory in the state cache, like the texture
129     *    cache is handled partially by software. It is expected that the
130     *    command stream or shader will issue Cache Flush operation or
131     *    Cache_Flush sampler message to ensure that the L1 cache remains
132     *    coherent with system memory.
133     *
134     *    [...]
135     *
136     *    Whenever the value of the Dynamic_State_Base_Addr,
137     *    Surface_State_Base_Addr are altered, the L1 state cache must be
138     *    invalidated to ensure the new surface or sampler state is fetched
139     *    from system memory.
140     *
141     * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142     * which, according the PIPE_CONTROL instruction documentation in the
143     * Broadwell PRM:
144     *
145     *    Setting this bit is independent of any other bit in this packet.
146     *    This bit controls the invalidation of the L1 and L2 state caches
147     *    at the top of the pipe i.e. at the parsing time.
148     *
149     * Unfortunately, experimentation seems to indicate that state cache
150     * invalidation through a PIPE_CONTROL does nothing whatsoever in
151     * regards to surface state and binding tables.  In stead, it seems that
152     * invalidating the texture cache is what is actually needed.
153     *
154     * XXX:  As far as we have been able to determine through
155     * experimentation, shows that flush the texture cache appears to be
156     * sufficient.  The theory here is that all of the sampling/rendering
157     * units cache the binding table in the texture cache.  However, we have
158     * yet to be able to actually confirm this.
159     */
160    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161       pc.TextureCacheInvalidationEnable = true;
162       pc.ConstantCacheInvalidationEnable = true;
163       pc.StateCacheInvalidationEnable = true;
164    }
165 }
166 
167 static void
add_surface_state_reloc(struct anv_cmd_buffer * cmd_buffer,struct anv_state state,struct anv_bo * bo,uint32_t offset)168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169                         struct anv_state state,
170                         struct anv_bo *bo, uint32_t offset)
171 {
172    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173 
174    VkResult result =
175       anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176                          state.offset + isl_dev->ss.addr_offset, bo, offset);
177    if (result != VK_SUCCESS)
178       anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180 
181 static void
add_image_view_relocs(struct anv_cmd_buffer * cmd_buffer,const struct anv_image_view * image_view,const uint32_t plane,struct anv_surface_state state)182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183                       const struct anv_image_view *image_view,
184                       const uint32_t plane,
185                       struct anv_surface_state state)
186 {
187    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188    const struct anv_image *image = image_view->image;
189    uint32_t image_plane = image_view->planes[plane].image_plane;
190 
191    add_surface_state_reloc(cmd_buffer, state.state,
192                            image->planes[image_plane].bo, state.address);
193 
194    if (state.aux_address) {
195       VkResult result =
196          anv_reloc_list_add(&cmd_buffer->surface_relocs,
197                             &cmd_buffer->pool->alloc,
198                             state.state.offset + isl_dev->ss.aux_addr_offset,
199                             image->planes[image_plane].bo, state.aux_address);
200       if (result != VK_SUCCESS)
201          anv_batch_set_error(&cmd_buffer->batch, result);
202    }
203 }
204 
205 static bool
color_is_zero_one(VkClearColorValue value,enum isl_format format)206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208    if (isl_format_has_int_channel(format)) {
209       for (unsigned i = 0; i < 4; i++) {
210          if (value.int32[i] != 0 && value.int32[i] != 1)
211             return false;
212       }
213    } else {
214       for (unsigned i = 0; i < 4; i++) {
215          if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216             return false;
217       }
218    }
219 
220    return true;
221 }
222 
223 static void
color_attachment_compute_aux_usage(struct anv_device * device,struct anv_cmd_state * cmd_state,uint32_t att,VkRect2D render_area,union isl_color_value * fast_clear_color)224 color_attachment_compute_aux_usage(struct anv_device * device,
225                                    struct anv_cmd_state * cmd_state,
226                                    uint32_t att, VkRect2D render_area,
227                                    union isl_color_value *fast_clear_color)
228 {
229    struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230    struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231 
232    assert(iview->n_planes == 1);
233 
234    if (iview->planes[0].isl.base_array_layer >=
235        anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236                             iview->planes[0].isl.base_level)) {
237       /* There is no aux buffer which corresponds to the level and layer(s)
238        * being accessed.
239        */
240       att_state->aux_usage = ISL_AUX_USAGE_NONE;
241       att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242       att_state->fast_clear = false;
243       return;
244    } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245       att_state->aux_usage = ISL_AUX_USAGE_MCS;
246       att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247       att_state->fast_clear = false;
248       return;
249    } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250       att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251       att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252    } else {
253       att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254       /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255        *
256        *    "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257        *    setting is only allowed if Surface Format supported for Fast
258        *    Clear. In addition, if the surface is bound to the sampling
259        *    engine, Surface Format must be supported for Render Target
260        *    Compression for surfaces bound to the sampling engine."
261        *
262        * In other words, we can only sample from a fast-cleared image if it
263        * also supports color compression.
264        */
265       if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266          att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267 
268          /* While fast-clear resolves and partial resolves are fairly cheap in the
269           * case where you render to most of the pixels, full resolves are not
270           * because they potentially involve reading and writing the entire
271           * framebuffer.  If we can't texture with CCS_E, we should leave it off and
272           * limit ourselves to fast clears.
273           */
274          if (cmd_state->pass->attachments[att].first_subpass_layout ==
275              VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276             anv_perf_warn(device->instance, iview->image,
277                           "Not temporarily enabling CCS_E.");
278          }
279       } else {
280          att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281       }
282    }
283 
284    assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285 
286    att_state->clear_color_is_zero_one =
287       color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288    att_state->clear_color_is_zero =
289       att_state->clear_value.color.uint32[0] == 0 &&
290       att_state->clear_value.color.uint32[1] == 0 &&
291       att_state->clear_value.color.uint32[2] == 0 &&
292       att_state->clear_value.color.uint32[3] == 0;
293 
294    if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295       /* Start off assuming fast clears are possible */
296       att_state->fast_clear = true;
297 
298       /* Potentially, we could do partial fast-clears but doing so has crazy
299        * alignment restrictions.  It's easier to just restrict to full size
300        * fast clears for now.
301        */
302       if (render_area.offset.x != 0 ||
303           render_area.offset.y != 0 ||
304           render_area.extent.width != iview->extent.width ||
305           render_area.extent.height != iview->extent.height)
306          att_state->fast_clear = false;
307 
308       /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309       if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310          att_state->fast_clear = false;
311 
312       /* We allow fast clears when all aux layers of the miplevel are targeted.
313        * See add_fast_clear_state_buffer() for more information. Also, because
314        * we only either do a fast clear or a normal clear and not both, this
315        * complies with the gen7 restriction of not fast-clearing multiple
316        * layers.
317        */
318       if (cmd_state->framebuffer->layers !=
319           anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320                                iview->planes[0].isl.base_level)) {
321          att_state->fast_clear = false;
322          if (GEN_GEN == 7) {
323             anv_perf_warn(device->instance, iview->image,
324                           "Not fast-clearing the first layer in "
325                           "a multi-layer fast clear.");
326          }
327       }
328 
329       /* We only allow fast clears in the GENERAL layout if the auxiliary
330        * buffer is always enabled and the fast-clear value is all 0's. See
331        * add_fast_clear_state_buffer() for more information.
332        */
333       if (cmd_state->pass->attachments[att].first_subpass_layout ==
334           VK_IMAGE_LAYOUT_GENERAL &&
335           (!att_state->clear_color_is_zero ||
336            iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337          att_state->fast_clear = false;
338       }
339 
340       if (att_state->fast_clear) {
341          memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342                 sizeof(fast_clear_color->u32));
343       }
344    } else {
345       att_state->fast_clear = false;
346    }
347 }
348 
349 static bool
need_input_attachment_state(const struct anv_render_pass_attachment * att)350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352    if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353       return false;
354 
355    /* We only allocate input attachment states for color surfaces. Compression
356     * is not yet enabled for depth textures and stencil doesn't allow
357     * compression so we can just use the texture surface state from the view.
358     */
359    return vk_format_is_color(att->format);
360 }
361 
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363  * the initial layout is undefined, the HiZ buffer and depth buffer will
364  * represent the same data at the end of this operation.
365  */
366 static void
transition_depth_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageLayout initial_layout,VkImageLayout final_layout)367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368                         const struct anv_image *image,
369                         VkImageLayout initial_layout,
370                         VkImageLayout final_layout)
371 {
372    assert(image);
373 
374    /* A transition is a no-op if HiZ is not enabled, or if the initial and
375     * final layouts are equal.
376     *
377     * The undefined layout indicates that the user doesn't care about the data
378     * that's currently in the buffer. Therefore, a data-preserving resolve
379     * operation is not needed.
380     */
381    if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382       return;
383 
384    const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385       anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386                               VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387    const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388       anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389                               VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390 
391    enum blorp_hiz_op hiz_op;
392    if (hiz_enabled && !enable_hiz) {
393       hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394    } else if (!hiz_enabled && enable_hiz) {
395       hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396    } else {
397       assert(hiz_enabled == enable_hiz);
398       /* If the same buffer will be used, no resolves are necessary. */
399       hiz_op = BLORP_HIZ_OP_NONE;
400    }
401 
402    if (hiz_op != BLORP_HIZ_OP_NONE)
403       anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405 
406 #define MI_PREDICATE_SRC0  0x2400
407 #define MI_PREDICATE_SRC1  0x2408
408 
409 /* Manages the state of an color image subresource to ensure resolves are
410  * performed properly.
411  */
412 static void
genX(set_image_needs_resolve)413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414                         const struct anv_image *image,
415                         VkImageAspectFlagBits aspect,
416                         unsigned level, bool needs_resolve)
417 {
418    assert(cmd_buffer && image);
419    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420    assert(level < anv_image_aux_levels(image, aspect));
421 
422    /* The HW docs say that there is no way to guarantee the completion of
423     * the following command. We use it nevertheless because it shows no
424     * issues in testing is currently being used in the GL driver.
425     */
426    anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427       sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428                                                      image, aspect, level);
429       sdi.ImmediateData = needs_resolve;
430    }
431 }
432 
433 static void
genX(load_needs_resolve_predicate)434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435                                    const struct anv_image *image,
436                                    VkImageAspectFlagBits aspect,
437                                    unsigned level)
438 {
439    assert(cmd_buffer && image);
440    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441    assert(level < anv_image_aux_levels(image, aspect));
442 
443    const struct anv_address resolve_flag_addr =
444       anv_image_get_needs_resolve_addr(cmd_buffer->device,
445                                        image, aspect, level);
446 
447    /* Make the pending predicated resolve a no-op if one is not needed.
448     * predicate = do_resolve = resolve_flag != 0;
449     */
450    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
451    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0    , 0);
453    emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454             resolve_flag_addr.bo, resolve_flag_addr.offset);
455    anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456       mip.LoadOperation    = LOAD_LOADINV;
457       mip.CombineOperation = COMBINE_SET;
458       mip.CompareOperation = COMPARE_SRCS_EQUAL;
459    }
460 }
461 
462 static void
init_fast_clear_state_entry(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,unsigned level)463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464                             const struct anv_image *image,
465                             VkImageAspectFlagBits aspect,
466                             unsigned level)
467 {
468    assert(cmd_buffer && image);
469    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470    assert(level < anv_image_aux_levels(image, aspect));
471 
472    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473    enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474 
475    /* The resolve flag should updated to signify that fast-clear/compression
476     * data needs to be removed when leaving the undefined layout. Such data
477     * may need to be removed if it would cause accesses to the color buffer
478     * to return incorrect data. The fast clear data in CCS_D buffers should
479     * be removed because CCS_D isn't enabled all the time.
480     */
481    genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482                                  aux_usage == ISL_AUX_USAGE_NONE);
483 
484    /* The fast clear value dword(s) will be copied into a surface state object.
485     * Ensure that the restrictions of the fields in the dword(s) are followed.
486     *
487     * CCS buffers on SKL+ can have any value set for the clear colors.
488     */
489    if (image->samples == 1 && GEN_GEN >= 9)
490       return;
491 
492    /* Other combinations of auxiliary buffers and platforms require specific
493     * values in the clear value dword(s).
494     */
495    struct anv_address addr =
496       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497    unsigned i = 0;
498    for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499       anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500          sdi.Address = addr;
501 
502          if (GEN_GEN >= 9) {
503             /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504             assert(aux_usage == ISL_AUX_USAGE_MCS);
505             sdi.ImmediateData = 0;
506          } else if (GEN_VERSIONx10 >= 75) {
507             /* Pre-SKL, the dword containing the clear values also contains
508              * other fields, so we need to initialize those fields to match the
509              * values that would be in a color attachment.
510              */
511             assert(i == 0);
512             sdi.ImmediateData = ISL_CHANNEL_SELECT_RED   << 25 |
513                                 ISL_CHANNEL_SELECT_GREEN << 22 |
514                                 ISL_CHANNEL_SELECT_BLUE  << 19 |
515                                 ISL_CHANNEL_SELECT_ALPHA << 16;
516          }  else if (GEN_VERSIONx10 == 70) {
517             /* On IVB, the dword containing the clear values also contains
518              * other fields that must be zero or can be zero.
519              */
520             assert(i == 0);
521             sdi.ImmediateData = 0;
522          }
523       }
524 
525       addr.offset += 4;
526    }
527 }
528 
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530  * image's fast clear state buffer.
531  */
532 static void
genX(copy_fast_clear_dwords)533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534                              struct anv_state surface_state,
535                              const struct anv_image *image,
536                              VkImageAspectFlagBits aspect,
537                              unsigned level,
538                              bool copy_from_surface_state)
539 {
540    assert(cmd_buffer && image);
541    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542    assert(level < anv_image_aux_levels(image, aspect));
543 
544    struct anv_bo *ss_bo =
545       &cmd_buffer->device->surface_state_pool.block_pool.bo;
546    uint32_t ss_clear_offset = surface_state.offset +
547       cmd_buffer->device->isl_dev.ss.clear_value_offset;
548    const struct anv_address entry_addr =
549       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550    unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551 
552    if (copy_from_surface_state) {
553       genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554                                  ss_bo, ss_clear_offset, copy_size);
555    } else {
556       genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557                                  entry_addr.bo, entry_addr.offset, copy_size);
558 
559       /* Updating a surface state object may require that the state cache be
560        * invalidated. From the SKL PRM, Shared Functions -> State -> State
561        * Caching:
562        *
563        *    Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564        *    the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565        *    modified [...], the L1 state cache must be invalidated to ensure
566        *    the new surface or sampler state is fetched from system memory.
567        *
568        * In testing, SKL doesn't actually seem to need this, but HSW does.
569        */
570       cmd_buffer->state.pending_pipe_bits |=
571          ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572    }
573 }
574 
575 /**
576  * @brief Transitions a color buffer from one layout to another.
577  *
578  * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579  * more information.
580  *
581  * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582  * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583  *                    this represents the maximum layers to transition at each
584  *                    specified miplevel.
585  */
586 static void
transition_color_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,const uint32_t base_level,uint32_t level_count,uint32_t base_layer,uint32_t layer_count,VkImageLayout initial_layout,VkImageLayout final_layout)587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588                         const struct anv_image *image,
589                         VkImageAspectFlagBits aspect,
590                         const uint32_t base_level, uint32_t level_count,
591                         uint32_t base_layer, uint32_t layer_count,
592                         VkImageLayout initial_layout,
593                         VkImageLayout final_layout)
594 {
595    /* Validate the inputs. */
596    assert(cmd_buffer);
597    assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598    /* These values aren't supported for simplicity's sake. */
599    assert(level_count != VK_REMAINING_MIP_LEVELS &&
600           layer_count != VK_REMAINING_ARRAY_LAYERS);
601    /* Ensure the subresource range is valid. */
602    uint64_t last_level_num = base_level + level_count;
603    const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604    UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605    assert((uint64_t)base_layer + layer_count  <= image_layers);
606    assert(last_level_num <= image->levels);
607    /* The spec disallows these final layouts. */
608    assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609           final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610 
611    /* No work is necessary if the layout stays the same or if this subresource
612     * range lacks auxiliary data.
613     */
614    if (initial_layout == final_layout)
615       return;
616 
617    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618 
619    if (image->planes[plane].shadow_surface.isl.size > 0 &&
620        final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621       /* This surface is a linear compressed image with a tiled shadow surface
622        * for texturing.  The client is about to use it in READ_ONLY_OPTIMAL so
623        * we need to ensure the shadow copy is up-to-date.
624        */
625       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626       assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627       assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628       assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629       assert(plane == 0);
630       anv_image_copy_to_shadow(cmd_buffer, image,
631                                base_level, level_count,
632                                base_layer, layer_count);
633    }
634 
635    if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636       return;
637 
638    /* A transition of a 3D subresource works on all slices at a time. */
639    if (image->type == VK_IMAGE_TYPE_3D) {
640       base_layer = 0;
641       layer_count = anv_minify(image->extent.depth, base_level);
642    }
643 
644    /* We're interested in the subresource range subset that has aux data. */
645    level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646    layer_count = MIN2(layer_count,
647                       anv_image_aux_layers(image, aspect, base_level) - base_layer);
648    last_level_num = base_level + level_count;
649 
650    /* Record whether or not the layout is undefined. Pre-initialized images
651     * with auxiliary buffers have a non-linear layout and are thus undefined.
652     */
653    assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654    const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655                              initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656 
657    /* Do preparatory work before the resolve operation or return early if no
658     * resolve is actually needed.
659     */
660    if (undef_layout) {
661       /* A subresource in the undefined layout may have been aliased and
662        * populated with any arrangement of bits. Therefore, we must initialize
663        * the related aux buffer and clear buffer entry with desirable values.
664        *
665        * Initialize the relevant clear buffer entries.
666        */
667       for (unsigned level = base_level; level < last_level_num; level++)
668          init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669 
670       /* Initialize the aux buffers to enable correct rendering. This operation
671        * requires up to two steps: one to rid the aux buffer of data that may
672        * cause GPU hangs, and another to ensure that writes done without aux
673        * will be visible to reads done with aux.
674        *
675        * Having an aux buffer with invalid data is possible for CCS buffers
676        * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677        * easy way to get to a valid state is to fast-clear the specified range.
678        *
679        * Even for MCS buffers that have sample counts that don't require
680        * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681        * will be okay with the sample mappings given by the undefined buffer.
682        * We don't have any data to show that this is a problem, but we want to
683        * avoid causing difficult-to-debug problems.
684        */
685       if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686          if (image->samples == 4 || image->samples == 16) {
687             anv_perf_warn(cmd_buffer->device->instance, image,
688                           "Doing a potentially unnecessary fast-clear to "
689                           "define an MCS buffer.");
690          }
691 
692          anv_image_fast_clear(cmd_buffer, image, aspect,
693                               base_level, level_count,
694                               base_layer, layer_count);
695       }
696       /* At this point, some elements of the CCS buffer may have the fast-clear
697        * bit-arrangement. As the user writes to a subresource, we need to have
698        * the associated CCS elements enter the ambiguated state. This enables
699        * reads (implicit or explicit) to reflect the user-written data instead
700        * of the clear color. The only time such elements will not change their
701        * state as described above, is in a final layout that doesn't have CCS
702        * enabled. In this case, we must force the associated CCS buffers of the
703        * specified range to enter the ambiguated state in advance.
704        */
705       if (image->samples == 1 &&
706           image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707           final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708          /* The CCS_D buffer may not be enabled in the final layout. Continue
709           * executing this function to perform a resolve.
710           */
711           anv_perf_warn(cmd_buffer->device->instance, image,
712                         "Performing an additional resolve for CCS_D layout "
713                         "transition. Consider always leaving it on or "
714                         "performing an ambiguation pass.");
715       } else {
716          /* Writes in the final layout will be aware of the auxiliary buffer.
717           * In addition, the clear buffer entries and the auxiliary buffers
718           * have been populated with values that will result in correct
719           * rendering.
720           */
721          return;
722       }
723    } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724       /* Resolves are only necessary if the subresource may contain blocks
725        * fast-cleared to values unsupported in other layouts. This only occurs
726        * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727        */
728       return;
729    } else if (image->samples > 1) {
730       /* MCS buffers don't need resolving. */
731       return;
732    }
733 
734    /* Perform a resolve to synchronize data between the main and aux buffer.
735     * Before we begin, we must satisfy the cache flushing requirement specified
736     * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737     *
738     *    Any transition from any value in {Clear, Render, Resolve} to a
739     *    different value in {Clear, Render, Resolve} requires end of pipe
740     *    synchronization.
741     *
742     * We perform a flush of the write cache before and after the clear and
743     * resolve operations to meet this requirement.
744     *
745     * Unlike other drawing, fast clear operations are not properly
746     * synchronized. The first PIPE_CONTROL here likely ensures that the
747     * contents of the previous render or clear hit the render target before we
748     * resolve and the second likely ensures that the resolve is complete before
749     * we do any more rendering or clearing.
750     */
751    cmd_buffer->state.pending_pipe_bits |=
752       ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753 
754    for (uint32_t level = base_level; level < last_level_num; level++) {
755 
756       /* The number of layers changes at each 3D miplevel. */
757       if (image->type == VK_IMAGE_TYPE_3D) {
758          layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759       }
760 
761       genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762 
763       anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764                       image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765                       BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766                       BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767 
768       genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769    }
770 
771    cmd_buffer->state.pending_pipe_bits |=
772       ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774 
775 /**
776  * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777  */
778 static VkResult
genX(cmd_buffer_setup_attachments)779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780                                    struct anv_render_pass *pass,
781                                    const VkRenderPassBeginInfo *begin)
782 {
783    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784    struct anv_cmd_state *state = &cmd_buffer->state;
785 
786    vk_free(&cmd_buffer->pool->alloc, state->attachments);
787 
788    if (pass->attachment_count > 0) {
789       state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790                                     pass->attachment_count *
791                                          sizeof(state->attachments[0]),
792                                     8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793       if (state->attachments == NULL) {
794          /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795          return anv_batch_set_error(&cmd_buffer->batch,
796                                     VK_ERROR_OUT_OF_HOST_MEMORY);
797       }
798    } else {
799       state->attachments = NULL;
800    }
801 
802    /* Reserve one for the NULL state. */
803    unsigned num_states = 1;
804    for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805       if (vk_format_is_color(pass->attachments[i].format))
806          num_states++;
807 
808       if (need_input_attachment_state(&pass->attachments[i]))
809          num_states++;
810    }
811 
812    const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813    state->render_pass_states =
814       anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815                              num_states * ss_stride, isl_dev->ss.align);
816 
817    struct anv_state next_state = state->render_pass_states;
818    next_state.alloc_size = isl_dev->ss.size;
819 
820    state->null_surface_state = next_state;
821    next_state.offset += ss_stride;
822    next_state.map += ss_stride;
823 
824    for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825       if (vk_format_is_color(pass->attachments[i].format)) {
826          state->attachments[i].color.state = next_state;
827          next_state.offset += ss_stride;
828          next_state.map += ss_stride;
829       }
830 
831       if (need_input_attachment_state(&pass->attachments[i])) {
832          state->attachments[i].input.state = next_state;
833          next_state.offset += ss_stride;
834          next_state.map += ss_stride;
835       }
836    }
837    assert(next_state.offset == state->render_pass_states.offset +
838                                state->render_pass_states.alloc_size);
839 
840    if (begin) {
841       ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842       assert(pass->attachment_count == framebuffer->attachment_count);
843 
844       isl_null_fill_state(isl_dev, state->null_surface_state.map,
845                           isl_extent3d(framebuffer->width,
846                                        framebuffer->height,
847                                        framebuffer->layers));
848 
849       for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850          struct anv_render_pass_attachment *att = &pass->attachments[i];
851          VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852          VkImageAspectFlags clear_aspects = 0;
853 
854          if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855             /* color attachment */
856             if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857                clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858             }
859          } else {
860             /* depthstencil attachment */
861             if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862                 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863                clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864             }
865             if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866                 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867                clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868             }
869          }
870 
871          state->attachments[i].current_layout = att->initial_layout;
872          state->attachments[i].pending_clear_aspects = clear_aspects;
873          if (clear_aspects)
874             state->attachments[i].clear_value = begin->pClearValues[i];
875 
876          struct anv_image_view *iview = framebuffer->attachments[i];
877          anv_assert(iview->vk_format == att->format);
878 
879          union isl_color_value clear_color = { .u32 = { 0, } };
880          if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
881             anv_assert(iview->n_planes == 1);
882             assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883             color_attachment_compute_aux_usage(cmd_buffer->device,
884                                                state, i, begin->renderArea,
885                                                &clear_color);
886 
887             anv_image_fill_surface_state(cmd_buffer->device,
888                                          iview->image,
889                                          VK_IMAGE_ASPECT_COLOR_BIT,
890                                          &iview->planes[0].isl,
891                                          ISL_SURF_USAGE_RENDER_TARGET_BIT,
892                                          state->attachments[i].aux_usage,
893                                          &clear_color,
894                                          0,
895                                          &state->attachments[i].color,
896                                          NULL);
897 
898             add_image_view_relocs(cmd_buffer, iview, 0,
899                                   state->attachments[i].color);
900          } else {
901             /* This field will be initialized after the first subpass
902              * transition.
903              */
904             state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905 
906             state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907          }
908 
909          if (need_input_attachment_state(&pass->attachments[i])) {
910             anv_image_fill_surface_state(cmd_buffer->device,
911                                          iview->image,
912                                          VK_IMAGE_ASPECT_COLOR_BIT,
913                                          &iview->planes[0].isl,
914                                          ISL_SURF_USAGE_TEXTURE_BIT,
915                                          state->attachments[i].input_aux_usage,
916                                          &clear_color,
917                                          0,
918                                          &state->attachments[i].input,
919                                          NULL);
920 
921             add_image_view_relocs(cmd_buffer, iview, 0,
922                                   state->attachments[i].input);
923          }
924       }
925    }
926 
927    return VK_SUCCESS;
928 }
929 
930 VkResult
genX(BeginCommandBuffer)931 genX(BeginCommandBuffer)(
932     VkCommandBuffer                             commandBuffer,
933     const VkCommandBufferBeginInfo*             pBeginInfo)
934 {
935    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936 
937    /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938     * command buffer's state. Otherwise, we must *reset* its state. In both
939     * cases we reset it.
940     *
941     * From the Vulkan 1.0 spec:
942     *
943     *    If a command buffer is in the executable state and the command buffer
944     *    was allocated from a command pool with the
945     *    VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946     *    vkBeginCommandBuffer implicitly resets the command buffer, behaving
947     *    as if vkResetCommandBuffer had been called with
948     *    VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949     *    the command buffer in the recording state.
950     */
951    anv_cmd_buffer_reset(cmd_buffer);
952 
953    cmd_buffer->usage_flags = pBeginInfo->flags;
954 
955    assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956           !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957 
958    genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959 
960    /* We sometimes store vertex data in the dynamic state buffer for blorp
961     * operations and our dynamic state stream may re-use data from previous
962     * command buffers.  In order to prevent stale cache data, we flush the VF
963     * cache.  We could do this on every blorp call but that's not really
964     * needed as all of the data will get written by the CPU prior to the GPU
965     * executing anything.  The chances are fairly high that they will use
966     * blorp at least once per primary command buffer so it shouldn't be
967     * wasted.
968     */
969    if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970       cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971 
972    /* We send an "Indirect State Pointers Disable" packet at
973     * EndCommandBuffer, so all push contant packets are ignored during a
974     * context restore. Documentation says after that command, we need to
975     * emit push constants again before any rendering operation. So we
976     * flag them dirty here to make sure they get emitted.
977     */
978    if (GEN_GEN == 10)
979       cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
980 
981    VkResult result = VK_SUCCESS;
982    if (cmd_buffer->usage_flags &
983        VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
984       assert(pBeginInfo->pInheritanceInfo);
985       cmd_buffer->state.pass =
986          anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
987       cmd_buffer->state.subpass =
988          &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
989 
990       /* This is optional in the inheritance info. */
991       cmd_buffer->state.framebuffer =
992          anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
993 
994       result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
995                                                   cmd_buffer->state.pass, NULL);
996 
997       /* Record that HiZ is enabled if we can. */
998       if (cmd_buffer->state.framebuffer) {
999          const struct anv_image_view * const iview =
1000             anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1001 
1002          if (iview) {
1003             VkImageLayout layout =
1004                 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1005 
1006             enum isl_aux_usage aux_usage =
1007                anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1008                                        VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1009 
1010             cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1011          }
1012       }
1013 
1014       cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1015    }
1016 
1017    return result;
1018 }
1019 
1020 /* From the PRM, Volume 2a:
1021  *
1022  *    "Indirect State Pointers Disable
1023  *
1024  *    At the completion of the post-sync operation associated with this pipe
1025  *    control packet, the indirect state pointers in the hardware are
1026  *    considered invalid; the indirect pointers are not saved in the context.
1027  *    If any new indirect state commands are executed in the command stream
1028  *    while the pipe control is pending, the new indirect state commands are
1029  *    preserved.
1030  *
1031  *    [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1032  *    restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1033  *    commands are only considered as Indirect State Pointers. Once ISP is
1034  *    issued in a context, SW must initialize by programming push constant
1035  *    commands for all the shaders (at least to zero length) before attempting
1036  *    any rendering operation for the same context."
1037  *
1038  * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1039  * even though they point to a BO that has been already unreferenced at
1040  * the end of the previous batch buffer. This has been fine so far since
1041  * we are protected by these scratch page (every address not covered by
1042  * a BO should be pointing to the scratch page). But on CNL, it is
1043  * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1044  * instruction.
1045  *
1046  * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1047  * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1048  * context restore, so the mentioned hang doesn't happen. However,
1049  * software must program push constant commands for all stages prior to
1050  * rendering anything. So we flag them dirty in BeginCommandBuffer.
1051  */
1052 static void
emit_isp_disable(struct anv_cmd_buffer * cmd_buffer)1053 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1054 {
1055    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1056          pc.IndirectStatePointersDisable = true;
1057          pc.CommandStreamerStallEnable = true;
1058    }
1059 }
1060 
1061 VkResult
genX(EndCommandBuffer)1062 genX(EndCommandBuffer)(
1063     VkCommandBuffer                             commandBuffer)
1064 {
1065    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1066 
1067    if (anv_batch_has_error(&cmd_buffer->batch))
1068       return cmd_buffer->batch.status;
1069 
1070    /* We want every command buffer to start with the PMA fix in a known state,
1071     * so we disable it at the end of the command buffer.
1072     */
1073    genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1074 
1075    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1076 
1077    if (GEN_GEN == 10)
1078       emit_isp_disable(cmd_buffer);
1079 
1080    anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1081 
1082    return VK_SUCCESS;
1083 }
1084 
1085 void
genX(CmdExecuteCommands)1086 genX(CmdExecuteCommands)(
1087     VkCommandBuffer                             commandBuffer,
1088     uint32_t                                    commandBufferCount,
1089     const VkCommandBuffer*                      pCmdBuffers)
1090 {
1091    ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1092 
1093    assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1094 
1095    if (anv_batch_has_error(&primary->batch))
1096       return;
1097 
1098    /* The secondary command buffers will assume that the PMA fix is disabled
1099     * when they begin executing.  Make sure this is true.
1100     */
1101    genX(cmd_buffer_enable_pma_fix)(primary, false);
1102 
1103    /* The secondary command buffer doesn't know which textures etc. have been
1104     * flushed prior to their execution.  Apply those flushes now.
1105     */
1106    genX(cmd_buffer_apply_pipe_flushes)(primary);
1107 
1108    for (uint32_t i = 0; i < commandBufferCount; i++) {
1109       ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1110 
1111       assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1112       assert(!anv_batch_has_error(&secondary->batch));
1113 
1114       if (secondary->usage_flags &
1115           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1116          /* If we're continuing a render pass from the primary, we need to
1117           * copy the surface states for the current subpass into the storage
1118           * we allocated for them in BeginCommandBuffer.
1119           */
1120          struct anv_bo *ss_bo =
1121             &primary->device->surface_state_pool.block_pool.bo;
1122          struct anv_state src_state = primary->state.render_pass_states;
1123          struct anv_state dst_state = secondary->state.render_pass_states;
1124          assert(src_state.alloc_size == dst_state.alloc_size);
1125 
1126          genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1127                                     ss_bo, src_state.offset,
1128                                     src_state.alloc_size);
1129       }
1130 
1131       anv_cmd_buffer_add_secondary(primary, secondary);
1132    }
1133 
1134    /* The secondary may have selected a different pipeline (3D or compute) and
1135     * may have changed the current L3$ configuration.  Reset our tracking
1136     * variables to invalid values to ensure that we re-emit these in the case
1137     * where we do any draws or compute dispatches from the primary after the
1138     * secondary has returned.
1139     */
1140    primary->state.current_pipeline = UINT32_MAX;
1141    primary->state.current_l3_config = NULL;
1142 
1143    /* Each of the secondary command buffers will use its own state base
1144     * address.  We need to re-emit state base address for the primary after
1145     * all of the secondaries are done.
1146     *
1147     * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1148     * address calls?
1149     */
1150    genX(cmd_buffer_emit_state_base_address)(primary);
1151 }
1152 
1153 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT     0x00730000
1154 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT     0x00d30000
1155 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT     0x00610000
1156 
1157 /**
1158  * Program the hardware to use the specified L3 configuration.
1159  */
1160 void
genX(cmd_buffer_config_l3)1161 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1162                            const struct gen_l3_config *cfg)
1163 {
1164    assert(cfg);
1165    if (cfg == cmd_buffer->state.current_l3_config)
1166       return;
1167 
1168    if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1169       intel_logd("L3 config transition: ");
1170       gen_dump_l3_config(cfg, stderr);
1171    }
1172 
1173    const bool has_slm = cfg->n[GEN_L3P_SLM];
1174 
1175    /* According to the hardware docs, the L3 partitioning can only be changed
1176     * while the pipeline is completely drained and the caches are flushed,
1177     * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1178     */
1179    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1180       pc.DCFlushEnable = true;
1181       pc.PostSyncOperation = NoWrite;
1182       pc.CommandStreamerStallEnable = true;
1183    }
1184 
1185    /* ...followed by a second pipelined PIPE_CONTROL that initiates
1186     * invalidation of the relevant caches.  Note that because RO invalidation
1187     * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1188     * command is processed by the CS) we cannot combine it with the previous
1189     * stalling flush as the hardware documentation suggests, because that
1190     * would cause the CS to stall on previous rendering *after* RO
1191     * invalidation and wouldn't prevent the RO caches from being polluted by
1192     * concurrent rendering before the stall completes.  This intentionally
1193     * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1194     * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1195     * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1196     * already guarantee that there is no concurrent GPGPU kernel execution
1197     * (see SKL HSD 2132585).
1198     */
1199    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1200       pc.TextureCacheInvalidationEnable = true;
1201       pc.ConstantCacheInvalidationEnable = true;
1202       pc.InstructionCacheInvalidateEnable = true;
1203       pc.StateCacheInvalidationEnable = true;
1204       pc.PostSyncOperation = NoWrite;
1205    }
1206 
1207    /* Now send a third stalling flush to make sure that invalidation is
1208     * complete when the L3 configuration registers are modified.
1209     */
1210    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1211       pc.DCFlushEnable = true;
1212       pc.PostSyncOperation = NoWrite;
1213       pc.CommandStreamerStallEnable = true;
1214    }
1215 
1216 #if GEN_GEN >= 8
1217 
1218    assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1219 
1220    uint32_t l3cr;
1221    anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1222                    .SLMEnable = has_slm,
1223                    .URBAllocation = cfg->n[GEN_L3P_URB],
1224                    .ROAllocation = cfg->n[GEN_L3P_RO],
1225                    .DCAllocation = cfg->n[GEN_L3P_DC],
1226                    .AllAllocation = cfg->n[GEN_L3P_ALL]);
1227 
1228    /* Set up the L3 partitioning. */
1229    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1230 
1231 #else
1232 
1233    const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1234    const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1235                        cfg->n[GEN_L3P_ALL];
1236    const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1237                       cfg->n[GEN_L3P_ALL];
1238    const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1239                       cfg->n[GEN_L3P_ALL];
1240 
1241    assert(!cfg->n[GEN_L3P_ALL]);
1242 
1243    /* When enabled SLM only uses a portion of the L3 on half of the banks,
1244     * the matching space on the remaining banks has to be allocated to a
1245     * client (URB for all validated configurations) set to the
1246     * lower-bandwidth 2-bank address hashing mode.
1247     */
1248    const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1249    const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1250    assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1251 
1252    /* Minimum number of ways that can be allocated to the URB. */
1253    MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1254    assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1255 
1256    uint32_t l3sqcr1, l3cr2, l3cr3;
1257    anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1258                    .ConvertDC_UC = !has_dc,
1259                    .ConvertIS_UC = !has_is,
1260                    .ConvertC_UC = !has_c,
1261                    .ConvertT_UC = !has_t);
1262    l3sqcr1 |=
1263       GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1264       devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1265       IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1266 
1267    anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1268                    .SLMEnable = has_slm,
1269                    .URBLowBandwidth = urb_low_bw,
1270                    .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1271 #if !GEN_IS_HASWELL
1272                    .ALLAllocation = cfg->n[GEN_L3P_ALL],
1273 #endif
1274                    .ROAllocation = cfg->n[GEN_L3P_RO],
1275                    .DCAllocation = cfg->n[GEN_L3P_DC]);
1276 
1277    anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1278                    .ISAllocation = cfg->n[GEN_L3P_IS],
1279                    .ISLowBandwidth = 0,
1280                    .CAllocation = cfg->n[GEN_L3P_C],
1281                    .CLowBandwidth = 0,
1282                    .TAllocation = cfg->n[GEN_L3P_T],
1283                    .TLowBandwidth = 0);
1284 
1285    /* Set up the L3 partitioning. */
1286    emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1287    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1288    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1289 
1290 #if GEN_IS_HASWELL
1291    if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1292       /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1293        * them disabled to avoid crashing the system hard.
1294        */
1295       uint32_t scratch1, chicken3;
1296       anv_pack_struct(&scratch1, GENX(SCRATCH1),
1297                       .L3AtomicDisable = !has_dc);
1298       anv_pack_struct(&chicken3, GENX(CHICKEN3),
1299                       .L3AtomicDisableMask = true,
1300                       .L3AtomicDisable = !has_dc);
1301       emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1302       emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1303    }
1304 #endif
1305 
1306 #endif
1307 
1308    cmd_buffer->state.current_l3_config = cfg;
1309 }
1310 
1311 void
genX(cmd_buffer_apply_pipe_flushes)1312 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1313 {
1314    enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1315 
1316    /* Flushes are pipelined while invalidations are handled immediately.
1317     * Therefore, if we're flushing anything then we need to schedule a stall
1318     * before any invalidations can happen.
1319     */
1320    if (bits & ANV_PIPE_FLUSH_BITS)
1321       bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1322 
1323    /* If we're going to do an invalidate and we have a pending CS stall that
1324     * has yet to be resolved, we do the CS stall now.
1325     */
1326    if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1327        (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1328       bits |= ANV_PIPE_CS_STALL_BIT;
1329       bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1330    }
1331 
1332    if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1333       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1334          pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1335          pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1336          pipe.RenderTargetCacheFlushEnable =
1337             bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1338 
1339          pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1340          pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1341          pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1342 
1343          /*
1344           * According to the Broadwell documentation, any PIPE_CONTROL with the
1345           * "Command Streamer Stall" bit set must also have another bit set,
1346           * with five different options:
1347           *
1348           *  - Render Target Cache Flush
1349           *  - Depth Cache Flush
1350           *  - Stall at Pixel Scoreboard
1351           *  - Post-Sync Operation
1352           *  - Depth Stall
1353           *  - DC Flush Enable
1354           *
1355           * I chose "Stall at Pixel Scoreboard" since that's what we use in
1356           * mesa and it seems to work fine. The choice is fairly arbitrary.
1357           */
1358          if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1359              !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1360                        ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1361             pipe.StallAtPixelScoreboard = true;
1362       }
1363 
1364       bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1365    }
1366 
1367    if (bits & ANV_PIPE_INVALIDATE_BITS) {
1368       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1369          pipe.StateCacheInvalidationEnable =
1370             bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1371          pipe.ConstantCacheInvalidationEnable =
1372             bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1373          pipe.VFCacheInvalidationEnable =
1374             bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1375          pipe.TextureCacheInvalidationEnable =
1376             bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1377          pipe.InstructionCacheInvalidateEnable =
1378             bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1379       }
1380 
1381       bits &= ~ANV_PIPE_INVALIDATE_BITS;
1382    }
1383 
1384    cmd_buffer->state.pending_pipe_bits = bits;
1385 }
1386 
genX(CmdPipelineBarrier)1387 void genX(CmdPipelineBarrier)(
1388     VkCommandBuffer                             commandBuffer,
1389     VkPipelineStageFlags                        srcStageMask,
1390     VkPipelineStageFlags                        destStageMask,
1391     VkBool32                                    byRegion,
1392     uint32_t                                    memoryBarrierCount,
1393     const VkMemoryBarrier*                      pMemoryBarriers,
1394     uint32_t                                    bufferMemoryBarrierCount,
1395     const VkBufferMemoryBarrier*                pBufferMemoryBarriers,
1396     uint32_t                                    imageMemoryBarrierCount,
1397     const VkImageMemoryBarrier*                 pImageMemoryBarriers)
1398 {
1399    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1400 
1401    /* XXX: Right now, we're really dumb and just flush whatever categories
1402     * the app asks for.  One of these days we may make this a bit better
1403     * but right now that's all the hardware allows for in most areas.
1404     */
1405    VkAccessFlags src_flags = 0;
1406    VkAccessFlags dst_flags = 0;
1407 
1408    for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1409       src_flags |= pMemoryBarriers[i].srcAccessMask;
1410       dst_flags |= pMemoryBarriers[i].dstAccessMask;
1411    }
1412 
1413    for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1414       src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1415       dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1416    }
1417 
1418    for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1419       src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1420       dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1421       ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1422       const VkImageSubresourceRange *range =
1423          &pImageMemoryBarriers[i].subresourceRange;
1424 
1425       if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1426          transition_depth_buffer(cmd_buffer, image,
1427                                  pImageMemoryBarriers[i].oldLayout,
1428                                  pImageMemoryBarriers[i].newLayout);
1429       } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1430          VkImageAspectFlags color_aspects =
1431             anv_image_expand_aspects(image, range->aspectMask);
1432          uint32_t aspect_bit;
1433 
1434          anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1435             transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1436                                     range->baseMipLevel,
1437                                     anv_get_levelCount(image, range),
1438                                     range->baseArrayLayer,
1439                                     anv_get_layerCount(image, range),
1440                                     pImageMemoryBarriers[i].oldLayout,
1441                                     pImageMemoryBarriers[i].newLayout);
1442          }
1443       }
1444    }
1445 
1446    cmd_buffer->state.pending_pipe_bits |=
1447       anv_pipe_flush_bits_for_access_flags(src_flags) |
1448       anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1449 }
1450 
1451 static void
cmd_buffer_alloc_push_constants(struct anv_cmd_buffer * cmd_buffer)1452 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1453 {
1454    VkShaderStageFlags stages =
1455       cmd_buffer->state.gfx.base.pipeline->active_stages;
1456 
1457    /* In order to avoid thrash, we assume that vertex and fragment stages
1458     * always exist.  In the rare case where one is missing *and* the other
1459     * uses push concstants, this may be suboptimal.  However, avoiding stalls
1460     * seems more important.
1461     */
1462    stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1463 
1464    if (stages == cmd_buffer->state.push_constant_stages)
1465       return;
1466 
1467 #if GEN_GEN >= 8
1468    const unsigned push_constant_kb = 32;
1469 #elif GEN_IS_HASWELL
1470    const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1471 #else
1472    const unsigned push_constant_kb = 16;
1473 #endif
1474 
1475    const unsigned num_stages =
1476       _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1477    unsigned size_per_stage = push_constant_kb / num_stages;
1478 
1479    /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1480     * units of 2KB.  Incidentally, these are the same platforms that have
1481     * 32KB worth of push constant space.
1482     */
1483    if (push_constant_kb == 32)
1484       size_per_stage &= ~1u;
1485 
1486    uint32_t kb_used = 0;
1487    for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1488       unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1489       anv_batch_emit(&cmd_buffer->batch,
1490                      GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1491          alloc._3DCommandSubOpcode  = 18 + i;
1492          alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1493          alloc.ConstantBufferSize   = push_size;
1494       }
1495       kb_used += push_size;
1496    }
1497 
1498    anv_batch_emit(&cmd_buffer->batch,
1499                   GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1500       alloc.ConstantBufferOffset = kb_used;
1501       alloc.ConstantBufferSize = push_constant_kb - kb_used;
1502    }
1503 
1504    cmd_buffer->state.push_constant_stages = stages;
1505 
1506    /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1507     *
1508     *    "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1509     *    the next 3DPRIMITIVE command after programming the
1510     *    3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1511     *
1512     * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1513     * pipeline setup, we need to dirty push constants.
1514     */
1515    cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1516 }
1517 
1518 static const struct anv_descriptor *
anv_descriptor_for_binding(const struct anv_cmd_pipeline_state * pipe_state,const struct anv_pipeline_binding * binding)1519 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1520                            const struct anv_pipeline_binding *binding)
1521 {
1522    assert(binding->set < MAX_SETS);
1523    const struct anv_descriptor_set *set =
1524       pipe_state->descriptors[binding->set];
1525    const uint32_t offset =
1526       set->layout->binding[binding->binding].descriptor_index;
1527    return &set->descriptors[offset + binding->index];
1528 }
1529 
1530 static uint32_t
dynamic_offset_for_binding(const struct anv_cmd_pipeline_state * pipe_state,const struct anv_pipeline * pipeline,const struct anv_pipeline_binding * binding)1531 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1532                            const struct anv_pipeline *pipeline,
1533                            const struct anv_pipeline_binding *binding)
1534 {
1535    assert(binding->set < MAX_SETS);
1536    const struct anv_descriptor_set *set =
1537       pipe_state->descriptors[binding->set];
1538 
1539    uint32_t dynamic_offset_idx =
1540       pipeline->layout->set[binding->set].dynamic_offset_start +
1541       set->layout->binding[binding->binding].dynamic_offset_index +
1542       binding->index;
1543 
1544    return pipe_state->dynamic_offsets[dynamic_offset_idx];
1545 }
1546 
1547 static VkResult
emit_binding_table(struct anv_cmd_buffer * cmd_buffer,gl_shader_stage stage,struct anv_state * bt_state)1548 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1549                    gl_shader_stage stage,
1550                    struct anv_state *bt_state)
1551 {
1552    struct anv_subpass *subpass = cmd_buffer->state.subpass;
1553    struct anv_cmd_pipeline_state *pipe_state;
1554    struct anv_pipeline *pipeline;
1555    uint32_t bias, state_offset;
1556 
1557    switch (stage) {
1558    case  MESA_SHADER_COMPUTE:
1559       pipe_state = &cmd_buffer->state.compute.base;
1560       bias = 1;
1561       break;
1562    default:
1563       pipe_state = &cmd_buffer->state.gfx.base;
1564       bias = 0;
1565       break;
1566    }
1567    pipeline = pipe_state->pipeline;
1568 
1569    if (!anv_pipeline_has_stage(pipeline, stage)) {
1570       *bt_state = (struct anv_state) { 0, };
1571       return VK_SUCCESS;
1572    }
1573 
1574    struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1575    if (bias + map->surface_count == 0) {
1576       *bt_state = (struct anv_state) { 0, };
1577       return VK_SUCCESS;
1578    }
1579 
1580    *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1581                                                   bias + map->surface_count,
1582                                                   &state_offset);
1583    uint32_t *bt_map = bt_state->map;
1584 
1585    if (bt_state->map == NULL)
1586       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1587 
1588    if (stage == MESA_SHADER_COMPUTE &&
1589        get_cs_prog_data(pipeline)->uses_num_work_groups) {
1590       struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1591       uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1592 
1593       struct anv_state surface_state;
1594       surface_state =
1595          anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1596 
1597       const enum isl_format format =
1598          anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1599       anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1600                                     format, bo_offset, 12, 1);
1601 
1602       bt_map[0] = surface_state.offset + state_offset;
1603       add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1604    }
1605 
1606    if (map->surface_count == 0)
1607       goto out;
1608 
1609    if (map->image_count > 0) {
1610       VkResult result =
1611          anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1612       if (result != VK_SUCCESS)
1613          return result;
1614 
1615       cmd_buffer->state.push_constants_dirty |= 1 << stage;
1616    }
1617 
1618    uint32_t image = 0;
1619    for (uint32_t s = 0; s < map->surface_count; s++) {
1620       struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1621 
1622       struct anv_state surface_state;
1623 
1624       if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1625          /* Color attachment binding */
1626          assert(stage == MESA_SHADER_FRAGMENT);
1627          assert(binding->binding == 0);
1628          if (binding->index < subpass->color_count) {
1629             const unsigned att =
1630                subpass->color_attachments[binding->index].attachment;
1631 
1632             /* From the Vulkan 1.0.46 spec:
1633              *
1634              *    "If any color or depth/stencil attachments are
1635              *    VK_ATTACHMENT_UNUSED, then no writes occur for those
1636              *    attachments."
1637              */
1638             if (att == VK_ATTACHMENT_UNUSED) {
1639                surface_state = cmd_buffer->state.null_surface_state;
1640             } else {
1641                surface_state = cmd_buffer->state.attachments[att].color.state;
1642             }
1643          } else {
1644             surface_state = cmd_buffer->state.null_surface_state;
1645          }
1646 
1647          bt_map[bias + s] = surface_state.offset + state_offset;
1648          continue;
1649       }
1650 
1651       const struct anv_descriptor *desc =
1652          anv_descriptor_for_binding(pipe_state, binding);
1653 
1654       switch (desc->type) {
1655       case VK_DESCRIPTOR_TYPE_SAMPLER:
1656          /* Nothing for us to do here */
1657          continue;
1658 
1659       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1660       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1661          struct anv_surface_state sstate =
1662             (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1663             desc->image_view->planes[binding->plane].general_sampler_surface_state :
1664             desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1665          surface_state = sstate.state;
1666          assert(surface_state.alloc_size);
1667          add_image_view_relocs(cmd_buffer, desc->image_view,
1668                                binding->plane, sstate);
1669          break;
1670       }
1671       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1672          assert(stage == MESA_SHADER_FRAGMENT);
1673          if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1674             /* For depth and stencil input attachments, we treat it like any
1675              * old texture that a user may have bound.
1676              */
1677             struct anv_surface_state sstate =
1678                (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1679                desc->image_view->planes[binding->plane].general_sampler_surface_state :
1680                desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1681             surface_state = sstate.state;
1682             assert(surface_state.alloc_size);
1683             add_image_view_relocs(cmd_buffer, desc->image_view,
1684                                   binding->plane, sstate);
1685          } else {
1686             /* For color input attachments, we create the surface state at
1687              * vkBeginRenderPass time so that we can include aux and clear
1688              * color information.
1689              */
1690             assert(binding->input_attachment_index < subpass->input_count);
1691             const unsigned subpass_att = binding->input_attachment_index;
1692             const unsigned att = subpass->input_attachments[subpass_att].attachment;
1693             surface_state = cmd_buffer->state.attachments[att].input.state;
1694          }
1695          break;
1696 
1697       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1698          struct anv_surface_state sstate = (binding->write_only)
1699             ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1700             : desc->image_view->planes[binding->plane].storage_surface_state;
1701          surface_state = sstate.state;
1702          assert(surface_state.alloc_size);
1703          add_image_view_relocs(cmd_buffer, desc->image_view,
1704                                binding->plane, sstate);
1705 
1706          struct brw_image_param *image_param =
1707             &cmd_buffer->state.push_constants[stage]->images[image++];
1708 
1709          *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1710          image_param->surface_idx = bias + s;
1711          break;
1712       }
1713 
1714       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1715       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1716       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1717          surface_state = desc->buffer_view->surface_state;
1718          assert(surface_state.alloc_size);
1719          add_surface_state_reloc(cmd_buffer, surface_state,
1720                                  desc->buffer_view->bo,
1721                                  desc->buffer_view->offset);
1722          break;
1723 
1724       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1725       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1726          /* Compute the offset within the buffer */
1727          uint32_t dynamic_offset =
1728             dynamic_offset_for_binding(pipe_state, pipeline, binding);
1729          uint64_t offset = desc->offset + dynamic_offset;
1730          /* Clamp to the buffer size */
1731          offset = MIN2(offset, desc->buffer->size);
1732          /* Clamp the range to the buffer size */
1733          uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1734 
1735          surface_state =
1736             anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1737          enum isl_format format =
1738             anv_isl_format_for_descriptor_type(desc->type);
1739 
1740          anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1741                                        format, offset, range, 1);
1742          add_surface_state_reloc(cmd_buffer, surface_state,
1743                                  desc->buffer->bo,
1744                                  desc->buffer->offset + offset);
1745          break;
1746       }
1747 
1748       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1749          surface_state = (binding->write_only)
1750             ? desc->buffer_view->writeonly_storage_surface_state
1751             : desc->buffer_view->storage_surface_state;
1752          assert(surface_state.alloc_size);
1753          add_surface_state_reloc(cmd_buffer, surface_state,
1754                                  desc->buffer_view->bo,
1755                                  desc->buffer_view->offset);
1756 
1757          struct brw_image_param *image_param =
1758             &cmd_buffer->state.push_constants[stage]->images[image++];
1759 
1760          *image_param = desc->buffer_view->storage_image_param;
1761          image_param->surface_idx = bias + s;
1762          break;
1763 
1764       default:
1765          assert(!"Invalid descriptor type");
1766          continue;
1767       }
1768 
1769       bt_map[bias + s] = surface_state.offset + state_offset;
1770    }
1771    assert(image == map->image_count);
1772 
1773  out:
1774    anv_state_flush(cmd_buffer->device, *bt_state);
1775 
1776    return VK_SUCCESS;
1777 }
1778 
1779 static VkResult
emit_samplers(struct anv_cmd_buffer * cmd_buffer,gl_shader_stage stage,struct anv_state * state)1780 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1781               gl_shader_stage stage,
1782               struct anv_state *state)
1783 {
1784    struct anv_cmd_pipeline_state *pipe_state =
1785       stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1786                                      &cmd_buffer->state.gfx.base;
1787    struct anv_pipeline *pipeline = pipe_state->pipeline;
1788 
1789    if (!anv_pipeline_has_stage(pipeline, stage)) {
1790       *state = (struct anv_state) { 0, };
1791       return VK_SUCCESS;
1792    }
1793 
1794    struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1795    if (map->sampler_count == 0) {
1796       *state = (struct anv_state) { 0, };
1797       return VK_SUCCESS;
1798    }
1799 
1800    uint32_t size = map->sampler_count * 16;
1801    *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1802 
1803    if (state->map == NULL)
1804       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1805 
1806    for (uint32_t s = 0; s < map->sampler_count; s++) {
1807       struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1808       const struct anv_descriptor *desc =
1809          anv_descriptor_for_binding(pipe_state, binding);
1810 
1811       if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1812           desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1813          continue;
1814 
1815       struct anv_sampler *sampler = desc->sampler;
1816 
1817       /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1818        * happens to be zero.
1819        */
1820       if (sampler == NULL)
1821          continue;
1822 
1823       memcpy(state->map + (s * 16),
1824              sampler->state[binding->plane], sizeof(sampler->state[0]));
1825    }
1826 
1827    anv_state_flush(cmd_buffer->device, *state);
1828 
1829    return VK_SUCCESS;
1830 }
1831 
1832 static uint32_t
flush_descriptor_sets(struct anv_cmd_buffer * cmd_buffer)1833 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1834 {
1835    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1836 
1837    VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1838                               pipeline->active_stages;
1839 
1840    VkResult result = VK_SUCCESS;
1841    anv_foreach_stage(s, dirty) {
1842       result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1843       if (result != VK_SUCCESS)
1844          break;
1845       result = emit_binding_table(cmd_buffer, s,
1846                                   &cmd_buffer->state.binding_tables[s]);
1847       if (result != VK_SUCCESS)
1848          break;
1849    }
1850 
1851    if (result != VK_SUCCESS) {
1852       assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1853 
1854       result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1855       if (result != VK_SUCCESS)
1856          return 0;
1857 
1858       /* Re-emit state base addresses so we get the new surface state base
1859        * address before we start emitting binding tables etc.
1860        */
1861       genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1862 
1863       /* Re-emit all active binding tables */
1864       dirty |= pipeline->active_stages;
1865       anv_foreach_stage(s, dirty) {
1866          result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1867          if (result != VK_SUCCESS) {
1868             anv_batch_set_error(&cmd_buffer->batch, result);
1869             return 0;
1870          }
1871          result = emit_binding_table(cmd_buffer, s,
1872                                      &cmd_buffer->state.binding_tables[s]);
1873          if (result != VK_SUCCESS) {
1874             anv_batch_set_error(&cmd_buffer->batch, result);
1875             return 0;
1876          }
1877       }
1878    }
1879 
1880    cmd_buffer->state.descriptors_dirty &= ~dirty;
1881 
1882    return dirty;
1883 }
1884 
1885 static void
cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer * cmd_buffer,uint32_t stages)1886 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1887                                     uint32_t stages)
1888 {
1889    static const uint32_t sampler_state_opcodes[] = {
1890       [MESA_SHADER_VERTEX]                      = 43,
1891       [MESA_SHADER_TESS_CTRL]                   = 44, /* HS */
1892       [MESA_SHADER_TESS_EVAL]                   = 45, /* DS */
1893       [MESA_SHADER_GEOMETRY]                    = 46,
1894       [MESA_SHADER_FRAGMENT]                    = 47,
1895       [MESA_SHADER_COMPUTE]                     = 0,
1896    };
1897 
1898    static const uint32_t binding_table_opcodes[] = {
1899       [MESA_SHADER_VERTEX]                      = 38,
1900       [MESA_SHADER_TESS_CTRL]                   = 39,
1901       [MESA_SHADER_TESS_EVAL]                   = 40,
1902       [MESA_SHADER_GEOMETRY]                    = 41,
1903       [MESA_SHADER_FRAGMENT]                    = 42,
1904       [MESA_SHADER_COMPUTE]                     = 0,
1905    };
1906 
1907    anv_foreach_stage(s, stages) {
1908       assert(s < ARRAY_SIZE(binding_table_opcodes));
1909       assert(binding_table_opcodes[s] > 0);
1910 
1911       if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1912          anv_batch_emit(&cmd_buffer->batch,
1913                         GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1914             ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1915             ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1916          }
1917       }
1918 
1919       /* Always emit binding table pointers if we're asked to, since on SKL
1920        * this is what flushes push constants. */
1921       anv_batch_emit(&cmd_buffer->batch,
1922                      GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1923          btp._3DCommandSubOpcode = binding_table_opcodes[s];
1924          btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1925       }
1926    }
1927 }
1928 
1929 static void
cmd_buffer_flush_push_constants(struct anv_cmd_buffer * cmd_buffer,VkShaderStageFlags dirty_stages)1930 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1931                                 VkShaderStageFlags dirty_stages)
1932 {
1933    const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1934    const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1935 
1936    static const uint32_t push_constant_opcodes[] = {
1937       [MESA_SHADER_VERTEX]                      = 21,
1938       [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
1939       [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
1940       [MESA_SHADER_GEOMETRY]                    = 22,
1941       [MESA_SHADER_FRAGMENT]                    = 23,
1942       [MESA_SHADER_COMPUTE]                     = 0,
1943    };
1944 
1945    VkShaderStageFlags flushed = 0;
1946 
1947    anv_foreach_stage(stage, dirty_stages) {
1948       assert(stage < ARRAY_SIZE(push_constant_opcodes));
1949       assert(push_constant_opcodes[stage] > 0);
1950 
1951       anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1952          c._3DCommandSubOpcode = push_constant_opcodes[stage];
1953 
1954          if (anv_pipeline_has_stage(pipeline, stage)) {
1955 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1956             const struct brw_stage_prog_data *prog_data =
1957                pipeline->shaders[stage]->prog_data;
1958             const struct anv_pipeline_bind_map *bind_map =
1959                &pipeline->shaders[stage]->bind_map;
1960 
1961             /* The Skylake PRM contains the following restriction:
1962              *
1963              *    "The driver must ensure The following case does not occur
1964              *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1965              *     buffer 3 read length equal to zero committed followed by a
1966              *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1967              *     zero committed."
1968              *
1969              * To avoid this, we program the buffers in the highest slots.
1970              * This way, slot 0 is only used if slot 3 is also used.
1971              */
1972             int n = 3;
1973 
1974             for (int i = 3; i >= 0; i--) {
1975                const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1976                if (range->length == 0)
1977                   continue;
1978 
1979                const unsigned surface =
1980                   prog_data->binding_table.ubo_start + range->block;
1981 
1982                assert(surface <= bind_map->surface_count);
1983                const struct anv_pipeline_binding *binding =
1984                   &bind_map->surface_to_descriptor[surface];
1985 
1986                const struct anv_descriptor *desc =
1987                   anv_descriptor_for_binding(&gfx_state->base, binding);
1988 
1989                struct anv_address read_addr;
1990                uint32_t read_len;
1991                if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
1992                   read_len = MIN2(range->length,
1993                      DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
1994                   read_addr = (struct anv_address) {
1995                      .bo = desc->buffer_view->bo,
1996                      .offset = desc->buffer_view->offset +
1997                                range->start * 32,
1998                   };
1999                } else {
2000                   assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2001 
2002                   uint32_t dynamic_offset =
2003                      dynamic_offset_for_binding(&gfx_state->base,
2004                                                 pipeline, binding);
2005                   uint32_t buf_offset =
2006                      MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2007                   uint32_t buf_range =
2008                      MIN2(desc->range, desc->buffer->size - buf_offset);
2009 
2010                   read_len = MIN2(range->length,
2011                      DIV_ROUND_UP(buf_range, 32) - range->start);
2012                   read_addr = (struct anv_address) {
2013                      .bo = desc->buffer->bo,
2014                      .offset = desc->buffer->offset + buf_offset +
2015                                range->start * 32,
2016                   };
2017                }
2018 
2019                if (read_len > 0) {
2020                   c.ConstantBody.Buffer[n] = read_addr;
2021                   c.ConstantBody.ReadLength[n] = read_len;
2022                   n--;
2023                }
2024             }
2025 
2026             struct anv_state state =
2027                anv_cmd_buffer_push_constants(cmd_buffer, stage);
2028 
2029             if (state.alloc_size > 0) {
2030                c.ConstantBody.Buffer[n] = (struct anv_address) {
2031                   .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2032                   .offset = state.offset,
2033                };
2034                c.ConstantBody.ReadLength[n] =
2035                   DIV_ROUND_UP(state.alloc_size, 32);
2036             }
2037 #else
2038             /* For Ivy Bridge, the push constants packets have a different
2039              * rule that would require us to iterate in the other direction
2040              * and possibly mess around with dynamic state base address.
2041              * Don't bother; just emit regular push constants at n = 0.
2042              */
2043             struct anv_state state =
2044                anv_cmd_buffer_push_constants(cmd_buffer, stage);
2045 
2046             if (state.alloc_size > 0) {
2047                c.ConstantBody.Buffer[0].offset = state.offset,
2048                c.ConstantBody.ReadLength[0] =
2049                   DIV_ROUND_UP(state.alloc_size, 32);
2050             }
2051 #endif
2052          }
2053       }
2054 
2055       flushed |= mesa_to_vk_shader_stage(stage);
2056    }
2057 
2058    cmd_buffer->state.push_constants_dirty &= ~flushed;
2059 }
2060 
2061 void
genX(cmd_buffer_flush_state)2062 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2063 {
2064    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2065    uint32_t *p;
2066 
2067    uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2068 
2069    assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2070 
2071    genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2072 
2073    genX(flush_pipeline_select_3d)(cmd_buffer);
2074 
2075    if (vb_emit) {
2076       const uint32_t num_buffers = __builtin_popcount(vb_emit);
2077       const uint32_t num_dwords = 1 + num_buffers * 4;
2078 
2079       p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2080                           GENX(3DSTATE_VERTEX_BUFFERS));
2081       uint32_t vb, i = 0;
2082       for_each_bit(vb, vb_emit) {
2083          struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2084          uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2085 
2086          struct GENX(VERTEX_BUFFER_STATE) state = {
2087             .VertexBufferIndex = vb,
2088 
2089 #if GEN_GEN >= 8
2090             .MemoryObjectControlState = GENX(MOCS),
2091 #else
2092             .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2093             /* Our implementation of VK_KHR_multiview uses instancing to draw
2094              * the different views.  If the client asks for instancing, we
2095              * need to use the Instance Data Step Rate to ensure that we
2096              * repeat the client's per-instance data once for each view.
2097              */
2098             .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2099             .VertexBufferMemoryObjectControlState = GENX(MOCS),
2100 #endif
2101 
2102             .AddressModifyEnable = true,
2103             .BufferPitch = pipeline->binding_stride[vb],
2104             .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2105 
2106 #if GEN_GEN >= 8
2107             .BufferSize = buffer->size - offset
2108 #else
2109             .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2110 #endif
2111          };
2112 
2113          GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2114          i++;
2115       }
2116    }
2117 
2118    cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2119 
2120    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2121       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2122 
2123       /* The exact descriptor layout is pulled from the pipeline, so we need
2124        * to re-emit binding tables on every pipeline change.
2125        */
2126       cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2127 
2128       /* If the pipeline changed, we may need to re-allocate push constant
2129        * space in the URB.
2130        */
2131       cmd_buffer_alloc_push_constants(cmd_buffer);
2132    }
2133 
2134 #if GEN_GEN <= 7
2135    if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2136        cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2137       /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2138        *
2139        *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2140        *    stall needs to be sent just prior to any 3DSTATE_VS,
2141        *    3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2142        *    3DSTATE_BINDING_TABLE_POINTER_VS,
2143        *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one
2144        *    PIPE_CONTROL needs to be sent before any combination of VS
2145        *    associated 3DSTATE."
2146        */
2147       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2148          pc.DepthStallEnable  = true;
2149          pc.PostSyncOperation = WriteImmediateData;
2150          pc.Address           =
2151             (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2152       }
2153    }
2154 #endif
2155 
2156    /* Render targets live in the same binding table as fragment descriptors */
2157    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2158       cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2159 
2160    /* We emit the binding tables and sampler tables first, then emit push
2161     * constants and then finally emit binding table and sampler table
2162     * pointers.  It has to happen in this order, since emitting the binding
2163     * tables may change the push constants (in case of storage images). After
2164     * emitting push constants, on SKL+ we have to emit the corresponding
2165     * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2166     */
2167    uint32_t dirty = 0;
2168    if (cmd_buffer->state.descriptors_dirty)
2169       dirty = flush_descriptor_sets(cmd_buffer);
2170 
2171    if (dirty || cmd_buffer->state.push_constants_dirty) {
2172       /* Because we're pushing UBOs, we have to push whenever either
2173        * descriptors or push constants is dirty.
2174        */
2175       dirty |= cmd_buffer->state.push_constants_dirty;
2176       dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2177       cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2178    }
2179 
2180    if (dirty)
2181       cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2182 
2183    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2184       gen8_cmd_buffer_emit_viewport(cmd_buffer);
2185 
2186    if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2187                                   ANV_CMD_DIRTY_PIPELINE)) {
2188       gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2189                                           pipeline->depth_clamp_enable);
2190    }
2191 
2192    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2193       gen7_cmd_buffer_emit_scissor(cmd_buffer);
2194 
2195    genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2196 
2197    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2198 }
2199 
2200 static void
emit_vertex_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset,uint32_t size,uint32_t index)2201 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2202                struct anv_bo *bo, uint32_t offset,
2203                uint32_t size, uint32_t index)
2204 {
2205    uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2206                                  GENX(3DSTATE_VERTEX_BUFFERS));
2207 
2208    GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2209       &(struct GENX(VERTEX_BUFFER_STATE)) {
2210          .VertexBufferIndex = index,
2211          .AddressModifyEnable = true,
2212          .BufferPitch = 0,
2213 #if (GEN_GEN >= 8)
2214          .MemoryObjectControlState = GENX(MOCS),
2215          .BufferStartingAddress = { bo, offset },
2216          .BufferSize = size
2217 #else
2218          .VertexBufferMemoryObjectControlState = GENX(MOCS),
2219          .BufferStartingAddress = { bo, offset },
2220          .EndAddress = { bo, offset + size },
2221 #endif
2222       });
2223 }
2224 
2225 static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset)2226 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2227                              struct anv_bo *bo, uint32_t offset)
2228 {
2229    emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2230 }
2231 
2232 static void
emit_base_vertex_instance(struct anv_cmd_buffer * cmd_buffer,uint32_t base_vertex,uint32_t base_instance)2233 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2234                           uint32_t base_vertex, uint32_t base_instance)
2235 {
2236    struct anv_state id_state =
2237       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2238 
2239    ((uint32_t *)id_state.map)[0] = base_vertex;
2240    ((uint32_t *)id_state.map)[1] = base_instance;
2241 
2242    anv_state_flush(cmd_buffer->device, id_state);
2243 
2244    emit_base_vertex_instance_bo(cmd_buffer,
2245       &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2246 }
2247 
2248 static void
emit_draw_index(struct anv_cmd_buffer * cmd_buffer,uint32_t draw_index)2249 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2250 {
2251    struct anv_state state =
2252       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2253 
2254    ((uint32_t *)state.map)[0] = draw_index;
2255 
2256    anv_state_flush(cmd_buffer->device, state);
2257 
2258    emit_vertex_bo(cmd_buffer,
2259                   &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2260                   state.offset, 4, ANV_DRAWID_VB_INDEX);
2261 }
2262 
genX(CmdDraw)2263 void genX(CmdDraw)(
2264     VkCommandBuffer                             commandBuffer,
2265     uint32_t                                    vertexCount,
2266     uint32_t                                    instanceCount,
2267     uint32_t                                    firstVertex,
2268     uint32_t                                    firstInstance)
2269 {
2270    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2271    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2272    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2273 
2274    if (anv_batch_has_error(&cmd_buffer->batch))
2275       return;
2276 
2277    genX(cmd_buffer_flush_state)(cmd_buffer);
2278 
2279    if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2280       emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2281    if (vs_prog_data->uses_drawid)
2282       emit_draw_index(cmd_buffer, 0);
2283 
2284    /* Our implementation of VK_KHR_multiview uses instancing to draw the
2285     * different views.  We need to multiply instanceCount by the view count.
2286     */
2287    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2288 
2289    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2290       prim.VertexAccessType         = SEQUENTIAL;
2291       prim.PrimitiveTopologyType    = pipeline->topology;
2292       prim.VertexCountPerInstance   = vertexCount;
2293       prim.StartVertexLocation      = firstVertex;
2294       prim.InstanceCount            = instanceCount;
2295       prim.StartInstanceLocation    = firstInstance;
2296       prim.BaseVertexLocation       = 0;
2297    }
2298 }
2299 
genX(CmdDrawIndexed)2300 void genX(CmdDrawIndexed)(
2301     VkCommandBuffer                             commandBuffer,
2302     uint32_t                                    indexCount,
2303     uint32_t                                    instanceCount,
2304     uint32_t                                    firstIndex,
2305     int32_t                                     vertexOffset,
2306     uint32_t                                    firstInstance)
2307 {
2308    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2310    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2311 
2312    if (anv_batch_has_error(&cmd_buffer->batch))
2313       return;
2314 
2315    genX(cmd_buffer_flush_state)(cmd_buffer);
2316 
2317    if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2318       emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2319    if (vs_prog_data->uses_drawid)
2320       emit_draw_index(cmd_buffer, 0);
2321 
2322    /* Our implementation of VK_KHR_multiview uses instancing to draw the
2323     * different views.  We need to multiply instanceCount by the view count.
2324     */
2325    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2326 
2327    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2328       prim.VertexAccessType         = RANDOM;
2329       prim.PrimitiveTopologyType    = pipeline->topology;
2330       prim.VertexCountPerInstance   = indexCount;
2331       prim.StartVertexLocation      = firstIndex;
2332       prim.InstanceCount            = instanceCount;
2333       prim.StartInstanceLocation    = firstInstance;
2334       prim.BaseVertexLocation       = vertexOffset;
2335    }
2336 }
2337 
2338 /* Auto-Draw / Indirect Registers */
2339 #define GEN7_3DPRIM_END_OFFSET          0x2420
2340 #define GEN7_3DPRIM_START_VERTEX        0x2430
2341 #define GEN7_3DPRIM_VERTEX_COUNT        0x2434
2342 #define GEN7_3DPRIM_INSTANCE_COUNT      0x2438
2343 #define GEN7_3DPRIM_START_INSTANCE      0x243C
2344 #define GEN7_3DPRIM_BASE_VERTEX         0x2440
2345 
2346 /* MI_MATH only exists on Haswell+ */
2347 #if GEN_IS_HASWELL || GEN_GEN >= 8
2348 
2349 static uint32_t
mi_alu(uint32_t opcode,uint32_t op1,uint32_t op2)2350 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2351 {
2352    struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2353       .ALUOpcode = opcode,
2354       .Operand1 = op1,
2355       .Operand2 = op2,
2356    };
2357 
2358    uint32_t dw;
2359    GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2360 
2361    return dw;
2362 }
2363 
2364 #define CS_GPR(n) (0x2600 + (n) * 8)
2365 
2366 /* Emit dwords to multiply GPR0 by N */
2367 static void
build_alu_multiply_gpr0(uint32_t * dw,unsigned * dw_count,uint32_t N)2368 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2369 {
2370    VK_OUTARRAY_MAKE(out, dw, dw_count);
2371 
2372 #define append_alu(opcode, operand1, operand2) \
2373    vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2374 
2375    assert(N > 0);
2376    unsigned top_bit = 31 - __builtin_clz(N);
2377    for (int i = top_bit - 1; i >= 0; i--) {
2378       /* We get our initial data in GPR0 and we write the final data out to
2379        * GPR0 but we use GPR1 as our scratch register.
2380        */
2381       unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2382       unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2383 
2384       /* Shift the current value left by 1 */
2385       append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2386       append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2387       append_alu(MI_ALU_ADD, 0, 0);
2388 
2389       if (N & (1 << i)) {
2390          /* Store ACCU to R1 and add R0 to R1 */
2391          append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2392          append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2393          append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2394          append_alu(MI_ALU_ADD, 0, 0);
2395       }
2396 
2397       append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2398    }
2399 
2400 #undef append_alu
2401 }
2402 
2403 static void
emit_mul_gpr0(struct anv_batch * batch,uint32_t N)2404 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2405 {
2406    uint32_t num_dwords;
2407    build_alu_multiply_gpr0(NULL, &num_dwords, N);
2408 
2409    uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2410    build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2411 }
2412 
2413 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2414 
2415 static void
load_indirect_parameters(struct anv_cmd_buffer * cmd_buffer,struct anv_buffer * buffer,uint64_t offset,bool indexed)2416 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2417                          struct anv_buffer *buffer, uint64_t offset,
2418                          bool indexed)
2419 {
2420    struct anv_batch *batch = &cmd_buffer->batch;
2421    struct anv_bo *bo = buffer->bo;
2422    uint32_t bo_offset = buffer->offset + offset;
2423 
2424    emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2425 
2426    unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2427    if (view_count > 1) {
2428 #if GEN_IS_HASWELL || GEN_GEN >= 8
2429       emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2430       emit_mul_gpr0(batch, view_count);
2431       emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2432 #else
2433       anv_finishme("Multiview + indirect draw requires MI_MATH; "
2434                    "MI_MATH is not supported on Ivy Bridge");
2435       emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2436 #endif
2437    } else {
2438       emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2439    }
2440 
2441    emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2442 
2443    if (indexed) {
2444       emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2445       emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2446    } else {
2447       emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2448       emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2449    }
2450 }
2451 
genX(CmdDrawIndirect)2452 void genX(CmdDrawIndirect)(
2453     VkCommandBuffer                             commandBuffer,
2454     VkBuffer                                    _buffer,
2455     VkDeviceSize                                offset,
2456     uint32_t                                    drawCount,
2457     uint32_t                                    stride)
2458 {
2459    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2460    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2461    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2462    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2463 
2464    if (anv_batch_has_error(&cmd_buffer->batch))
2465       return;
2466 
2467    genX(cmd_buffer_flush_state)(cmd_buffer);
2468 
2469    for (uint32_t i = 0; i < drawCount; i++) {
2470       struct anv_bo *bo = buffer->bo;
2471       uint32_t bo_offset = buffer->offset + offset;
2472 
2473       if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2474          emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2475       if (vs_prog_data->uses_drawid)
2476          emit_draw_index(cmd_buffer, i);
2477 
2478       load_indirect_parameters(cmd_buffer, buffer, offset, false);
2479 
2480       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2481          prim.IndirectParameterEnable  = true;
2482          prim.VertexAccessType         = SEQUENTIAL;
2483          prim.PrimitiveTopologyType    = pipeline->topology;
2484       }
2485 
2486       offset += stride;
2487    }
2488 }
2489 
genX(CmdDrawIndexedIndirect)2490 void genX(CmdDrawIndexedIndirect)(
2491     VkCommandBuffer                             commandBuffer,
2492     VkBuffer                                    _buffer,
2493     VkDeviceSize                                offset,
2494     uint32_t                                    drawCount,
2495     uint32_t                                    stride)
2496 {
2497    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2498    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2499    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2500    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2501 
2502    if (anv_batch_has_error(&cmd_buffer->batch))
2503       return;
2504 
2505    genX(cmd_buffer_flush_state)(cmd_buffer);
2506 
2507    for (uint32_t i = 0; i < drawCount; i++) {
2508       struct anv_bo *bo = buffer->bo;
2509       uint32_t bo_offset = buffer->offset + offset;
2510 
2511       /* TODO: We need to stomp base vertex to 0 somehow */
2512       if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2513          emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2514       if (vs_prog_data->uses_drawid)
2515          emit_draw_index(cmd_buffer, i);
2516 
2517       load_indirect_parameters(cmd_buffer, buffer, offset, true);
2518 
2519       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2520          prim.IndirectParameterEnable  = true;
2521          prim.VertexAccessType         = RANDOM;
2522          prim.PrimitiveTopologyType    = pipeline->topology;
2523       }
2524 
2525       offset += stride;
2526    }
2527 }
2528 
2529 static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer * cmd_buffer)2530 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2531 {
2532    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2533    struct anv_state surfaces = { 0, }, samplers = { 0, };
2534    VkResult result;
2535 
2536    result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2537    if (result != VK_SUCCESS) {
2538       assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2539 
2540       result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2541       if (result != VK_SUCCESS)
2542          return result;
2543 
2544       /* Re-emit state base addresses so we get the new surface state base
2545        * address before we start emitting binding tables etc.
2546        */
2547       genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2548 
2549       result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2550       if (result != VK_SUCCESS) {
2551          anv_batch_set_error(&cmd_buffer->batch, result);
2552          return result;
2553       }
2554    }
2555 
2556    result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2557    if (result != VK_SUCCESS) {
2558       anv_batch_set_error(&cmd_buffer->batch, result);
2559       return result;
2560    }
2561 
2562    uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2563    struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2564       .BindingTablePointer = surfaces.offset,
2565       .SamplerStatePointer = samplers.offset,
2566    };
2567    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2568 
2569    struct anv_state state =
2570       anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2571                                    pipeline->interface_descriptor_data,
2572                                    GENX(INTERFACE_DESCRIPTOR_DATA_length),
2573                                    64);
2574 
2575    uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2576    anv_batch_emit(&cmd_buffer->batch,
2577                   GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2578       mid.InterfaceDescriptorTotalLength        = size;
2579       mid.InterfaceDescriptorDataStartAddress   = state.offset;
2580    }
2581 
2582    return VK_SUCCESS;
2583 }
2584 
2585 void
genX(cmd_buffer_flush_compute_state)2586 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2587 {
2588    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2589    MAYBE_UNUSED VkResult result;
2590 
2591    assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2592 
2593    genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2594 
2595    genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2596 
2597    if (cmd_buffer->state.compute.pipeline_dirty) {
2598       /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2599        *
2600        *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2601        *    the only bits that are changed are scoreboard related: Scoreboard
2602        *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2603        *    these scoreboard related states, a MEDIA_STATE_FLUSH is
2604        *    sufficient."
2605        */
2606       cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2607       genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2608 
2609       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2610    }
2611 
2612    if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2613        cmd_buffer->state.compute.pipeline_dirty) {
2614       /* FIXME: figure out descriptors for gen7 */
2615       result = flush_compute_descriptor_set(cmd_buffer);
2616       if (result != VK_SUCCESS)
2617          return;
2618 
2619       cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2620    }
2621 
2622    if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2623       struct anv_state push_state =
2624          anv_cmd_buffer_cs_push_constants(cmd_buffer);
2625 
2626       if (push_state.alloc_size) {
2627          anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2628             curbe.CURBETotalDataLength    = push_state.alloc_size;
2629             curbe.CURBEDataStartAddress   = push_state.offset;
2630          }
2631       }
2632    }
2633 
2634    cmd_buffer->state.compute.pipeline_dirty = false;
2635 
2636    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2637 }
2638 
2639 #if GEN_GEN == 7
2640 
2641 static VkResult
verify_cmd_parser(const struct anv_device * device,int required_version,const char * function)2642 verify_cmd_parser(const struct anv_device *device,
2643                   int required_version,
2644                   const char *function)
2645 {
2646    if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2647       return vk_errorf(device->instance, device->instance,
2648                        VK_ERROR_FEATURE_NOT_PRESENT,
2649                        "cmd parser version %d is required for %s",
2650                        required_version, function);
2651    } else {
2652       return VK_SUCCESS;
2653    }
2654 }
2655 
2656 #endif
2657 
genX(CmdDispatch)2658 void genX(CmdDispatch)(
2659     VkCommandBuffer                             commandBuffer,
2660     uint32_t                                    x,
2661     uint32_t                                    y,
2662     uint32_t                                    z)
2663 {
2664    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2665    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2666    const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2667 
2668    if (anv_batch_has_error(&cmd_buffer->batch))
2669       return;
2670 
2671    if (prog_data->uses_num_work_groups) {
2672       struct anv_state state =
2673          anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2674       uint32_t *sizes = state.map;
2675       sizes[0] = x;
2676       sizes[1] = y;
2677       sizes[2] = z;
2678       anv_state_flush(cmd_buffer->device, state);
2679       cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2680          .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2681          .offset = state.offset,
2682       };
2683    }
2684 
2685    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2686 
2687    anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2688       ggw.SIMDSize                     = prog_data->simd_size / 16;
2689       ggw.ThreadDepthCounterMaximum    = 0;
2690       ggw.ThreadHeightCounterMaximum   = 0;
2691       ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
2692       ggw.ThreadGroupIDXDimension      = x;
2693       ggw.ThreadGroupIDYDimension      = y;
2694       ggw.ThreadGroupIDZDimension      = z;
2695       ggw.RightExecutionMask           = pipeline->cs_right_mask;
2696       ggw.BottomExecutionMask          = 0xffffffff;
2697    }
2698 
2699    anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2700 }
2701 
2702 #define GPGPU_DISPATCHDIMX 0x2500
2703 #define GPGPU_DISPATCHDIMY 0x2504
2704 #define GPGPU_DISPATCHDIMZ 0x2508
2705 
genX(CmdDispatchIndirect)2706 void genX(CmdDispatchIndirect)(
2707     VkCommandBuffer                             commandBuffer,
2708     VkBuffer                                    _buffer,
2709     VkDeviceSize                                offset)
2710 {
2711    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2712    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2713    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2714    const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2715    struct anv_bo *bo = buffer->bo;
2716    uint32_t bo_offset = buffer->offset + offset;
2717    struct anv_batch *batch = &cmd_buffer->batch;
2718 
2719 #if GEN_GEN == 7
2720    /* Linux 4.4 added command parser version 5 which allows the GPGPU
2721     * indirect dispatch registers to be written.
2722     */
2723    if (verify_cmd_parser(cmd_buffer->device, 5,
2724                          "vkCmdDispatchIndirect") != VK_SUCCESS)
2725       return;
2726 #endif
2727 
2728    if (prog_data->uses_num_work_groups) {
2729       cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2730          .bo = bo,
2731          .offset = bo_offset,
2732       };
2733    }
2734 
2735    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2736 
2737    emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2738    emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2739    emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2740 
2741 #if GEN_GEN <= 7
2742    /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2743    emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2744    emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2745    emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2746 
2747    /* Load compute_dispatch_indirect_x_size into SRC0 */
2748    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2749 
2750    /* predicate = (compute_dispatch_indirect_x_size == 0); */
2751    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2752       mip.LoadOperation    = LOAD_LOAD;
2753       mip.CombineOperation = COMBINE_SET;
2754       mip.CompareOperation = COMPARE_SRCS_EQUAL;
2755    }
2756 
2757    /* Load compute_dispatch_indirect_y_size into SRC0 */
2758    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2759 
2760    /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2761    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2762       mip.LoadOperation    = LOAD_LOAD;
2763       mip.CombineOperation = COMBINE_OR;
2764       mip.CompareOperation = COMPARE_SRCS_EQUAL;
2765    }
2766 
2767    /* Load compute_dispatch_indirect_z_size into SRC0 */
2768    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2769 
2770    /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2771    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2772       mip.LoadOperation    = LOAD_LOAD;
2773       mip.CombineOperation = COMBINE_OR;
2774       mip.CompareOperation = COMPARE_SRCS_EQUAL;
2775    }
2776 
2777    /* predicate = !predicate; */
2778 #define COMPARE_FALSE                           1
2779    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2780       mip.LoadOperation    = LOAD_LOADINV;
2781       mip.CombineOperation = COMBINE_OR;
2782       mip.CompareOperation = COMPARE_FALSE;
2783    }
2784 #endif
2785 
2786    anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2787       ggw.IndirectParameterEnable      = true;
2788       ggw.PredicateEnable              = GEN_GEN <= 7;
2789       ggw.SIMDSize                     = prog_data->simd_size / 16;
2790       ggw.ThreadDepthCounterMaximum    = 0;
2791       ggw.ThreadHeightCounterMaximum   = 0;
2792       ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
2793       ggw.RightExecutionMask           = pipeline->cs_right_mask;
2794       ggw.BottomExecutionMask          = 0xffffffff;
2795    }
2796 
2797    anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2798 }
2799 
2800 static void
genX(flush_pipeline_select)2801 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2802                             uint32_t pipeline)
2803 {
2804    UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2805 
2806    if (cmd_buffer->state.current_pipeline == pipeline)
2807       return;
2808 
2809 #if GEN_GEN >= 8 && GEN_GEN < 10
2810    /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2811     *
2812     *   Software must clear the COLOR_CALC_STATE Valid field in
2813     *   3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2814     *   with Pipeline Select set to GPGPU.
2815     *
2816     * The internal hardware docs recommend the same workaround for Gen9
2817     * hardware too.
2818     */
2819    if (pipeline == GPGPU)
2820       anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2821 #endif
2822 
2823    /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2824     * PIPELINE_SELECT [DevBWR+]":
2825     *
2826     *   Project: DEVSNB+
2827     *
2828     *   Software must ensure all the write caches are flushed through a
2829     *   stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2830     *   command to invalidate read only caches prior to programming
2831     *   MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2832     */
2833    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2834       pc.RenderTargetCacheFlushEnable  = true;
2835       pc.DepthCacheFlushEnable         = true;
2836       pc.DCFlushEnable                 = true;
2837       pc.PostSyncOperation             = NoWrite;
2838       pc.CommandStreamerStallEnable    = true;
2839    }
2840 
2841    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2842       pc.TextureCacheInvalidationEnable   = true;
2843       pc.ConstantCacheInvalidationEnable  = true;
2844       pc.StateCacheInvalidationEnable     = true;
2845       pc.InstructionCacheInvalidateEnable = true;
2846       pc.PostSyncOperation                = NoWrite;
2847    }
2848 
2849    anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2850 #if GEN_GEN >= 9
2851       ps.MaskBits = 3;
2852 #endif
2853       ps.PipelineSelection = pipeline;
2854    }
2855 
2856 #if GEN_GEN == 9
2857    if (devinfo->is_geminilake) {
2858       /* Project: DevGLK
2859        *
2860        * "This chicken bit works around a hardware issue with barrier logic
2861        *  encountered when switching between GPGPU and 3D pipelines.  To
2862        *  workaround the issue, this mode bit should be set after a pipeline
2863        *  is selected."
2864        */
2865       uint32_t scec;
2866       anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2867                       .GLKBarrierMode =
2868                           pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2869                                             : GLK_BARRIER_MODE_3D_HULL,
2870                       .GLKBarrierModeMask = 1);
2871       emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2872    }
2873 #endif
2874 
2875    cmd_buffer->state.current_pipeline = pipeline;
2876 }
2877 
2878 void
genX(flush_pipeline_select_3d)2879 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2880 {
2881    genX(flush_pipeline_select)(cmd_buffer, _3D);
2882 }
2883 
2884 void
genX(flush_pipeline_select_gpgpu)2885 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2886 {
2887    genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2888 }
2889 
2890 void
genX(cmd_buffer_emit_gen7_depth_flush)2891 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2892 {
2893    if (GEN_GEN >= 8)
2894       return;
2895 
2896    /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2897     *
2898     *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2899     *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2900     *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2901     *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2902     *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2903     *    Depth Flush Bit set, followed by another pipelined depth stall
2904     *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2905     *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
2906     *    via a preceding MI_FLUSH)."
2907     */
2908    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2909       pipe.DepthStallEnable = true;
2910    }
2911    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2912       pipe.DepthCacheFlushEnable = true;
2913    }
2914    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2915       pipe.DepthStallEnable = true;
2916    }
2917 }
2918 
2919 static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer * cmd_buffer)2920 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2921 {
2922    struct anv_device *device = cmd_buffer->device;
2923    const struct anv_image_view *iview =
2924       anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2925    const struct anv_image *image = iview ? iview->image : NULL;
2926 
2927    /* FIXME: Width and Height are wrong */
2928 
2929    genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2930 
2931    uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2932                                         device->isl_dev.ds.size / 4);
2933    if (dw == NULL)
2934       return;
2935 
2936    struct isl_depth_stencil_hiz_emit_info info = {
2937       .mocs = device->default_mocs,
2938    };
2939 
2940    if (iview)
2941       info.view = &iview->planes[0].isl;
2942 
2943    if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2944       uint32_t depth_plane =
2945          anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2946       const struct anv_surface *surface = &image->planes[depth_plane].surface;
2947 
2948       info.depth_surf = &surface->isl;
2949 
2950       info.depth_address =
2951          anv_batch_emit_reloc(&cmd_buffer->batch,
2952                               dw + device->isl_dev.ds.depth_offset / 4,
2953                               image->planes[depth_plane].bo,
2954                               image->planes[depth_plane].bo_offset +
2955                               surface->offset);
2956 
2957       const uint32_t ds =
2958          cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2959       info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2960       if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2961          info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2962 
2963          info.hiz_address =
2964             anv_batch_emit_reloc(&cmd_buffer->batch,
2965                                  dw + device->isl_dev.ds.hiz_offset / 4,
2966                                  image->planes[depth_plane].bo,
2967                                  image->planes[depth_plane].bo_offset +
2968                                  image->planes[depth_plane].aux_surface.offset);
2969 
2970          info.depth_clear_value = ANV_HZ_FC_VAL;
2971       }
2972    }
2973 
2974    if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2975       uint32_t stencil_plane =
2976          anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2977       const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2978 
2979       info.stencil_surf = &surface->isl;
2980 
2981       info.stencil_address =
2982          anv_batch_emit_reloc(&cmd_buffer->batch,
2983                               dw + device->isl_dev.ds.stencil_offset / 4,
2984                               image->planes[stencil_plane].bo,
2985                               image->planes[stencil_plane].bo_offset + surface->offset);
2986    }
2987 
2988    isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2989 
2990    cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2991 }
2992 
2993 
2994 /**
2995  * @brief Perform any layout transitions required at the beginning and/or end
2996  *        of the current subpass for depth buffers.
2997  *
2998  * TODO: Consider preprocessing the attachment reference array at render pass
2999  *       create time to determine if no layout transition is needed at the
3000  *       beginning and/or end of each subpass.
3001  *
3002  * @param cmd_buffer The command buffer the transition is happening within.
3003  * @param subpass_end If true, marks that the transition is happening at the
3004  *                    end of the subpass.
3005  */
3006 static void
cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,const bool subpass_end)3007 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3008                                       const bool subpass_end)
3009 {
3010    /* We need a non-NULL command buffer. */
3011    assert(cmd_buffer);
3012 
3013    const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3014    const struct anv_subpass * const subpass = cmd_state->subpass;
3015 
3016    /* This function must be called within a subpass. */
3017    assert(subpass);
3018 
3019    /* If there are attachment references, the array shouldn't be NULL.
3020     */
3021    if (subpass->attachment_count > 0)
3022       assert(subpass->attachments);
3023 
3024    /* Iterate over the array of attachment references. */
3025    for (const VkAttachmentReference *att_ref = subpass->attachments;
3026         att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3027 
3028       /* If the attachment is unused, we can't perform a layout transition. */
3029       if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3030          continue;
3031 
3032       /* This attachment index shouldn't go out of bounds. */
3033       assert(att_ref->attachment < cmd_state->pass->attachment_count);
3034 
3035       const struct anv_render_pass_attachment * const att_desc =
3036          &cmd_state->pass->attachments[att_ref->attachment];
3037       struct anv_attachment_state * const att_state =
3038          &cmd_buffer->state.attachments[att_ref->attachment];
3039 
3040       /* The attachment should not be used in a subpass after its last. */
3041       assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3042 
3043       if (subpass_end && anv_get_subpass_id(cmd_state) <
3044           att_desc->last_subpass_idx) {
3045          /* We're calling this function on a buffer twice in one subpass and
3046           * this is not the last use of the buffer. The layout should not have
3047           * changed from the first call and no transition is necessary.
3048           */
3049          assert(att_state->current_layout == att_ref->layout ||
3050                 att_state->current_layout ==
3051                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3052          continue;
3053       }
3054 
3055       /* The attachment index must be less than the number of attachments
3056        * within the framebuffer.
3057        */
3058       assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3059 
3060       const struct anv_image_view * const iview =
3061          cmd_state->framebuffer->attachments[att_ref->attachment];
3062       const struct anv_image * const image = iview->image;
3063 
3064       /* Get the appropriate target layout for this attachment. */
3065       VkImageLayout target_layout;
3066 
3067       /* A resolve is necessary before use as an input attachment if the clear
3068        * color or auxiliary buffer usage isn't supported by the sampler.
3069        */
3070       const bool input_needs_resolve =
3071             (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3072             att_state->input_aux_usage != att_state->aux_usage;
3073       if (subpass_end) {
3074          target_layout = att_desc->final_layout;
3075       } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3076                  !input_needs_resolve) {
3077          /* Layout transitions before the final only help to enable sampling as
3078           * an input attachment. If the input attachment supports sampling
3079           * using the auxiliary surface, we can skip such transitions by making
3080           * the target layout one that is CCS-aware.
3081           */
3082          target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3083       } else {
3084          target_layout = att_ref->layout;
3085       }
3086 
3087       /* Perform the layout transition. */
3088       if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3089          transition_depth_buffer(cmd_buffer, image,
3090                                  att_state->current_layout, target_layout);
3091          att_state->aux_usage =
3092             anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3093                                     VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3094       } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3095          assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3096          transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3097                                  iview->planes[0].isl.base_level, 1,
3098                                  iview->planes[0].isl.base_array_layer,
3099                                  iview->planes[0].isl.array_len,
3100                                  att_state->current_layout, target_layout);
3101       }
3102 
3103       att_state->current_layout = target_layout;
3104    }
3105 }
3106 
3107 /* Update the clear value dword(s) in surface state objects or the fast clear
3108  * state buffer entry for the color attachments used in this subpass.
3109  */
3110 static void
cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer * cmd_buffer)3111 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3112 {
3113    assert(cmd_buffer && cmd_buffer->state.subpass);
3114 
3115    const struct anv_cmd_state *state = &cmd_buffer->state;
3116 
3117    /* Iterate through every color attachment used in this subpass. */
3118    for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3119 
3120       /* The attachment should be one of the attachments described in the
3121        * render pass and used in the subpass.
3122        */
3123       const uint32_t a = state->subpass->color_attachments[i].attachment;
3124       if (a == VK_ATTACHMENT_UNUSED)
3125          continue;
3126 
3127       assert(a < state->pass->attachment_count);
3128 
3129       /* Store some information regarding this attachment. */
3130       const struct anv_attachment_state *att_state = &state->attachments[a];
3131       const struct anv_image_view *iview = state->framebuffer->attachments[a];
3132       const struct anv_render_pass_attachment *rp_att =
3133          &state->pass->attachments[a];
3134 
3135       if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3136          continue;
3137 
3138       /* The fast clear state entry must be updated if a fast clear is going to
3139        * happen. The surface state must be updated if the clear value from a
3140        * prior fast clear may be needed.
3141        */
3142       if (att_state->pending_clear_aspects && att_state->fast_clear) {
3143          /* Update the fast clear state entry. */
3144          genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3145                                       iview->image,
3146                                       VK_IMAGE_ASPECT_COLOR_BIT,
3147                                       iview->planes[0].isl.base_level,
3148                                       true /* copy from ss */);
3149 
3150          /* Fast-clears impact whether or not a resolve will be necessary. */
3151          if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3152              att_state->clear_color_is_zero) {
3153             /* This image always has the auxiliary buffer enabled. We can mark
3154              * the subresource as not needing a resolve because the clear color
3155              * will match what's in every RENDER_SURFACE_STATE object when it's
3156              * being used for sampling.
3157              */
3158             genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3159                                           VK_IMAGE_ASPECT_COLOR_BIT,
3160                                           iview->planes[0].isl.base_level,
3161                                           false);
3162          } else {
3163             genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3164                                           VK_IMAGE_ASPECT_COLOR_BIT,
3165                                           iview->planes[0].isl.base_level,
3166                                           true);
3167          }
3168       } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3169          /* The attachment may have been fast-cleared in a previous render
3170           * pass and the value is needed now. Update the surface state(s).
3171           *
3172           * TODO: Do this only once per render pass instead of every subpass.
3173           */
3174          genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3175                                       iview->image,
3176                                       VK_IMAGE_ASPECT_COLOR_BIT,
3177                                       iview->planes[0].isl.base_level,
3178                                       false /* copy to ss */);
3179 
3180          if (need_input_attachment_state(rp_att) &&
3181              att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3182             genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3183                                          iview->image,
3184                                          VK_IMAGE_ASPECT_COLOR_BIT,
3185                                          iview->planes[0].isl.base_level,
3186                                          false /* copy to ss */);
3187          }
3188       }
3189    }
3190 }
3191 
3192 
3193 static void
genX(cmd_buffer_set_subpass)3194 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3195                              struct anv_subpass *subpass)
3196 {
3197    cmd_buffer->state.subpass = subpass;
3198 
3199    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3200 
3201    /* Our implementation of VK_KHR_multiview uses instancing to draw the
3202     * different views.  If the client asks for instancing, we need to use the
3203     * Instance Data Step Rate to ensure that we repeat the client's
3204     * per-instance data once for each view.  Since this bit is in
3205     * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3206     * of each subpass.
3207     */
3208    if (GEN_GEN == 7)
3209       cmd_buffer->state.gfx.vb_dirty |= ~0;
3210 
3211    /* It is possible to start a render pass with an old pipeline.  Because the
3212     * render pass and subpass index are both baked into the pipeline, this is
3213     * highly unlikely.  In order to do so, it requires that you have a render
3214     * pass with a single subpass and that you use that render pass twice
3215     * back-to-back and use the same pipeline at the start of the second render
3216     * pass as at the end of the first.  In order to avoid unpredictable issues
3217     * with this edge case, we just dirty the pipeline at the start of every
3218     * subpass.
3219     */
3220    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3221 
3222    /* Perform transitions to the subpass layout before any writes have
3223     * occurred.
3224     */
3225    cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3226 
3227    /* Update clear values *after* performing automatic layout transitions.
3228     * This ensures that transitions from the UNDEFINED layout have had a chance
3229     * to populate the clear value buffer with the correct values for the
3230     * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3231     * without the aforementioned layout transition overwriting the fast-clear
3232     * value.
3233     */
3234    cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3235 
3236    cmd_buffer_emit_depth_stencil(cmd_buffer);
3237 
3238    anv_cmd_buffer_clear_subpass(cmd_buffer);
3239 }
3240 
genX(CmdBeginRenderPass)3241 void genX(CmdBeginRenderPass)(
3242     VkCommandBuffer                             commandBuffer,
3243     const VkRenderPassBeginInfo*                pRenderPassBegin,
3244     VkSubpassContents                           contents)
3245 {
3246    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3247    ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3248    ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3249 
3250    cmd_buffer->state.framebuffer = framebuffer;
3251    cmd_buffer->state.pass = pass;
3252    cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3253    VkResult result =
3254       genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3255 
3256    /* If we failed to setup the attachments we should not try to go further */
3257    if (result != VK_SUCCESS) {
3258       assert(anv_batch_has_error(&cmd_buffer->batch));
3259       return;
3260    }
3261 
3262    genX(flush_pipeline_select_3d)(cmd_buffer);
3263 
3264    genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3265 
3266    cmd_buffer->state.pending_pipe_bits |=
3267       cmd_buffer->state.pass->subpass_flushes[0];
3268 }
3269 
genX(CmdNextSubpass)3270 void genX(CmdNextSubpass)(
3271     VkCommandBuffer                             commandBuffer,
3272     VkSubpassContents                           contents)
3273 {
3274    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3275 
3276    if (anv_batch_has_error(&cmd_buffer->batch))
3277       return;
3278 
3279    assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3280 
3281    anv_cmd_buffer_resolve_subpass(cmd_buffer);
3282 
3283    /* Perform transitions to the final layout after all writes have occurred.
3284     */
3285    cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3286 
3287    genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3288 
3289    uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3290    cmd_buffer->state.pending_pipe_bits |=
3291       cmd_buffer->state.pass->subpass_flushes[subpass_id];
3292 }
3293 
genX(CmdEndRenderPass)3294 void genX(CmdEndRenderPass)(
3295     VkCommandBuffer                             commandBuffer)
3296 {
3297    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3298 
3299    if (anv_batch_has_error(&cmd_buffer->batch))
3300       return;
3301 
3302    anv_cmd_buffer_resolve_subpass(cmd_buffer);
3303 
3304    /* Perform transitions to the final layout after all writes have occurred.
3305     */
3306    cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3307 
3308    cmd_buffer->state.pending_pipe_bits |=
3309       cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3310 
3311    cmd_buffer->state.hiz_enabled = false;
3312 
3313 #ifndef NDEBUG
3314    anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3315 #endif
3316 
3317    /* Remove references to render pass specific state. This enables us to
3318     * detect whether or not we're in a renderpass.
3319     */
3320    cmd_buffer->state.framebuffer = NULL;
3321    cmd_buffer->state.pass = NULL;
3322    cmd_buffer->state.subpass = NULL;
3323 }
3324