1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Define several functions to decode x86 specific shuffle semantics into a
11 // generic vector mask.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86ShuffleDecode.h"
16 #include "llvm/ADT/ArrayRef.h"
17
18 //===----------------------------------------------------------------------===//
19 // Vector Mask Decoding
20 //===----------------------------------------------------------------------===//
21
22 namespace llvm {
23
DecodeINSERTPSMask(unsigned Imm,SmallVectorImpl<int> & ShuffleMask)24 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
25 // Defaults the copying the dest value.
26 ShuffleMask.push_back(0);
27 ShuffleMask.push_back(1);
28 ShuffleMask.push_back(2);
29 ShuffleMask.push_back(3);
30
31 // Decode the immediate.
32 unsigned ZMask = Imm & 15;
33 unsigned CountD = (Imm >> 4) & 3;
34 unsigned CountS = (Imm >> 6) & 3;
35
36 // CountS selects which input element to use.
37 unsigned InVal = 4 + CountS;
38 // CountD specifies which element of destination to update.
39 ShuffleMask[CountD] = InVal;
40 // ZMask zaps values, potentially overriding the CountD elt.
41 if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
42 if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
43 if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
44 if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
45 }
46
DecodeInsertElementMask(unsigned NumElts,unsigned Idx,unsigned Len,SmallVectorImpl<int> & ShuffleMask)47 void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
48 SmallVectorImpl<int> &ShuffleMask) {
49 assert((Idx + Len) <= NumElts && "Insertion out of range");
50
51 for (unsigned i = 0; i != NumElts; ++i)
52 ShuffleMask.push_back(i);
53 for (unsigned i = 0; i != Len; ++i)
54 ShuffleMask[Idx + i] = NumElts + i;
55 }
56
57 // <3,1> or <6,7,2,3>
DecodeMOVHLPSMask(unsigned NElts,SmallVectorImpl<int> & ShuffleMask)58 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
59 for (unsigned i = NElts / 2; i != NElts; ++i)
60 ShuffleMask.push_back(NElts + i);
61
62 for (unsigned i = NElts / 2; i != NElts; ++i)
63 ShuffleMask.push_back(i);
64 }
65
66 // <0,2> or <0,1,4,5>
DecodeMOVLHPSMask(unsigned NElts,SmallVectorImpl<int> & ShuffleMask)67 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
68 for (unsigned i = 0; i != NElts / 2; ++i)
69 ShuffleMask.push_back(i);
70
71 for (unsigned i = 0; i != NElts / 2; ++i)
72 ShuffleMask.push_back(NElts + i);
73 }
74
DecodeMOVSLDUPMask(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)75 void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
76 for (int i = 0, e = NumElts / 2; i < e; ++i) {
77 ShuffleMask.push_back(2 * i);
78 ShuffleMask.push_back(2 * i);
79 }
80 }
81
DecodeMOVSHDUPMask(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)82 void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
83 for (int i = 0, e = NumElts / 2; i < e; ++i) {
84 ShuffleMask.push_back(2 * i + 1);
85 ShuffleMask.push_back(2 * i + 1);
86 }
87 }
88
DecodeMOVDDUPMask(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)89 void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
90 const unsigned NumLaneElts = 2;
91
92 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
93 for (unsigned i = 0; i < NumLaneElts; ++i)
94 ShuffleMask.push_back(l);
95 }
96
DecodePSLLDQMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)97 void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
98 SmallVectorImpl<int> &ShuffleMask) {
99 const unsigned NumLaneElts = 16;
100
101 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
102 for (unsigned i = 0; i < NumLaneElts; ++i) {
103 int M = SM_SentinelZero;
104 if (i >= Imm) M = i - Imm + l;
105 ShuffleMask.push_back(M);
106 }
107 }
108
DecodePSRLDQMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)109 void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
110 SmallVectorImpl<int> &ShuffleMask) {
111 const unsigned NumLaneElts = 16;
112
113 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
114 for (unsigned i = 0; i < NumLaneElts; ++i) {
115 unsigned Base = i + Imm;
116 int M = Base + l;
117 if (Base >= NumLaneElts) M = SM_SentinelZero;
118 ShuffleMask.push_back(M);
119 }
120 }
121
DecodePALIGNRMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)122 void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
123 SmallVectorImpl<int> &ShuffleMask) {
124 const unsigned NumLaneElts = 16;
125
126 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
127 for (unsigned i = 0; i != NumLaneElts; ++i) {
128 unsigned Base = i + Imm;
129 // if i+imm is out of this lane then we actually need the other source
130 if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
131 ShuffleMask.push_back(Base + l);
132 }
133 }
134 }
135
DecodeVALIGNMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)136 void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
137 SmallVectorImpl<int> &ShuffleMask) {
138 // Not all bits of the immediate are used so mask it.
139 assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
140 Imm = Imm & (NumElts - 1);
141 for (unsigned i = 0; i != NumElts; ++i)
142 ShuffleMask.push_back(i + Imm);
143 }
144
145 /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
146 /// VT indicates the type of the vector allowing it to handle different
147 /// datatypes and vector widths.
DecodePSHUFMask(unsigned NumElts,unsigned ScalarBits,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)148 void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
149 SmallVectorImpl<int> &ShuffleMask) {
150 unsigned Size = NumElts * ScalarBits;
151 unsigned NumLanes = Size / 128;
152 if (NumLanes == 0) NumLanes = 1; // Handle MMX
153 unsigned NumLaneElts = NumElts / NumLanes;
154
155 uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
156 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
157 for (unsigned i = 0; i != NumLaneElts; ++i) {
158 ShuffleMask.push_back(SplatImm % NumLaneElts + l);
159 SplatImm /= NumLaneElts;
160 }
161 }
162 }
163
DecodePSHUFHWMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)164 void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
165 SmallVectorImpl<int> &ShuffleMask) {
166 for (unsigned l = 0; l != NumElts; l += 8) {
167 unsigned NewImm = Imm;
168 for (unsigned i = 0, e = 4; i != e; ++i) {
169 ShuffleMask.push_back(l + i);
170 }
171 for (unsigned i = 4, e = 8; i != e; ++i) {
172 ShuffleMask.push_back(l + 4 + (NewImm & 3));
173 NewImm >>= 2;
174 }
175 }
176 }
177
DecodePSHUFLWMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)178 void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
179 SmallVectorImpl<int> &ShuffleMask) {
180 for (unsigned l = 0; l != NumElts; l += 8) {
181 unsigned NewImm = Imm;
182 for (unsigned i = 0, e = 4; i != e; ++i) {
183 ShuffleMask.push_back(l + (NewImm & 3));
184 NewImm >>= 2;
185 }
186 for (unsigned i = 4, e = 8; i != e; ++i) {
187 ShuffleMask.push_back(l + i);
188 }
189 }
190 }
191
DecodePSWAPMask(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)192 void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
193 unsigned NumHalfElts = NumElts / 2;
194
195 for (unsigned l = 0; l != NumHalfElts; ++l)
196 ShuffleMask.push_back(l + NumHalfElts);
197 for (unsigned h = 0; h != NumHalfElts; ++h)
198 ShuffleMask.push_back(h);
199 }
200
201 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
202 /// the type of the vector allowing it to handle different datatypes and vector
203 /// widths.
DecodeSHUFPMask(unsigned NumElts,unsigned ScalarBits,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)204 void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
205 unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
206 unsigned NumLaneElts = 128 / ScalarBits;
207
208 unsigned NewImm = Imm;
209 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
210 // each half of a lane comes from different source
211 for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
212 for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
213 ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
214 NewImm /= NumLaneElts;
215 }
216 }
217 if (NumLaneElts == 4) NewImm = Imm; // reload imm
218 }
219 }
220
221 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
222 /// and punpckh*. VT indicates the type of the vector allowing it to handle
223 /// different datatypes and vector widths.
DecodeUNPCKHMask(unsigned NumElts,unsigned ScalarBits,SmallVectorImpl<int> & ShuffleMask)224 void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
225 SmallVectorImpl<int> &ShuffleMask) {
226 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
227 // independently on 128-bit lanes.
228 unsigned NumLanes = (NumElts * ScalarBits) / 128;
229 if (NumLanes == 0) NumLanes = 1; // Handle MMX
230 unsigned NumLaneElts = NumElts / NumLanes;
231
232 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
233 for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
234 ShuffleMask.push_back(i); // Reads from dest/src1
235 ShuffleMask.push_back(i + NumElts); // Reads from src/src2
236 }
237 }
238 }
239
240 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
241 /// and punpckl*. VT indicates the type of the vector allowing it to handle
242 /// different datatypes and vector widths.
DecodeUNPCKLMask(unsigned NumElts,unsigned ScalarBits,SmallVectorImpl<int> & ShuffleMask)243 void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
244 SmallVectorImpl<int> &ShuffleMask) {
245 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
246 // independently on 128-bit lanes.
247 unsigned NumLanes = (NumElts * ScalarBits) / 128;
248 if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
249 unsigned NumLaneElts = NumElts / NumLanes;
250
251 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
252 for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
253 ShuffleMask.push_back(i); // Reads from dest/src1
254 ShuffleMask.push_back(i + NumElts); // Reads from src/src2
255 }
256 }
257 }
258
259 /// Decodes a broadcast of the first element of a vector.
DecodeVectorBroadcast(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)260 void DecodeVectorBroadcast(unsigned NumElts,
261 SmallVectorImpl<int> &ShuffleMask) {
262 ShuffleMask.append(NumElts, 0);
263 }
264
265 /// Decodes a broadcast of a subvector to a larger vector type.
DecodeSubVectorBroadcast(unsigned DstNumElts,unsigned SrcNumElts,SmallVectorImpl<int> & ShuffleMask)266 void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
267 SmallVectorImpl<int> &ShuffleMask) {
268 unsigned Scale = DstNumElts / SrcNumElts;
269
270 for (unsigned i = 0; i != Scale; ++i)
271 for (unsigned j = 0; j != SrcNumElts; ++j)
272 ShuffleMask.push_back(j);
273 }
274
275 /// Decode a shuffle packed values at 128-bit granularity
276 /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
277 /// immediate mask into a shuffle mask.
decodeVSHUF64x2FamilyMask(unsigned NumElts,unsigned ScalarSize,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)278 void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
279 unsigned Imm,
280 SmallVectorImpl<int> &ShuffleMask) {
281 unsigned NumElementsInLane = 128 / ScalarSize;
282 unsigned NumLanes = NumElts / NumElementsInLane;
283
284 for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
285 unsigned Index = (Imm % NumLanes) * NumElementsInLane;
286 Imm /= NumLanes; // Discard the bits we just used.
287 // We actually need the other source.
288 if (l >= (NumElts / 2))
289 Index += NumElts;
290 for (unsigned i = 0; i != NumElementsInLane; ++i)
291 ShuffleMask.push_back(Index + i);
292 }
293 }
294
DecodeVPERM2X128Mask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)295 void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
296 SmallVectorImpl<int> &ShuffleMask) {
297 unsigned HalfSize = NumElts / 2;
298
299 for (unsigned l = 0; l != 2; ++l) {
300 unsigned HalfMask = Imm >> (l * 4);
301 unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
302 for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
303 ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i);
304 }
305 }
306
DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)307 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
308 SmallVectorImpl<int> &ShuffleMask) {
309 for (int i = 0, e = RawMask.size(); i < e; ++i) {
310 uint64_t M = RawMask[i];
311 if (M == (uint64_t)SM_SentinelUndef) {
312 ShuffleMask.push_back(M);
313 continue;
314 }
315 // For 256/512-bit vectors the base of the shuffle is the 128-bit
316 // subvector we're inside.
317 int Base = (i / 16) * 16;
318 // If the high bit (7) of the byte is set, the element is zeroed.
319 if (M & (1 << 7))
320 ShuffleMask.push_back(SM_SentinelZero);
321 else {
322 // Only the least significant 4 bits of the byte are used.
323 int Index = Base + (M & 0xf);
324 ShuffleMask.push_back(Index);
325 }
326 }
327 }
328
DecodeBLENDMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)329 void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
330 SmallVectorImpl<int> &ShuffleMask) {
331 for (unsigned i = 0; i < NumElts; ++i) {
332 // If there are more than 8 elements in the vector, then any immediate blend
333 // mask wraps around.
334 unsigned Bit = i % 8;
335 ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i);
336 }
337 }
338
DecodeVPPERMMask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)339 void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask,
340 SmallVectorImpl<int> &ShuffleMask) {
341 assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
342
343 // VPPERM Operation
344 // Bits[4:0] - Byte Index (0 - 31)
345 // Bits[7:5] - Permute Operation
346 //
347 // Permute Operation:
348 // 0 - Source byte (no logical operation).
349 // 1 - Invert source byte.
350 // 2 - Bit reverse of source byte.
351 // 3 - Bit reverse of inverted source byte.
352 // 4 - 00h (zero - fill).
353 // 5 - FFh (ones - fill).
354 // 6 - Most significant bit of source byte replicated in all bit positions.
355 // 7 - Invert most significant bit of source byte and replicate in all bit positions.
356 for (int i = 0, e = RawMask.size(); i < e; ++i) {
357 uint64_t M = RawMask[i];
358 if (M == (uint64_t)SM_SentinelUndef) {
359 ShuffleMask.push_back(M);
360 continue;
361 }
362
363 uint64_t PermuteOp = (M >> 5) & 0x7;
364 if (PermuteOp == 4) {
365 ShuffleMask.push_back(SM_SentinelZero);
366 continue;
367 }
368 if (PermuteOp != 0) {
369 ShuffleMask.clear();
370 return;
371 }
372
373 uint64_t Index = M & 0x1F;
374 ShuffleMask.push_back((int)Index);
375 }
376 }
377
378 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
DecodeVPERMMask(unsigned NumElts,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)379 void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
380 SmallVectorImpl<int> &ShuffleMask) {
381 for (unsigned l = 0; l != NumElts; l += 4)
382 for (unsigned i = 0; i != 4; ++i)
383 ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3));
384 }
385
DecodeZeroExtendMask(unsigned SrcScalarBits,unsigned DstScalarBits,unsigned NumDstElts,SmallVectorImpl<int> & Mask)386 void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
387 unsigned NumDstElts, SmallVectorImpl<int> &Mask) {
388 unsigned Scale = DstScalarBits / SrcScalarBits;
389 assert(SrcScalarBits < DstScalarBits &&
390 "Expected zero extension mask to increase scalar size");
391
392 for (unsigned i = 0; i != NumDstElts; i++) {
393 Mask.push_back(i);
394 for (unsigned j = 1; j != Scale; j++)
395 Mask.push_back(SM_SentinelZero);
396 }
397 }
398
DecodeZeroMoveLowMask(unsigned NumElts,SmallVectorImpl<int> & ShuffleMask)399 void DecodeZeroMoveLowMask(unsigned NumElts,
400 SmallVectorImpl<int> &ShuffleMask) {
401 ShuffleMask.push_back(0);
402 for (unsigned i = 1; i < NumElts; i++)
403 ShuffleMask.push_back(SM_SentinelZero);
404 }
405
DecodeScalarMoveMask(unsigned NumElts,bool IsLoad,SmallVectorImpl<int> & Mask)406 void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
407 SmallVectorImpl<int> &Mask) {
408 // First element comes from the first element of second source.
409 // Remaining elements: Load zero extends / Move copies from first source.
410 Mask.push_back(NumElts);
411 for (unsigned i = 1; i < NumElts; i++)
412 Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
413 }
414
DecodeEXTRQIMask(unsigned NumElts,unsigned EltSize,int Len,int Idx,SmallVectorImpl<int> & ShuffleMask)415 void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
416 SmallVectorImpl<int> &ShuffleMask) {
417 unsigned HalfElts = NumElts / 2;
418
419 // Only the bottom 6 bits are valid for each immediate.
420 Len &= 0x3F;
421 Idx &= 0x3F;
422
423 // We can only decode this bit extraction instruction as a shuffle if both the
424 // length and index work with whole elements.
425 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
426 return;
427
428 // A length of zero is equivalent to a bit length of 64.
429 if (Len == 0)
430 Len = 64;
431
432 // If the length + index exceeds the bottom 64 bits the result is undefined.
433 if ((Len + Idx) > 64) {
434 ShuffleMask.append(NumElts, SM_SentinelUndef);
435 return;
436 }
437
438 // Convert index and index to work with elements.
439 Len /= EltSize;
440 Idx /= EltSize;
441
442 // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
443 // elements of the lower 64-bits. The upper 64-bits are undefined.
444 for (int i = 0; i != Len; ++i)
445 ShuffleMask.push_back(i + Idx);
446 for (int i = Len; i != (int)HalfElts; ++i)
447 ShuffleMask.push_back(SM_SentinelZero);
448 for (int i = HalfElts; i != (int)NumElts; ++i)
449 ShuffleMask.push_back(SM_SentinelUndef);
450 }
451
DecodeINSERTQIMask(unsigned NumElts,unsigned EltSize,int Len,int Idx,SmallVectorImpl<int> & ShuffleMask)452 void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
453 SmallVectorImpl<int> &ShuffleMask) {
454 unsigned HalfElts = NumElts / 2;
455
456 // Only the bottom 6 bits are valid for each immediate.
457 Len &= 0x3F;
458 Idx &= 0x3F;
459
460 // We can only decode this bit insertion instruction as a shuffle if both the
461 // length and index work with whole elements.
462 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
463 return;
464
465 // A length of zero is equivalent to a bit length of 64.
466 if (Len == 0)
467 Len = 64;
468
469 // If the length + index exceeds the bottom 64 bits the result is undefined.
470 if ((Len + Idx) > 64) {
471 ShuffleMask.append(NumElts, SM_SentinelUndef);
472 return;
473 }
474
475 // Convert index and index to work with elements.
476 Len /= EltSize;
477 Idx /= EltSize;
478
479 // INSERTQ: Extract lowest Len elements from lower half of second source and
480 // insert over first source starting at Idx element. The upper 64-bits are
481 // undefined.
482 for (int i = 0; i != Idx; ++i)
483 ShuffleMask.push_back(i);
484 for (int i = 0; i != Len; ++i)
485 ShuffleMask.push_back(i + NumElts);
486 for (int i = Idx + Len; i != (int)HalfElts; ++i)
487 ShuffleMask.push_back(i);
488 for (int i = HalfElts; i != (int)NumElts; ++i)
489 ShuffleMask.push_back(SM_SentinelUndef);
490 }
491
DecodeVPERMILPMask(unsigned NumElts,unsigned ScalarBits,ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)492 void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
493 ArrayRef<uint64_t> RawMask,
494 SmallVectorImpl<int> &ShuffleMask) {
495 unsigned VecSize = NumElts * ScalarBits;
496 unsigned NumLanes = VecSize / 128;
497 unsigned NumEltsPerLane = NumElts / NumLanes;
498 assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
499 "Unexpected vector size");
500 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
501
502 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
503 uint64_t M = RawMask[i];
504 M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
505 unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
506 ShuffleMask.push_back((int)(LaneOffset + M));
507 }
508 }
509
DecodeVPERMIL2PMask(unsigned NumElts,unsigned ScalarBits,unsigned M2Z,ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)510 void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
511 ArrayRef<uint64_t> RawMask,
512 SmallVectorImpl<int> &ShuffleMask) {
513 unsigned VecSize = NumElts * ScalarBits;
514 unsigned NumLanes = VecSize / 128;
515 unsigned NumEltsPerLane = NumElts / NumLanes;
516 assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
517 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
518 assert((NumElts == RawMask.size()) && "Unexpected mask size");
519
520 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
521 // VPERMIL2 Operation.
522 // Bits[3] - Match Bit.
523 // Bits[2:1] - (Per Lane) PD Shuffle Mask.
524 // Bits[2:0] - (Per Lane) PS Shuffle Mask.
525 uint64_t Selector = RawMask[i];
526 unsigned MatchBit = (Selector >> 3) & 0x1;
527
528 // M2Z[0:1] MatchBit
529 // 0Xb X Source selected by Selector index.
530 // 10b 0 Source selected by Selector index.
531 // 10b 1 Zero.
532 // 11b 0 Zero.
533 // 11b 1 Source selected by Selector index.
534 if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
535 ShuffleMask.push_back(SM_SentinelZero);
536 continue;
537 }
538
539 int Index = i & ~(NumEltsPerLane - 1);
540 if (ScalarBits == 64)
541 Index += (Selector >> 1) & 0x1;
542 else
543 Index += Selector & 0x3;
544
545 int Src = (Selector >> 2) & 0x1;
546 Index += Src * NumElts;
547 ShuffleMask.push_back(Index);
548 }
549 }
550
DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)551 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,
552 SmallVectorImpl<int> &ShuffleMask) {
553 uint64_t EltMaskSize = RawMask.size() - 1;
554 for (auto M : RawMask) {
555 M &= EltMaskSize;
556 ShuffleMask.push_back((int)M);
557 }
558 }
559
DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)560 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,
561 SmallVectorImpl<int> &ShuffleMask) {
562 uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
563 for (auto M : RawMask) {
564 M &= EltMaskSize;
565 ShuffleMask.push_back((int)M);
566 }
567 }
568
569 } // llvm namespace
570