1 //===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BumpPtrAllocator interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Allocator.h"
15 #include "llvm/Support/DataTypes.h"
16 #include "llvm/Support/Recycler.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Support/Memory.h"
19 #include <cstring>
20 
21 namespace llvm {
22 
BumpPtrAllocator(size_t size,size_t threshold,SlabAllocator & allocator)23 BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
24                                    SlabAllocator &allocator)
25     : SlabSize(size), SizeThreshold(threshold), Allocator(allocator),
26       CurSlab(0), BytesAllocated(0) { }
27 
~BumpPtrAllocator()28 BumpPtrAllocator::~BumpPtrAllocator() {
29   DeallocateSlabs(CurSlab);
30 }
31 
32 /// AlignPtr - Align Ptr to Alignment bytes, rounding up.  Alignment should
33 /// be a power of two.  This method rounds up, so AlignPtr(7, 4) == 8 and
34 /// AlignPtr(8, 4) == 8.
AlignPtr(char * Ptr,size_t Alignment)35 char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
36   assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
37          "Alignment is not a power of two!");
38 
39   // Do the alignment.
40   return (char*)(((uintptr_t)Ptr + Alignment - 1) &
41                  ~(uintptr_t)(Alignment - 1));
42 }
43 
44 /// StartNewSlab - Allocate a new slab and move the bump pointers over into
45 /// the new slab.  Modifies CurPtr and End.
StartNewSlab()46 void BumpPtrAllocator::StartNewSlab() {
47   // If we allocated a big number of slabs already it's likely that we're going
48   // to allocate more. Increase slab size to reduce mallocs and possibly memory
49   // overhead. The factors are chosen conservatively to avoid overallocation.
50   if (BytesAllocated >= SlabSize * 128)
51     SlabSize *= 2;
52 
53   MemSlab *NewSlab = Allocator.Allocate(SlabSize);
54   NewSlab->NextPtr = CurSlab;
55   CurSlab = NewSlab;
56   CurPtr = (char*)(CurSlab + 1);
57   End = ((char*)CurSlab) + CurSlab->Size;
58 }
59 
60 /// DeallocateSlabs - Deallocate all memory slabs after and including this
61 /// one.
DeallocateSlabs(MemSlab * Slab)62 void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
63   while (Slab) {
64     MemSlab *NextSlab = Slab->NextPtr;
65 #ifndef NDEBUG
66     // Poison the memory so stale pointers crash sooner.  Note we must
67     // preserve the Size and NextPtr fields at the beginning.
68     sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
69     memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
70 #endif
71     Allocator.Deallocate(Slab);
72     Slab = NextSlab;
73   }
74 }
75 
76 /// Reset - Deallocate all but the current slab and reset the current pointer
77 /// to the beginning of it, freeing all memory allocated so far.
Reset()78 void BumpPtrAllocator::Reset() {
79   if (!CurSlab)
80     return;
81   DeallocateSlabs(CurSlab->NextPtr);
82   CurSlab->NextPtr = 0;
83   CurPtr = (char*)(CurSlab + 1);
84   End = ((char*)CurSlab) + CurSlab->Size;
85 }
86 
87 /// Allocate - Allocate space at the specified alignment.
88 ///
Allocate(size_t Size,size_t Alignment)89 void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
90   if (!CurSlab) // Start a new slab if we haven't allocated one already.
91     StartNewSlab();
92 
93   // Keep track of how many bytes we've allocated.
94   BytesAllocated += Size;
95 
96   // 0-byte alignment means 1-byte alignment.
97   if (Alignment == 0) Alignment = 1;
98 
99   // Allocate the aligned space, going forwards from CurPtr.
100   char *Ptr = AlignPtr(CurPtr, Alignment);
101 
102   // Check if we can hold it.
103   if (Ptr + Size <= End) {
104     CurPtr = Ptr + Size;
105     return Ptr;
106   }
107 
108   // If Size is really big, allocate a separate slab for it.
109   size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
110   if (PaddedSize > SizeThreshold) {
111     MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
112 
113     // Put the new slab after the current slab, since we are not allocating
114     // into it.
115     NewSlab->NextPtr = CurSlab->NextPtr;
116     CurSlab->NextPtr = NewSlab;
117 
118     Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
119     assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
120     return Ptr;
121   }
122 
123   // Otherwise, start a new slab and try again.
124   StartNewSlab();
125   Ptr = AlignPtr(CurPtr, Alignment);
126   CurPtr = Ptr + Size;
127   assert(CurPtr <= End && "Unable to allocate memory!");
128   return Ptr;
129 }
130 
GetNumSlabs() const131 unsigned BumpPtrAllocator::GetNumSlabs() const {
132   unsigned NumSlabs = 0;
133   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
134     ++NumSlabs;
135   }
136   return NumSlabs;
137 }
138 
getTotalMemory() const139 size_t BumpPtrAllocator::getTotalMemory() const {
140   size_t TotalMemory = 0;
141   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
142     TotalMemory += Slab->Size;
143   }
144   return TotalMemory;
145 }
146 
PrintStats() const147 void BumpPtrAllocator::PrintStats() const {
148   unsigned NumSlabs = 0;
149   size_t TotalMemory = 0;
150   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
151     TotalMemory += Slab->Size;
152     ++NumSlabs;
153   }
154 
155   errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
156          << "Bytes used: " << BytesAllocated << '\n'
157          << "Bytes allocated: " << TotalMemory << '\n'
158          << "Bytes wasted: " << (TotalMemory - BytesAllocated)
159          << " (includes alignment, etc)\n";
160 }
161 
162 MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
163   MallocSlabAllocator();
164 
~SlabAllocator()165 SlabAllocator::~SlabAllocator() { }
166 
~MallocSlabAllocator()167 MallocSlabAllocator::~MallocSlabAllocator() { }
168 
Allocate(size_t Size)169 MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
170   MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
171   Slab->Size = Size;
172   Slab->NextPtr = 0;
173   return Slab;
174 }
175 
Deallocate(MemSlab * Slab)176 void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
177   Allocator.Deallocate(Slab);
178 }
179 
PrintRecyclerStats(size_t Size,size_t Align,size_t FreeListSize)180 void PrintRecyclerStats(size_t Size,
181                         size_t Align,
182                         size_t FreeListSize) {
183   errs() << "Recycler element size: " << Size << '\n'
184          << "Recycler element alignment: " << Align << '\n'
185          << "Number of elements free for recycling: " << FreeListSize << '\n';
186 }
187 
188 }
189