1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // DynamicMessage is implemented by constructing a data structure which
36 // has roughly the same memory layout as a generated message would have.
37 // Then, we use GeneratedMessageReflection to implement our reflection
38 // interface.  All the other operations we need to implement (e.g.
39 // parsing, copying, etc.) are already implemented in terms of
40 // Reflection, so the rest is easy.
41 //
42 // The up side of this strategy is that it's very efficient.  We don't
43 // need to use hash_maps or generic representations of fields.  The
44 // down side is that this is a low-level memory management hack which
45 // can be tricky to get right.
46 //
47 // As mentioned in the header, we only expose a DynamicMessageFactory
48 // publicly, not the DynamicMessage class itself.  This is because
49 // GenericMessageReflection wants to have a pointer to a "default"
50 // copy of the class, with all fields initialized to their default
51 // values.  We only want to construct one of these per message type,
52 // so DynamicMessageFactory stores a cache of default messages for
53 // each type it sees (each unique Descriptor pointer).  The code
54 // refers to the "default" copy of the class as the "prototype".
55 //
56 // Note on memory allocation:  This module often calls "operator new()"
57 // to allocate untyped memory, rather than calling something like
58 // "new uint8[]".  This is because "operator new()" means "Give me some
59 // space which I can use as I please." while "new uint8[]" means "Give
60 // me an array of 8-bit integers.".  In practice, the later may return
61 // a pointer that is not aligned correctly for general use.  I believe
62 // Item 8 of "More Effective C++" discusses this in more detail, though
63 // I don't have the book on me right now so I'm not sure.
64 
65 #include <algorithm>
66 #include <google/protobuf/stubs/hash.h>
67 #include <memory>
68 #ifndef _SHARED_PTR_H
69 #include <google/protobuf/stubs/shared_ptr.h>
70 #endif
71 
72 #include <google/protobuf/stubs/common.h>
73 
74 #include <google/protobuf/dynamic_message.h>
75 #include <google/protobuf/descriptor.h>
76 #include <google/protobuf/descriptor.pb.h>
77 #include <google/protobuf/generated_message_util.h>
78 #include <google/protobuf/generated_message_reflection.h>
79 #include <google/protobuf/arenastring.h>
80 #include <google/protobuf/map_field_inl.h>
81 #include <google/protobuf/reflection_ops.h>
82 #include <google/protobuf/repeated_field.h>
83 #include <google/protobuf/map_type_handler.h>
84 #include <google/protobuf/extension_set.h>
85 #include <google/protobuf/wire_format.h>
86 #include <google/protobuf/map_field.h>
87 
88 namespace google {
89 namespace protobuf {
90 
91 using internal::WireFormat;
92 using internal::ExtensionSet;
93 using internal::GeneratedMessageReflection;
94 using internal::MapField;
95 using internal::DynamicMapField;
96 
97 
98 using internal::ArenaStringPtr;
99 
100 // ===================================================================
101 // Some helper tables and functions...
102 
103 namespace {
104 
IsMapFieldInApi(const FieldDescriptor * field)105 bool IsMapFieldInApi(const FieldDescriptor* field) {
106   return field->is_map();
107 }
108 
109 // Compute the byte size of the in-memory representation of the field.
FieldSpaceUsed(const FieldDescriptor * field)110 int FieldSpaceUsed(const FieldDescriptor* field) {
111   typedef FieldDescriptor FD;  // avoid line wrapping
112   if (field->label() == FD::LABEL_REPEATED) {
113     switch (field->cpp_type()) {
114       case FD::CPPTYPE_INT32  : return sizeof(RepeatedField<int32   >);
115       case FD::CPPTYPE_INT64  : return sizeof(RepeatedField<int64   >);
116       case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32  >);
117       case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64  >);
118       case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double  >);
119       case FD::CPPTYPE_FLOAT  : return sizeof(RepeatedField<float   >);
120       case FD::CPPTYPE_BOOL   : return sizeof(RepeatedField<bool    >);
121       case FD::CPPTYPE_ENUM   : return sizeof(RepeatedField<int     >);
122       case FD::CPPTYPE_MESSAGE:
123         if (IsMapFieldInApi(field)) {
124           return sizeof(DynamicMapField);
125         } else {
126           return sizeof(RepeatedPtrField<Message>);
127         }
128 
129       case FD::CPPTYPE_STRING:
130         switch (field->options().ctype()) {
131           default:  // TODO(kenton):  Support other string reps.
132           case FieldOptions::STRING:
133             return sizeof(RepeatedPtrField<string>);
134         }
135         break;
136     }
137   } else {
138     switch (field->cpp_type()) {
139       case FD::CPPTYPE_INT32  : return sizeof(int32   );
140       case FD::CPPTYPE_INT64  : return sizeof(int64   );
141       case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
142       case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
143       case FD::CPPTYPE_DOUBLE : return sizeof(double  );
144       case FD::CPPTYPE_FLOAT  : return sizeof(float   );
145       case FD::CPPTYPE_BOOL   : return sizeof(bool    );
146       case FD::CPPTYPE_ENUM   : return sizeof(int     );
147 
148       case FD::CPPTYPE_MESSAGE:
149         return sizeof(Message*);
150 
151       case FD::CPPTYPE_STRING:
152         switch (field->options().ctype()) {
153           default:  // TODO(kenton):  Support other string reps.
154           case FieldOptions::STRING:
155             return sizeof(ArenaStringPtr);
156         }
157         break;
158     }
159   }
160 
161   GOOGLE_LOG(DFATAL) << "Can't get here.";
162   return 0;
163 }
164 
165 // Compute the byte size of in-memory representation of the oneof fields
166 // in default oneof instance.
OneofFieldSpaceUsed(const FieldDescriptor * field)167 int OneofFieldSpaceUsed(const FieldDescriptor* field) {
168   typedef FieldDescriptor FD;  // avoid line wrapping
169   switch (field->cpp_type()) {
170     case FD::CPPTYPE_INT32  : return sizeof(int32   );
171     case FD::CPPTYPE_INT64  : return sizeof(int64   );
172     case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
173     case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
174     case FD::CPPTYPE_DOUBLE : return sizeof(double  );
175     case FD::CPPTYPE_FLOAT  : return sizeof(float   );
176     case FD::CPPTYPE_BOOL   : return sizeof(bool    );
177     case FD::CPPTYPE_ENUM   : return sizeof(int     );
178 
179     case FD::CPPTYPE_MESSAGE:
180       return sizeof(Message*);
181 
182     case FD::CPPTYPE_STRING:
183       switch (field->options().ctype()) {
184         default:
185         case FieldOptions::STRING:
186           return sizeof(ArenaStringPtr);
187       }
188       break;
189   }
190 
191   GOOGLE_LOG(DFATAL) << "Can't get here.";
192   return 0;
193 }
194 
DivideRoundingUp(int i,int j)195 inline int DivideRoundingUp(int i, int j) {
196   return (i + (j - 1)) / j;
197 }
198 
199 static const int kSafeAlignment = sizeof(uint64);
200 static const int kMaxOneofUnionSize = sizeof(uint64);
201 
AlignTo(int offset,int alignment)202 inline int AlignTo(int offset, int alignment) {
203   return DivideRoundingUp(offset, alignment) * alignment;
204 }
205 
206 // Rounds the given byte offset up to the next offset aligned such that any
207 // type may be stored at it.
AlignOffset(int offset)208 inline int AlignOffset(int offset) {
209   return AlignTo(offset, kSafeAlignment);
210 }
211 
212 #define bitsizeof(T) (sizeof(T) * 8)
213 
214 }  // namespace
215 
216 // ===================================================================
217 
218 class DynamicMessage : public Message {
219  public:
220   struct TypeInfo {
221     int size;
222     int has_bits_offset;
223     int oneof_case_offset;
224     int unknown_fields_offset;
225     int extensions_offset;
226     int is_default_instance_offset;
227 
228     // Not owned by the TypeInfo.
229     DynamicMessageFactory* factory;  // The factory that created this object.
230     const DescriptorPool* pool;      // The factory's DescriptorPool.
231     const Descriptor* type;          // Type of this DynamicMessage.
232 
233     // Warning:  The order in which the following pointers are defined is
234     //   important (the prototype must be deleted *before* the offsets).
235     google::protobuf::scoped_array<int> offsets;
236     google::protobuf::scoped_ptr<const GeneratedMessageReflection> reflection;
237     // Don't use a scoped_ptr to hold the prototype: the destructor for
238     // DynamicMessage needs to know whether it is the prototype, and does so by
239     // looking back at this field. This would assume details about the
240     // implementation of scoped_ptr.
241     const DynamicMessage* prototype;
242     void* default_oneof_instance;
243 
TypeInfogoogle::protobuf::DynamicMessage::TypeInfo244     TypeInfo() : prototype(NULL), default_oneof_instance(NULL) {}
245 
~TypeInfogoogle::protobuf::DynamicMessage::TypeInfo246     ~TypeInfo() {
247       delete prototype;
248       operator delete(default_oneof_instance);
249     }
250   };
251 
252   DynamicMessage(const TypeInfo* type_info);
253   ~DynamicMessage();
254 
255   // Called on the prototype after construction to initialize message fields.
256   void CrossLinkPrototypes();
257 
258   // implements Message ----------------------------------------------
259 
260   Message* New() const;
261   Message* New(::google::protobuf::Arena* arena) const;
GetArena() const262   ::google::protobuf::Arena* GetArena() const { return NULL; };
263 
264   int GetCachedSize() const;
265   void SetCachedSize(int size) const;
266 
267   Metadata GetMetadata() const;
268 
269   // We actually allocate more memory than sizeof(*this) when this
270   // class's memory is allocated via the global operator new. Thus, we need to
271   // manually call the global operator delete. Calling the destructor is taken
272   // care of for us. This makes DynamicMessage compatible with -fsized-delete.
273   // It doesn't work for MSVC though.
274 #ifndef _MSC_VER
operator delete(void * ptr)275   static void operator delete(void* ptr) {
276     ::operator delete(ptr);
277   }
278 #endif  // !_MSC_VER
279 
280  private:
281   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
282   DynamicMessage(const TypeInfo* type_info, ::google::protobuf::Arena* arena);
283   void SharedCtor();
284 
is_prototype() const285   inline bool is_prototype() const {
286     return type_info_->prototype == this ||
287            // If type_info_->prototype is NULL, then we must be constructing
288            // the prototype now, which means we must be the prototype.
289            type_info_->prototype == NULL;
290   }
291 
OffsetToPointer(int offset)292   inline void* OffsetToPointer(int offset) {
293     return reinterpret_cast<uint8*>(this) + offset;
294   }
OffsetToPointer(int offset) const295   inline const void* OffsetToPointer(int offset) const {
296     return reinterpret_cast<const uint8*>(this) + offset;
297   }
298 
299   const TypeInfo* type_info_;
300   // TODO(kenton):  Make this an atomic<int> when C++ supports it.
301   mutable int cached_byte_size_;
302 };
303 
DynamicMessage(const TypeInfo * type_info)304 DynamicMessage::DynamicMessage(const TypeInfo* type_info)
305   : type_info_(type_info),
306     cached_byte_size_(0) {
307   SharedCtor();
308 }
309 
DynamicMessage(const TypeInfo * type_info,::google::protobuf::Arena * arena)310 DynamicMessage::DynamicMessage(const TypeInfo* type_info,
311                                ::google::protobuf::Arena* arena)
312   : type_info_(type_info),
313     cached_byte_size_(0) {
314   SharedCtor();
315 }
316 
SharedCtor()317 void DynamicMessage::SharedCtor() {
318   // We need to call constructors for various fields manually and set
319   // default values where appropriate.  We use placement new to call
320   // constructors.  If you haven't heard of placement new, I suggest Googling
321   // it now.  We use placement new even for primitive types that don't have
322   // constructors for consistency.  (In theory, placement new should be used
323   // any time you are trying to convert untyped memory to typed memory, though
324   // in practice that's not strictly necessary for types that don't have a
325   // constructor.)
326 
327   const Descriptor* descriptor = type_info_->type;
328 
329   // Initialize oneof cases.
330   for (int i = 0 ; i < descriptor->oneof_decl_count(); ++i) {
331     new(OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32) * i))
332         uint32(0);
333   }
334 
335   if (type_info_->is_default_instance_offset != -1) {
336     *reinterpret_cast<bool*>(
337         OffsetToPointer(type_info_->is_default_instance_offset)) = false;
338   }
339 
340   new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
341 
342   if (type_info_->extensions_offset != -1) {
343     new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
344   }
345 
346   for (int i = 0; i < descriptor->field_count(); i++) {
347     const FieldDescriptor* field = descriptor->field(i);
348     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
349     if (field->containing_oneof()) {
350       continue;
351     }
352     switch (field->cpp_type()) {
353 #define HANDLE_TYPE(CPPTYPE, TYPE)                                           \
354       case FieldDescriptor::CPPTYPE_##CPPTYPE:                               \
355         if (!field->is_repeated()) {                                         \
356           new(field_ptr) TYPE(field->default_value_##TYPE());                \
357         } else {                                                             \
358           new(field_ptr) RepeatedField<TYPE>();                              \
359         }                                                                    \
360         break;
361 
362       HANDLE_TYPE(INT32 , int32 );
363       HANDLE_TYPE(INT64 , int64 );
364       HANDLE_TYPE(UINT32, uint32);
365       HANDLE_TYPE(UINT64, uint64);
366       HANDLE_TYPE(DOUBLE, double);
367       HANDLE_TYPE(FLOAT , float );
368       HANDLE_TYPE(BOOL  , bool  );
369 #undef HANDLE_TYPE
370 
371       case FieldDescriptor::CPPTYPE_ENUM:
372         if (!field->is_repeated()) {
373           new(field_ptr) int(field->default_value_enum()->number());
374         } else {
375           new(field_ptr) RepeatedField<int>();
376         }
377         break;
378 
379       case FieldDescriptor::CPPTYPE_STRING:
380         switch (field->options().ctype()) {
381           default:  // TODO(kenton):  Support other string reps.
382           case FieldOptions::STRING:
383             if (!field->is_repeated()) {
384               const string* default_value;
385               if (is_prototype()) {
386                 default_value = &field->default_value_string();
387               } else {
388                 default_value =
389                   &(reinterpret_cast<const ArenaStringPtr*>(
390                     type_info_->prototype->OffsetToPointer(
391                       type_info_->offsets[i]))->Get(NULL));
392               }
393               ArenaStringPtr* asp = new(field_ptr) ArenaStringPtr();
394               asp->UnsafeSetDefault(default_value);
395             } else {
396               new(field_ptr) RepeatedPtrField<string>();
397             }
398             break;
399         }
400         break;
401 
402       case FieldDescriptor::CPPTYPE_MESSAGE: {
403         if (!field->is_repeated()) {
404           new(field_ptr) Message*(NULL);
405         } else {
406           if (IsMapFieldInApi(field)) {
407             new (field_ptr) DynamicMapField(
408                 type_info_->factory->GetPrototypeNoLock(field->message_type()));
409           } else {
410             new (field_ptr) RepeatedPtrField<Message>();
411           }
412         }
413         break;
414       }
415     }
416   }
417 }
418 
~DynamicMessage()419 DynamicMessage::~DynamicMessage() {
420   const Descriptor* descriptor = type_info_->type;
421 
422   reinterpret_cast<UnknownFieldSet*>(
423     OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
424 
425   if (type_info_->extensions_offset != -1) {
426     reinterpret_cast<ExtensionSet*>(
427       OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
428   }
429 
430   // We need to manually run the destructors for repeated fields and strings,
431   // just as we ran their constructors in the DynamicMessage constructor.
432   // We also need to manually delete oneof fields if it is set and is string
433   // or message.
434   // Additionally, if any singular embedded messages have been allocated, we
435   // need to delete them, UNLESS we are the prototype message of this type,
436   // in which case any embedded messages are other prototypes and shouldn't
437   // be touched.
438   for (int i = 0; i < descriptor->field_count(); i++) {
439     const FieldDescriptor* field = descriptor->field(i);
440     if (field->containing_oneof()) {
441       void* field_ptr = OffsetToPointer(
442           type_info_->oneof_case_offset
443           + sizeof(uint32) * field->containing_oneof()->index());
444       if (*(reinterpret_cast<const uint32*>(field_ptr)) ==
445           field->number()) {
446         field_ptr = OffsetToPointer(type_info_->offsets[
447             descriptor->field_count() + field->containing_oneof()->index()]);
448         if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
449           switch (field->options().ctype()) {
450             default:
451             case FieldOptions::STRING: {
452               const ::std::string* default_value =
453                   &(reinterpret_cast<const ArenaStringPtr*>(
454                       reinterpret_cast<uint8*>(
455                           type_info_->default_oneof_instance)
456                       + type_info_->offsets[i])
457                     ->Get(NULL));
458               reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(
459                   default_value, NULL);
460               break;
461             }
462           }
463         } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
464             delete *reinterpret_cast<Message**>(field_ptr);
465         }
466       }
467       continue;
468     }
469     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
470 
471     if (field->is_repeated()) {
472       switch (field->cpp_type()) {
473 #define HANDLE_TYPE(UPPERCASE, LOWERCASE)                                     \
474         case FieldDescriptor::CPPTYPE_##UPPERCASE :                           \
475           reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr)              \
476               ->~RepeatedField<LOWERCASE>();                                  \
477           break
478 
479         HANDLE_TYPE( INT32,  int32);
480         HANDLE_TYPE( INT64,  int64);
481         HANDLE_TYPE(UINT32, uint32);
482         HANDLE_TYPE(UINT64, uint64);
483         HANDLE_TYPE(DOUBLE, double);
484         HANDLE_TYPE( FLOAT,  float);
485         HANDLE_TYPE(  BOOL,   bool);
486         HANDLE_TYPE(  ENUM,    int);
487 #undef HANDLE_TYPE
488 
489         case FieldDescriptor::CPPTYPE_STRING:
490           switch (field->options().ctype()) {
491             default:  // TODO(kenton):  Support other string reps.
492             case FieldOptions::STRING:
493               reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
494                   ->~RepeatedPtrField<string>();
495               break;
496           }
497           break;
498 
499         case FieldDescriptor::CPPTYPE_MESSAGE:
500           if (IsMapFieldInApi(field)) {
501             reinterpret_cast<DynamicMapField*>(field_ptr)->~DynamicMapField();
502           } else {
503             reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
504                 ->~RepeatedPtrField<Message>();
505           }
506           break;
507       }
508 
509     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
510       switch (field->options().ctype()) {
511         default:  // TODO(kenton):  Support other string reps.
512         case FieldOptions::STRING: {
513           const ::std::string* default_value =
514               &(reinterpret_cast<const ArenaStringPtr*>(
515                   type_info_->prototype->OffsetToPointer(
516                       type_info_->offsets[i]))->Get(NULL));
517           reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(
518               default_value, NULL);
519           break;
520         }
521       }
522     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
523       if (!is_prototype()) {
524         Message* message = *reinterpret_cast<Message**>(field_ptr);
525         if (message != NULL) {
526           delete message;
527         }
528       }
529     }
530   }
531 }
532 
CrossLinkPrototypes()533 void DynamicMessage::CrossLinkPrototypes() {
534   // This should only be called on the prototype message.
535   GOOGLE_CHECK(is_prototype());
536 
537   DynamicMessageFactory* factory = type_info_->factory;
538   const Descriptor* descriptor = type_info_->type;
539 
540   // Cross-link default messages.
541   for (int i = 0; i < descriptor->field_count(); i++) {
542     const FieldDescriptor* field = descriptor->field(i);
543     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
544     if (field->containing_oneof()) {
545       field_ptr = reinterpret_cast<uint8*>(
546           type_info_->default_oneof_instance) + type_info_->offsets[i];
547     }
548 
549     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
550         !field->is_repeated()) {
551       // For fields with message types, we need to cross-link with the
552       // prototype for the field's type.
553       // For singular fields, the field is just a pointer which should
554       // point to the prototype.
555       *reinterpret_cast<const Message**>(field_ptr) =
556         factory->GetPrototypeNoLock(field->message_type());
557     }
558   }
559 
560   // Set as the default instance -- this affects field-presence semantics for
561   // proto3.
562   if (type_info_->is_default_instance_offset != -1) {
563     void* is_default_instance_ptr =
564         OffsetToPointer(type_info_->is_default_instance_offset);
565     *reinterpret_cast<bool*>(is_default_instance_ptr) = true;
566   }
567 }
568 
New() const569 Message* DynamicMessage::New() const {
570   void* new_base = operator new(type_info_->size);
571   memset(new_base, 0, type_info_->size);
572   return new(new_base) DynamicMessage(type_info_);
573 }
574 
New(::google::protobuf::Arena * arena) const575 Message* DynamicMessage::New(::google::protobuf::Arena* arena) const {
576   if (arena != NULL) {
577     Message* message = New();
578     arena->Own(message);
579     return message;
580   } else {
581     return New();
582   }
583 }
584 
GetCachedSize() const585 int DynamicMessage::GetCachedSize() const {
586   return cached_byte_size_;
587 }
588 
SetCachedSize(int size) const589 void DynamicMessage::SetCachedSize(int size) const {
590   // This is theoretically not thread-compatible, but in practice it works
591   // because if multiple threads write this simultaneously, they will be
592   // writing the exact same value.
593   GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
594   cached_byte_size_ = size;
595   GOOGLE_SAFE_CONCURRENT_WRITES_END();
596 }
597 
GetMetadata() const598 Metadata DynamicMessage::GetMetadata() const {
599   Metadata metadata;
600   metadata.descriptor = type_info_->type;
601   metadata.reflection = type_info_->reflection.get();
602   return metadata;
603 }
604 
605 // ===================================================================
606 
607 struct DynamicMessageFactory::PrototypeMap {
608   typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
609   Map map_;
610 };
611 
DynamicMessageFactory()612 DynamicMessageFactory::DynamicMessageFactory()
613   : pool_(NULL), delegate_to_generated_factory_(false),
614     prototypes_(new PrototypeMap) {
615 }
616 
DynamicMessageFactory(const DescriptorPool * pool)617 DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
618   : pool_(pool), delegate_to_generated_factory_(false),
619     prototypes_(new PrototypeMap) {
620 }
621 
~DynamicMessageFactory()622 DynamicMessageFactory::~DynamicMessageFactory() {
623   for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
624        iter != prototypes_->map_.end(); ++iter) {
625     DeleteDefaultOneofInstance(iter->second->type,
626                                iter->second->offsets.get(),
627                                iter->second->default_oneof_instance);
628     delete iter->second;
629   }
630 }
631 
GetPrototype(const Descriptor * type)632 const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
633   MutexLock lock(&prototypes_mutex_);
634   return GetPrototypeNoLock(type);
635 }
636 
GetPrototypeNoLock(const Descriptor * type)637 const Message* DynamicMessageFactory::GetPrototypeNoLock(
638     const Descriptor* type) {
639   if (delegate_to_generated_factory_ &&
640       type->file()->pool() == DescriptorPool::generated_pool()) {
641     return MessageFactory::generated_factory()->GetPrototype(type);
642   }
643 
644   const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
645   if (*target != NULL) {
646     // Already exists.
647     return (*target)->prototype;
648   }
649 
650   DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
651   *target = type_info;
652 
653   type_info->type = type;
654   type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
655   type_info->factory = this;
656 
657   // We need to construct all the structures passed to
658   // GeneratedMessageReflection's constructor.  This includes:
659   // - A block of memory that contains space for all the message's fields.
660   // - An array of integers indicating the byte offset of each field within
661   //   this block.
662   // - A big bitfield containing a bit for each field indicating whether
663   //   or not that field is set.
664 
665   // Compute size and offsets.
666   int* offsets = new int[type->field_count() + type->oneof_decl_count()];
667   type_info->offsets.reset(offsets);
668 
669   // Decide all field offsets by packing in order.
670   // We place the DynamicMessage object itself at the beginning of the allocated
671   // space.
672   int size = sizeof(DynamicMessage);
673   size = AlignOffset(size);
674 
675   // Next the has_bits, which is an array of uint32s.
676   if (type->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) {
677     type_info->has_bits_offset = -1;
678   } else {
679     type_info->has_bits_offset = size;
680     int has_bits_array_size =
681       DivideRoundingUp(type->field_count(), bitsizeof(uint32));
682     size += has_bits_array_size * sizeof(uint32);
683     size = AlignOffset(size);
684   }
685 
686   // The is_default_instance member, if any.
687   if (type->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) {
688     type_info->is_default_instance_offset = size;
689     size += sizeof(bool);
690     size = AlignOffset(size);
691   } else {
692     type_info->is_default_instance_offset = -1;
693   }
694 
695   // The oneof_case, if any. It is an array of uint32s.
696   if (type->oneof_decl_count() > 0) {
697     type_info->oneof_case_offset = size;
698     size += type->oneof_decl_count() * sizeof(uint32);
699     size = AlignOffset(size);
700   }
701 
702   // The ExtensionSet, if any.
703   if (type->extension_range_count() > 0) {
704     type_info->extensions_offset = size;
705     size += sizeof(ExtensionSet);
706     size = AlignOffset(size);
707   } else {
708     // No extensions.
709     type_info->extensions_offset = -1;
710   }
711 
712   // All the fields.
713   for (int i = 0; i < type->field_count(); i++) {
714     // Make sure field is aligned to avoid bus errors.
715     // Oneof fields do not use any space.
716     if (!type->field(i)->containing_oneof()) {
717       int field_size = FieldSpaceUsed(type->field(i));
718       size = AlignTo(size, std::min(kSafeAlignment, field_size));
719       offsets[i] = size;
720       size += field_size;
721     }
722   }
723 
724   // The oneofs.
725   for (int i = 0; i < type->oneof_decl_count(); i++) {
726     size = AlignTo(size, kSafeAlignment);
727     offsets[type->field_count() + i] = size;
728     size += kMaxOneofUnionSize;
729   }
730 
731   // Add the UnknownFieldSet to the end.
732   size = AlignOffset(size);
733   type_info->unknown_fields_offset = size;
734   size += sizeof(UnknownFieldSet);
735 
736   // Align the final size to make sure no clever allocators think that
737   // alignment is not necessary.
738   size = AlignOffset(size);
739   type_info->size = size;
740 
741   // Allocate the prototype.
742   void* base = operator new(size);
743   memset(base, 0, size);
744   // The prototype in type_info has to be set before creating the prototype
745   // instance on memory. e.g., message Foo { map<int32, Foo> a = 1; }. When
746   // creating prototype for Foo, prototype of the map entry will also be
747   // created, which needs the address of the prototype of Foo (the value in
748   // map). To break the cyclic dependency, we have to assgin the address of
749   // prototype into type_info first.
750   type_info->prototype = static_cast<DynamicMessage*>(base);
751   DynamicMessage* prototype = new(base) DynamicMessage(type_info);
752 
753   // Construct the reflection object.
754   if (type->oneof_decl_count() > 0) {
755     // Compute the size of default oneof instance and offsets of default
756     // oneof fields.
757     int oneof_size = 0;
758     for (int i = 0; i < type->oneof_decl_count(); i++) {
759       for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
760         const FieldDescriptor* field = type->oneof_decl(i)->field(j);
761         int field_size = OneofFieldSpaceUsed(field);
762         oneof_size = AlignTo(oneof_size, std::min(kSafeAlignment, field_size));
763         offsets[field->index()] = oneof_size;
764         oneof_size += field_size;
765       }
766     }
767     // Construct default oneof instance.
768     type_info->default_oneof_instance = ::operator new(oneof_size);
769     ConstructDefaultOneofInstance(type_info->type,
770                                   type_info->offsets.get(),
771                                   type_info->default_oneof_instance);
772     type_info->reflection.reset(
773         new GeneratedMessageReflection(
774             type_info->type,
775             type_info->prototype,
776             type_info->offsets.get(),
777             type_info->has_bits_offset,
778             type_info->unknown_fields_offset,
779             type_info->extensions_offset,
780             type_info->default_oneof_instance,
781             type_info->oneof_case_offset,
782             type_info->pool,
783             this,
784             type_info->size,
785             -1 /* arena_offset */,
786             type_info->is_default_instance_offset));
787   } else {
788     type_info->reflection.reset(
789         new GeneratedMessageReflection(
790             type_info->type,
791             type_info->prototype,
792             type_info->offsets.get(),
793             type_info->has_bits_offset,
794             type_info->unknown_fields_offset,
795             type_info->extensions_offset,
796             type_info->pool,
797             this,
798             type_info->size,
799             -1 /* arena_offset */,
800             type_info->is_default_instance_offset));
801   }
802   // Cross link prototypes.
803   prototype->CrossLinkPrototypes();
804 
805   return prototype;
806 }
807 
ConstructDefaultOneofInstance(const Descriptor * type,const int offsets[],void * default_oneof_instance)808 void DynamicMessageFactory::ConstructDefaultOneofInstance(
809     const Descriptor* type,
810     const int offsets[],
811     void* default_oneof_instance) {
812   for (int i = 0; i < type->oneof_decl_count(); i++) {
813     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
814       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
815       void* field_ptr = reinterpret_cast<uint8*>(
816           default_oneof_instance) + offsets[field->index()];
817       switch (field->cpp_type()) {
818 #define HANDLE_TYPE(CPPTYPE, TYPE)                                      \
819         case FieldDescriptor::CPPTYPE_##CPPTYPE:                        \
820           new(field_ptr) TYPE(field->default_value_##TYPE());           \
821           break;
822 
823         HANDLE_TYPE(INT32 , int32 );
824         HANDLE_TYPE(INT64 , int64 );
825         HANDLE_TYPE(UINT32, uint32);
826         HANDLE_TYPE(UINT64, uint64);
827         HANDLE_TYPE(DOUBLE, double);
828         HANDLE_TYPE(FLOAT , float );
829         HANDLE_TYPE(BOOL  , bool  );
830 #undef HANDLE_TYPE
831 
832         case FieldDescriptor::CPPTYPE_ENUM:
833           new(field_ptr) int(field->default_value_enum()->number());
834           break;
835         case FieldDescriptor::CPPTYPE_STRING:
836           switch (field->options().ctype()) {
837             default:
838             case FieldOptions::STRING:
839               ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr();
840               asp->UnsafeSetDefault(&field->default_value_string());
841               break;
842           }
843           break;
844 
845         case FieldDescriptor::CPPTYPE_MESSAGE: {
846           new(field_ptr) Message*(NULL);
847           break;
848         }
849       }
850     }
851   }
852 }
853 
DeleteDefaultOneofInstance(const Descriptor * type,const int offsets[],void * default_oneof_instance)854 void DynamicMessageFactory::DeleteDefaultOneofInstance(
855     const Descriptor* type,
856     const int offsets[],
857     void* default_oneof_instance) {
858   for (int i = 0; i < type->oneof_decl_count(); i++) {
859     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
860       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
861       if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
862         switch (field->options().ctype()) {
863           default:
864           case FieldOptions::STRING:
865             break;
866         }
867       }
868     }
869   }
870 }
871 
872 }  // namespace protobuf
873 }  // namespace google
874