1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16 
17 namespace llvm {
18 
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23 
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     // DELETED_NODE - This is an illegal value that is used to catch
41     // errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43 
44     // EntryToken - This is the marker used to indicate the start of the region.
45     EntryToken,
46 
47     // TokenFactor - This node takes multiple tokens as input and produces a
48     // single token result.  This is used to represent the fact that the operand
49     // operators are independent of each other.
50     TokenFactor,
51 
52     // AssertSext, AssertZext - These nodes record if a register contains a
53     // value that has already been zero or sign extended from a narrower type.
54     // These nodes take two operands.  The first is the node that has already
55     // been extended, and the second is a value type node indicating the width
56     // of the extension
57     AssertSext, AssertZext,
58 
59     // Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64 
65     // The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67 
68     // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     // llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     // of the frame or return address to return.  An index of zero corresponds
71     // to the current function's frame or return address, an index of one to the
72     // parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74 
75     // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76     // first (possible) on-stack argument. This is needed for correct stack
77     // adjustment during unwind.
78     FRAME_TO_ARGS_OFFSET,
79 
80     // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81     // address of the exception block on entry to an landing pad block.
82     EXCEPTIONADDR,
83 
84     // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85     // address of the Language Specific Data Area for the enclosing function.
86     LSDAADDR,
87 
88     // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
89     // the selection index of the exception thrown.
90     EHSELECTION,
91 
92     // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93     // 'eh_return' gcc dwarf builtin, which is used to return from
94     // exception. The general meaning is: adjust stack by OFFSET and pass
95     // execution to HANDLER. Many platform-related details also :)
96     EH_RETURN,
97 
98     // RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99     // This corresponds to the eh.sjlj.setjmp intrinsic.
100     // It takes an input chain and a pointer to the jump buffer as inputs
101     // and returns an outchain.
102     EH_SJLJ_SETJMP,
103 
104     // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105     // This corresponds to the eh.sjlj.longjmp intrinsic.
106     // It takes an input chain and a pointer to the jump buffer as inputs
107     // and returns an outchain.
108     EH_SJLJ_LONGJMP,
109 
110     // OUTCHAIN = EH_SJLJ_DISPATCHSETUP(INCHAIN, setjmpval)
111     // This corresponds to the eh.sjlj.dispatchsetup intrinsic. It takes an
112     // input chain and the value returning from setjmp as inputs and returns an
113     // outchain. By default, this does nothing. Targets can lower this to unwind
114     // setup code if needed.
115     EH_SJLJ_DISPATCHSETUP,
116 
117     // TargetConstant* - Like Constant*, but the DAG does not do any folding,
118     // simplification, or lowering of the constant. They are used for constants
119     // which are known to fit in the immediate fields of their users, or for
120     // carrying magic numbers which are not values which need to be materialized
121     // in registers.
122     TargetConstant,
123     TargetConstantFP,
124 
125     // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
126     // anything else with this node, and this is valid in the target-specific
127     // dag, turning into a GlobalAddress operand.
128     TargetGlobalAddress,
129     TargetGlobalTLSAddress,
130     TargetFrameIndex,
131     TargetJumpTable,
132     TargetConstantPool,
133     TargetExternalSymbol,
134     TargetBlockAddress,
135 
136     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
137     /// This node represents a target intrinsic function with no side effects.
138     /// The first operand is the ID number of the intrinsic from the
139     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
140     /// node returns the result of the intrinsic.
141     INTRINSIC_WO_CHAIN,
142 
143     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
144     /// This node represents a target intrinsic function with side effects that
145     /// returns a result.  The first operand is a chain pointer.  The second is
146     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
147     /// operands to the intrinsic follow.  The node has two results, the result
148     /// of the intrinsic and an output chain.
149     INTRINSIC_W_CHAIN,
150 
151     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
152     /// This node represents a target intrinsic function with side effects that
153     /// does not return a result.  The first operand is a chain pointer.  The
154     /// second is the ID number of the intrinsic from the llvm::Intrinsic
155     /// namespace.  The operands to the intrinsic follow.
156     INTRINSIC_VOID,
157 
158     // CopyToReg - This node has three operands: a chain, a register number to
159     // set to this value, and a value.
160     CopyToReg,
161 
162     // CopyFromReg - This node indicates that the input value is a virtual or
163     // physical register that is defined outside of the scope of this
164     // SelectionDAG.  The register is available from the RegisterSDNode object.
165     CopyFromReg,
166 
167     // UNDEF - An undefined node
168     UNDEF,
169 
170     // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
171     // a Constant, which is required to be operand #1) half of the integer or
172     // float value specified as operand #0.  This is only for use before
173     // legalization, for values that will be broken into multiple registers.
174     EXTRACT_ELEMENT,
175 
176     // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
177     // two values of the same integer value type, this produces a value twice as
178     // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
179     BUILD_PAIR,
180 
181     // MERGE_VALUES - This node takes multiple discrete operands and returns
182     // them all as its individual results.  This nodes has exactly the same
183     // number of inputs and outputs. This node is useful for some pieces of the
184     // code generator that want to think about a single node with multiple
185     // results, not multiple nodes.
186     MERGE_VALUES,
187 
188     // Simple integer binary arithmetic operators.
189     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
190 
191     // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
192     // a signed/unsigned value of type i[2*N], and return the full value as
193     // two results, each of type iN.
194     SMUL_LOHI, UMUL_LOHI,
195 
196     // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
197     // remainder result.
198     SDIVREM, UDIVREM,
199 
200     // CARRY_FALSE - This node is used when folding other nodes,
201     // like ADDC/SUBC, which indicate the carry result is always false.
202     CARRY_FALSE,
203 
204     // Carry-setting nodes for multiple precision addition and subtraction.
205     // These nodes take two operands of the same value type, and produce two
206     // results.  The first result is the normal add or sub result, the second
207     // result is the carry flag result.
208     ADDC, SUBC,
209 
210     // Carry-using nodes for multiple precision addition and subtraction.  These
211     // nodes take three operands: The first two are the normal lhs and rhs to
212     // the add or sub, and the third is the input carry flag.  These nodes
213     // produce two results; the normal result of the add or sub, and the output
214     // carry flag.  These nodes both read and write a carry flag to allow them
215     // to them to be chained together for add and sub of arbitrarily large
216     // values.
217     ADDE, SUBE,
218 
219     // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
220     // These nodes take two operands: the normal LHS and RHS to the add. They
221     // produce two results: the normal result of the add, and a boolean that
222     // indicates if an overflow occurred (*not* a flag, because it may be stored
223     // to memory, etc.).  If the type of the boolean is not i1 then the high
224     // bits conform to getBooleanContents.
225     // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
226     SADDO, UADDO,
227 
228     // Same for subtraction
229     SSUBO, USUBO,
230 
231     // Same for multiplication
232     SMULO, UMULO,
233 
234     // Simple binary floating point operators.
235     FADD, FSUB, FMUL, FMA, FDIV, FREM,
236 
237     // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
238     // DAG node does not require that X and Y have the same type, just that they
239     // are both floating point.  X and the result must have the same type.
240     // FCOPYSIGN(f32, f64) is allowed.
241     FCOPYSIGN,
242 
243     // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
244     // value as an integer 0/1 value.
245     FGETSIGN,
246 
247     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
248     /// specified, possibly variable, elements.  The number of elements is
249     /// required to be a power of two.  The types of the operands must all be
250     /// the same and must match the vector element type, except that integer
251     /// types are allowed to be larger than the element type, in which case
252     /// the operands are implicitly truncated.
253     BUILD_VECTOR,
254 
255     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
256     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
257     /// element type then VAL is truncated before replacement.
258     INSERT_VECTOR_ELT,
259 
260     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
261     /// identified by the (potentially variable) element number IDX.  If the
262     /// return type is an integer type larger than the element type of the
263     /// vector, the result is extended to the width of the return type.
264     EXTRACT_VECTOR_ELT,
265 
266     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
267     /// vector type with the same length and element type, this produces a
268     /// concatenated vector result value, with length equal to the sum of the
269     /// lengths of the input vectors.
270     CONCAT_VECTORS,
271 
272     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
273     /// with VECTOR2 inserted into VECTOR1 at the (potentially
274     /// variable) element number IDX, which must be a multiple of the
275     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
276     /// IDX are overwritten with VECTOR2.  Elements IDX through
277     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
278     INSERT_SUBVECTOR,
279 
280     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
281     /// vector value) starting with the element number IDX, which must be a
282     /// constant multiple of the result vector length.
283     EXTRACT_SUBVECTOR,
284 
285     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
286     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
287     /// values that indicate which value (or undef) each result element will
288     /// get.  These constant ints are accessible through the
289     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
290     /// 'vperm' instruction, except that the indices must be constants and are
291     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
292     VECTOR_SHUFFLE,
293 
294     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
295     /// scalar value into element 0 of the resultant vector type.  The top
296     /// elements 1 to N-1 of the N-element vector are undefined.  The type
297     /// of the operand must match the vector element type, except when they
298     /// are integer types.  In this case the operand is allowed to be wider
299     /// than the vector element type, and is implicitly truncated to it.
300     SCALAR_TO_VECTOR,
301 
302     // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
303     // an unsigned/signed value of type i[2*N], then return the top part.
304     MULHU, MULHS,
305 
306     /// Bitwise operators - logical and, logical or, logical xor.
307     AND, OR, XOR,
308 
309     /// Shift and rotation operations.  After legalization, the type of the
310     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
311     /// the shift amount can be any type, but care must be taken to ensure it is
312     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
313     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
314     /// to represent the shift amount.  By convention, DAGCombine and
315     /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
316     ///
317     SHL, SRA, SRL, ROTL, ROTR,
318 
319     /// Byte Swap and Counting operators.
320     BSWAP, CTTZ, CTLZ, CTPOP,
321 
322     // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
323     // i1 then the high bits must conform to getBooleanContents.
324     SELECT,
325 
326     // Select with a vector condition (op #0) and two vector operands (ops #1
327     // and #2), returning a vector result.  All vectors have the same length.
328     // Much like the scalar select and setcc, each bit in the condition selects
329     // whether the corresponding result element is taken from op #1 or op #2.
330     VSELECT,
331 
332     // Select with condition operator - This selects between a true value and
333     // a false value (ops #2 and #3) based on the boolean result of comparing
334     // the lhs and rhs (ops #0 and #1) of a conditional expression with the
335     // condition code in op #4, a CondCodeSDNode.
336     SELECT_CC,
337 
338     // SetCC operator - This evaluates to a true value iff the condition is
339     // true.  If the result value type is not i1 then the high bits conform
340     // to getBooleanContents.  The operands to this are the left and right
341     // operands to compare (ops #0, and #1) and the condition code to compare
342     // them with (op #2) as a CondCodeSDNode. If the operands are vector types
343     // then the result type must also be a vector type.
344     SETCC,
345 
346     // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
347     // integer shift operations, just like ADD/SUB_PARTS.  The operation
348     // ordering is:
349     //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
350     SHL_PARTS, SRA_PARTS, SRL_PARTS,
351 
352     // Conversion operators.  These are all single input single output
353     // operations.  For all of these, the result type must be strictly
354     // wider or narrower (depending on the operation) than the source
355     // type.
356 
357     // SIGN_EXTEND - Used for integer types, replicating the sign bit
358     // into new bits.
359     SIGN_EXTEND,
360 
361     // ZERO_EXTEND - Used for integer types, zeroing the new bits.
362     ZERO_EXTEND,
363 
364     // ANY_EXTEND - Used for integer types.  The high bits are undefined.
365     ANY_EXTEND,
366 
367     // TRUNCATE - Completely drop the high bits.
368     TRUNCATE,
369 
370     // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
371     // depends on the first letter) to floating point.
372     SINT_TO_FP,
373     UINT_TO_FP,
374 
375     // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
376     // sign extend a small value in a large integer register (e.g. sign
377     // extending the low 8 bits of a 32-bit register to fill the top 24 bits
378     // with the 7th bit).  The size of the smaller type is indicated by the 1th
379     // operand, a ValueType node.
380     SIGN_EXTEND_INREG,
381 
382     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
383     /// integer.
384     FP_TO_SINT,
385     FP_TO_UINT,
386 
387     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
388     /// down to the precision of the destination VT.  TRUNC is a flag, which is
389     /// always an integer that is zero or one.  If TRUNC is 0, this is a
390     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
391     /// value of Y.
392     ///
393     /// The TRUNC = 1 case is used in cases where we know that the value will
394     /// not be modified by the node, because Y is not using any of the extra
395     /// precision of source type.  This allows certain transformations like
396     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
397     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
398     FP_ROUND,
399 
400     // FLT_ROUNDS_ - Returns current rounding mode:
401     // -1 Undefined
402     //  0 Round to 0
403     //  1 Round to nearest
404     //  2 Round to +inf
405     //  3 Round to -inf
406     FLT_ROUNDS_,
407 
408     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
409     /// rounds it to a floating point value.  It then promotes it and returns it
410     /// in a register of the same size.  This operation effectively just
411     /// discards excess precision.  The type to round down to is specified by
412     /// the VT operand, a VTSDNode.
413     FP_ROUND_INREG,
414 
415     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
416     FP_EXTEND,
417 
418     // BITCAST - This operator converts between integer, vector and FP
419     // values, as if the value was stored to memory with one type and loaded
420     // from the same address with the other type (or equivalently for vector
421     // format conversions, etc).  The source and result are required to have
422     // the same bit size (e.g.  f32 <-> i32).  This can also be used for
423     // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
424     // getNode().
425     BITCAST,
426 
427     // CONVERT_RNDSAT - This operator is used to support various conversions
428     // between various types (float, signed, unsigned and vectors of those
429     // types) with rounding and saturation. NOTE: Avoid using this operator as
430     // most target don't support it and the operator might be removed in the
431     // future. It takes the following arguments:
432     //   0) value
433     //   1) dest type (type to convert to)
434     //   2) src type (type to convert from)
435     //   3) rounding imm
436     //   4) saturation imm
437     //   5) ISD::CvtCode indicating the type of conversion to do
438     CONVERT_RNDSAT,
439 
440     // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
441     // promotions and truncation for half-precision (16 bit) floating
442     // numbers. We need special nodes since FP16 is a storage-only type with
443     // special semantics of operations.
444     FP16_TO_FP32, FP32_TO_FP16,
445 
446     // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
447     // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
448     // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
449     // point operations. These are inspired by libm.
450     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
451     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
452     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
453 
454     // LOAD and STORE have token chains as their first operand, then the same
455     // operands as an LLVM load/store instruction, then an offset node that
456     // is added / subtracted from the base pointer to form the address (for
457     // indexed memory ops).
458     LOAD, STORE,
459 
460     // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
461     // to a specified boundary.  This node always has two return values: a new
462     // stack pointer value and a chain. The first operand is the token chain,
463     // the second is the number of bytes to allocate, and the third is the
464     // alignment boundary.  The size is guaranteed to be a multiple of the stack
465     // alignment, and the alignment is guaranteed to be bigger than the stack
466     // alignment (if required) or 0 to get standard stack alignment.
467     DYNAMIC_STACKALLOC,
468 
469     // Control flow instructions.  These all have token chains.
470 
471     // BR - Unconditional branch.  The first operand is the chain
472     // operand, the second is the MBB to branch to.
473     BR,
474 
475     // BRIND - Indirect branch.  The first operand is the chain, the second
476     // is the value to branch to, which must be of the same type as the target's
477     // pointer type.
478     BRIND,
479 
480     // BR_JT - Jumptable branch. The first operand is the chain, the second
481     // is the jumptable index, the last one is the jumptable entry index.
482     BR_JT,
483 
484     // BRCOND - Conditional branch.  The first operand is the chain, the
485     // second is the condition, the third is the block to branch to if the
486     // condition is true.  If the type of the condition is not i1, then the
487     // high bits must conform to getBooleanContents.
488     BRCOND,
489 
490     // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
491     // that the condition is represented as condition code, and two nodes to
492     // compare, rather than as a combined SetCC node.  The operands in order are
493     // chain, cc, lhs, rhs, block to branch to if condition is true.
494     BR_CC,
495 
496     // INLINEASM - Represents an inline asm block.  This node always has two
497     // return values: a chain and a flag result.  The inputs are as follows:
498     //   Operand #0   : Input chain.
499     //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
500     //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
501     //   Operand #3   : HasSideEffect, IsAlignStack bits.
502     //   After this, it is followed by a list of operands with this format:
503     //     ConstantSDNode: Flags that encode whether it is a mem or not, the
504     //                     of operands that follow, etc.  See InlineAsm.h.
505     //     ... however many operands ...
506     //   Operand #last: Optional, an incoming flag.
507     //
508     // The variable width operands are required to represent target addressing
509     // modes as a single "operand", even though they may have multiple
510     // SDOperands.
511     INLINEASM,
512 
513     // EH_LABEL - Represents a label in mid basic block used to track
514     // locations needed for debug and exception handling tables.  These nodes
515     // take a chain as input and return a chain.
516     EH_LABEL,
517 
518     // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
519     // value, the same type as the pointer type for the system, and an output
520     // chain.
521     STACKSAVE,
522 
523     // STACKRESTORE has two operands, an input chain and a pointer to restore to
524     // it returns an output chain.
525     STACKRESTORE,
526 
527     // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
528     // a call sequence, and carry arbitrary information that target might want
529     // to know.  The first operand is a chain, the rest are specified by the
530     // target and not touched by the DAG optimizers.
531     // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
532     CALLSEQ_START,  // Beginning of a call sequence
533     CALLSEQ_END,    // End of a call sequence
534 
535     // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
536     // and the alignment. It returns a pair of values: the vaarg value and a
537     // new chain.
538     VAARG,
539 
540     // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
541     // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
542     // source.
543     VACOPY,
544 
545     // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
546     // pointer, and a SRCVALUE.
547     VAEND, VASTART,
548 
549     // SRCVALUE - This is a node type that holds a Value* that is used to
550     // make reference to a value in the LLVM IR.
551     SRCVALUE,
552 
553     // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
554     // reference metadata in the IR.
555     MDNODE_SDNODE,
556 
557     // PCMARKER - This corresponds to the pcmarker intrinsic.
558     PCMARKER,
559 
560     // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
561     // The only operand is a chain and a value and a chain are produced.  The
562     // value is the contents of the architecture specific cycle counter like
563     // register (or other high accuracy low latency clock source)
564     READCYCLECOUNTER,
565 
566     // HANDLENODE node - Used as a handle for various purposes.
567     HANDLENODE,
568 
569     // INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
570     // takes as input a token chain, the pointer to the trampoline, the pointer
571     // to the nested function, the pointer to pass for the 'nest' parameter, a
572     // SRCVALUE for the trampoline and another for the nested function (allowing
573     // targets to access the original Function*).  It produces a token chain as
574     // output.
575     INIT_TRAMPOLINE,
576 
577     // ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
578     // It takes a pointer to the trampoline and produces a (possibly) new
579     // pointer to the same trampoline with platform-specific adjustments
580     // applied.  The pointer it returns points to an executable block of code.
581     ADJUST_TRAMPOLINE,
582 
583     // TRAP - Trapping instruction
584     TRAP,
585 
586     // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
587     // their first operand. The other operands are the address to prefetch,
588     // read / write specifier, locality specifier and instruction / data cache
589     // specifier.
590     PREFETCH,
591 
592     // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
593     //                       store-store, device)
594     // This corresponds to the memory.barrier intrinsic.
595     // it takes an input chain, 4 operands to specify the type of barrier, an
596     // operand specifying if the barrier applies to device and uncached memory
597     // and produces an output chain.
598     MEMBARRIER,
599 
600     // OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
601     // This corresponds to the fence instruction. It takes an input chain, and
602     // two integer constants: an AtomicOrdering and a SynchronizationScope.
603     ATOMIC_FENCE,
604 
605     // Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
606     // This corresponds to "load atomic" instruction.
607     ATOMIC_LOAD,
608 
609     // OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
610     // This corresponds to "store atomic" instruction.
611     ATOMIC_STORE,
612 
613     // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
614     // This corresponds to the cmpxchg instruction.
615     ATOMIC_CMP_SWAP,
616 
617     // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
618     // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
619     // These correspond to the atomicrmw instruction.
620     ATOMIC_SWAP,
621     ATOMIC_LOAD_ADD,
622     ATOMIC_LOAD_SUB,
623     ATOMIC_LOAD_AND,
624     ATOMIC_LOAD_OR,
625     ATOMIC_LOAD_XOR,
626     ATOMIC_LOAD_NAND,
627     ATOMIC_LOAD_MIN,
628     ATOMIC_LOAD_MAX,
629     ATOMIC_LOAD_UMIN,
630     ATOMIC_LOAD_UMAX,
631 
632     /// BUILTIN_OP_END - This must be the last enum value in this list.
633     /// The target-specific pre-isel opcode values start here.
634     BUILTIN_OP_END
635   };
636 
637   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
638   /// which do not reference a specific memory location should be less than
639   /// this value. Those that do must not be less than this value, and can
640   /// be used with SelectionDAG::getMemIntrinsicNode.
641   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
642 
643   //===--------------------------------------------------------------------===//
644   /// MemIndexedMode enum - This enum defines the load / store indexed
645   /// addressing modes.
646   ///
647   /// UNINDEXED    "Normal" load / store. The effective address is already
648   ///              computed and is available in the base pointer. The offset
649   ///              operand is always undefined. In addition to producing a
650   ///              chain, an unindexed load produces one value (result of the
651   ///              load); an unindexed store does not produce a value.
652   ///
653   /// PRE_INC      Similar to the unindexed mode where the effective address is
654   /// PRE_DEC      the value of the base pointer add / subtract the offset.
655   ///              It considers the computation as being folded into the load /
656   ///              store operation (i.e. the load / store does the address
657   ///              computation as well as performing the memory transaction).
658   ///              The base operand is always undefined. In addition to
659   ///              producing a chain, pre-indexed load produces two values
660   ///              (result of the load and the result of the address
661   ///              computation); a pre-indexed store produces one value (result
662   ///              of the address computation).
663   ///
664   /// POST_INC     The effective address is the value of the base pointer. The
665   /// POST_DEC     value of the offset operand is then added to / subtracted
666   ///              from the base after memory transaction. In addition to
667   ///              producing a chain, post-indexed load produces two values
668   ///              (the result of the load and the result of the base +/- offset
669   ///              computation); a post-indexed store produces one value (the
670   ///              the result of the base +/- offset computation).
671   enum MemIndexedMode {
672     UNINDEXED = 0,
673     PRE_INC,
674     PRE_DEC,
675     POST_INC,
676     POST_DEC,
677     LAST_INDEXED_MODE
678   };
679 
680   //===--------------------------------------------------------------------===//
681   /// LoadExtType enum - This enum defines the three variants of LOADEXT
682   /// (load with extension).
683   ///
684   /// SEXTLOAD loads the integer operand and sign extends it to a larger
685   ///          integer result type.
686   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
687   ///          integer result type.
688   /// EXTLOAD  is used for two things: floating point extending loads and
689   ///          integer extending loads [the top bits are undefined].
690   enum LoadExtType {
691     NON_EXTLOAD = 0,
692     EXTLOAD,
693     SEXTLOAD,
694     ZEXTLOAD,
695     LAST_LOADEXT_TYPE
696   };
697 
698   //===--------------------------------------------------------------------===//
699   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
700   /// below work out, when considering SETFALSE (something that never exists
701   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
702   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
703   /// to.  If the "N" column is 1, the result of the comparison is undefined if
704   /// the input is a NAN.
705   ///
706   /// All of these (except for the 'always folded ops') should be handled for
707   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
708   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
709   ///
710   /// Note that these are laid out in a specific order to allow bit-twiddling
711   /// to transform conditions.
712   enum CondCode {
713     // Opcode          N U L G E       Intuitive operation
714     SETFALSE,      //    0 0 0 0       Always false (always folded)
715     SETOEQ,        //    0 0 0 1       True if ordered and equal
716     SETOGT,        //    0 0 1 0       True if ordered and greater than
717     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
718     SETOLT,        //    0 1 0 0       True if ordered and less than
719     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
720     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
721     SETO,          //    0 1 1 1       True if ordered (no nans)
722     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
723     SETUEQ,        //    1 0 0 1       True if unordered or equal
724     SETUGT,        //    1 0 1 0       True if unordered or greater than
725     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
726     SETULT,        //    1 1 0 0       True if unordered or less than
727     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
728     SETUNE,        //    1 1 1 0       True if unordered or not equal
729     SETTRUE,       //    1 1 1 1       Always true (always folded)
730     // Don't care operations: undefined if the input is a nan.
731     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
732     SETEQ,         //  1 X 0 0 1       True if equal
733     SETGT,         //  1 X 0 1 0       True if greater than
734     SETGE,         //  1 X 0 1 1       True if greater than or equal
735     SETLT,         //  1 X 1 0 0       True if less than
736     SETLE,         //  1 X 1 0 1       True if less than or equal
737     SETNE,         //  1 X 1 1 0       True if not equal
738     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
739 
740     SETCC_INVALID       // Marker value.
741   };
742 
743   /// isSignedIntSetCC - Return true if this is a setcc instruction that
744   /// performs a signed comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)745   inline bool isSignedIntSetCC(CondCode Code) {
746     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
747   }
748 
749   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
750   /// performs an unsigned comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)751   inline bool isUnsignedIntSetCC(CondCode Code) {
752     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
753   }
754 
755   /// isTrueWhenEqual - Return true if the specified condition returns true if
756   /// the two operands to the condition are equal.  Note that if one of the two
757   /// operands is a NaN, this value is meaningless.
isTrueWhenEqual(CondCode Cond)758   inline bool isTrueWhenEqual(CondCode Cond) {
759     return ((int)Cond & 1) != 0;
760   }
761 
762   /// getUnorderedFlavor - This function returns 0 if the condition is always
763   /// false if an operand is a NaN, 1 if the condition is always true if the
764   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
765   /// NaN.
getUnorderedFlavor(CondCode Cond)766   inline unsigned getUnorderedFlavor(CondCode Cond) {
767     return ((int)Cond >> 3) & 3;
768   }
769 
770   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
771   /// 'op' is a valid SetCC operation.
772   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
773 
774   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
775   /// when given the operation for (X op Y).
776   CondCode getSetCCSwappedOperands(CondCode Operation);
777 
778   /// getSetCCOrOperation - Return the result of a logical OR between different
779   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
780   /// function returns SETCC_INVALID if it is not possible to represent the
781   /// resultant comparison.
782   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
783 
784   /// getSetCCAndOperation - Return the result of a logical AND between
785   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
786   /// function returns SETCC_INVALID if it is not possible to represent the
787   /// resultant comparison.
788   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
789 
790   //===--------------------------------------------------------------------===//
791   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
792   /// supports.
793   enum CvtCode {
794     CVT_FF,     // Float from Float
795     CVT_FS,     // Float from Signed
796     CVT_FU,     // Float from Unsigned
797     CVT_SF,     // Signed from Float
798     CVT_UF,     // Unsigned from Float
799     CVT_SS,     // Signed from Signed
800     CVT_SU,     // Signed from Unsigned
801     CVT_US,     // Unsigned from Signed
802     CVT_UU,     // Unsigned from Unsigned
803     CVT_INVALID // Marker - Invalid opcode
804   };
805 
806 } // end llvm::ISD namespace
807 
808 } // end llvm namespace
809 
810 #endif
811