1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
shouldUseDestForReturnSlot() const44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
getReturnValueSlot() const48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
EnsureSlot(QualType T)56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
EnsureDest(QualType T)60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
needsGC(QualType T)90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
Visit(Expr * E)102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
VisitStmt(Stmt * S)107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
VisitParenExpr(ParenExpr * PE)110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
VisitUnaryExtension(UnaryOperator * E)114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
VisitMemberExpr(MemberExpr * ME)138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
VisitPredefinedExpr(const PredefinedExpr * E)145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
179   void VisitLambdaExpr(LambdaExpr *E);
180   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
181   void VisitExprWithCleanups(ExprWithCleanups *E);
182   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)183   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
184   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
185   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
186 
VisitPseudoObjectExpr(PseudoObjectExpr * E)187   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
188     if (E->isGLValue()) {
189       LValue LV = CGF.EmitPseudoObjectLValue(E);
190       return EmitFinalDestCopy(E->getType(), LV);
191     }
192 
193     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
194   }
195 
196   void VisitVAArgExpr(VAArgExpr *E);
197 
198   void EmitInitializationToLValue(Expr *E, LValue Address);
199   void EmitNullInitializationToLValue(LValue Address);
200   //  case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)201   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)202   void VisitAtomicExpr(AtomicExpr *E) {
203     RValue Res = CGF.EmitAtomicExpr(E);
204     EmitFinalDestCopy(E->getType(), Res);
205   }
206 };
207 }  // end anonymous namespace.
208 
209 //===----------------------------------------------------------------------===//
210 //                                Utilities
211 //===----------------------------------------------------------------------===//
212 
213 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
214 /// represents a value lvalue, this method emits the address of the lvalue,
215 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)216 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
217   LValue LV = CGF.EmitLValue(E);
218 
219   // If the type of the l-value is atomic, then do an atomic load.
220   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
221     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
222     return;
223   }
224 
225   EmitFinalDestCopy(E->getType(), LV);
226 }
227 
228 /// \brief True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)229 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
230   // Only record types have members that might require garbage collection.
231   const RecordType *RecordTy = T->getAs<RecordType>();
232   if (!RecordTy) return false;
233 
234   // Don't mess with non-trivial C++ types.
235   RecordDecl *Record = RecordTy->getDecl();
236   if (isa<CXXRecordDecl>(Record) &&
237       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
238        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
239     return false;
240 
241   // Check whether the type has an object member.
242   return Record->hasObjectMember();
243 }
244 
245 /// \brief Perform the final move to DestPtr if for some reason
246 /// getReturnValueSlot() didn't use it directly.
247 ///
248 /// The idea is that you do something like this:
249 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
250 ///   EmitMoveFromReturnSlot(E, Result);
251 ///
252 /// If nothing interferes, this will cause the result to be emitted
253 /// directly into the return value slot.  Otherwise, a final move
254 /// will be performed.
EmitMoveFromReturnSlot(const Expr * E,RValue src)255 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
256   if (shouldUseDestForReturnSlot()) {
257     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
258     // The possibility of undef rvalues complicates that a lot,
259     // though, so we can't really assert.
260     return;
261   }
262 
263   // Otherwise, copy from there to the destination.
264   assert(Dest.getPointer() != src.getAggregatePointer());
265   EmitFinalDestCopy(E->getType(), src);
266 }
267 
268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)269 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
270   assert(src.isAggregate() && "value must be aggregate value!");
271   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
272   EmitFinalDestCopy(type, srcLV);
273 }
274 
275 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src)276 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
277   // If Dest is ignored, then we're evaluating an aggregate expression
278   // in a context that doesn't care about the result.  Note that loads
279   // from volatile l-values force the existence of a non-ignored
280   // destination.
281   if (Dest.isIgnored())
282     return;
283 
284   AggValueSlot srcAgg =
285     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
286                             needsGC(type), AggValueSlot::IsAliased);
287   EmitCopy(type, Dest, srcAgg);
288 }
289 
290 /// Perform a copy from the source into the destination.
291 ///
292 /// \param type - the type of the aggregate being copied; qualifiers are
293 ///   ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)294 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
295                               const AggValueSlot &src) {
296   if (dest.requiresGCollection()) {
297     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
298     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
299     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
300                                                       dest.getAddress(),
301                                                       src.getAddress(),
302                                                       size);
303     return;
304   }
305 
306   // If the result of the assignment is used, copy the LHS there also.
307   // It's volatile if either side is.  Use the minimum alignment of
308   // the two sides.
309   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
310                         dest.isVolatile() || src.isVolatile());
311 }
312 
313 /// \brief Emit the initializer for a std::initializer_list initialized with a
314 /// real initializer list.
315 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)316 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
317   // Emit an array containing the elements.  The array is externally destructed
318   // if the std::initializer_list object is.
319   ASTContext &Ctx = CGF.getContext();
320   LValue Array = CGF.EmitLValue(E->getSubExpr());
321   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
322   Address ArrayPtr = Array.getAddress();
323 
324   const ConstantArrayType *ArrayType =
325       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
326   assert(ArrayType && "std::initializer_list constructed from non-array");
327 
328   // FIXME: Perform the checks on the field types in SemaInit.
329   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
330   RecordDecl::field_iterator Field = Record->field_begin();
331   if (Field == Record->field_end()) {
332     CGF.ErrorUnsupported(E, "weird std::initializer_list");
333     return;
334   }
335 
336   // Start pointer.
337   if (!Field->getType()->isPointerType() ||
338       !Ctx.hasSameType(Field->getType()->getPointeeType(),
339                        ArrayType->getElementType())) {
340     CGF.ErrorUnsupported(E, "weird std::initializer_list");
341     return;
342   }
343 
344   AggValueSlot Dest = EnsureSlot(E->getType());
345   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
346   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
347   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
348   llvm::Value *IdxStart[] = { Zero, Zero };
349   llvm::Value *ArrayStart =
350       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
351   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
352   ++Field;
353 
354   if (Field == Record->field_end()) {
355     CGF.ErrorUnsupported(E, "weird std::initializer_list");
356     return;
357   }
358 
359   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
360   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
361   if (Field->getType()->isPointerType() &&
362       Ctx.hasSameType(Field->getType()->getPointeeType(),
363                       ArrayType->getElementType())) {
364     // End pointer.
365     llvm::Value *IdxEnd[] = { Zero, Size };
366     llvm::Value *ArrayEnd =
367         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
368     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
369   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
370     // Length.
371     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
372   } else {
373     CGF.ErrorUnsupported(E, "weird std::initializer_list");
374     return;
375   }
376 }
377 
378 /// \brief Determine if E is a trivial array filler, that is, one that is
379 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)380 static bool isTrivialFiller(Expr *E) {
381   if (!E)
382     return true;
383 
384   if (isa<ImplicitValueInitExpr>(E))
385     return true;
386 
387   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
388     if (ILE->getNumInits())
389       return false;
390     return isTrivialFiller(ILE->getArrayFiller());
391   }
392 
393   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
394     return Cons->getConstructor()->isDefaultConstructor() &&
395            Cons->getConstructor()->isTrivial();
396 
397   // FIXME: Are there other cases where we can avoid emitting an initializer?
398   return false;
399 }
400 
401 /// \brief Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType elementType,InitListExpr * E)402 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
403                                    QualType elementType, InitListExpr *E) {
404   uint64_t NumInitElements = E->getNumInits();
405 
406   uint64_t NumArrayElements = AType->getNumElements();
407   assert(NumInitElements <= NumArrayElements);
408 
409   // DestPtr is an array*.  Construct an elementType* by drilling
410   // down a level.
411   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
412   llvm::Value *indices[] = { zero, zero };
413   llvm::Value *begin =
414     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
415 
416   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
417   CharUnits elementAlign =
418     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
419 
420   // Exception safety requires us to destroy all the
421   // already-constructed members if an initializer throws.
422   // For that, we'll need an EH cleanup.
423   QualType::DestructionKind dtorKind = elementType.isDestructedType();
424   Address endOfInit = Address::invalid();
425   EHScopeStack::stable_iterator cleanup;
426   llvm::Instruction *cleanupDominator = nullptr;
427   if (CGF.needsEHCleanup(dtorKind)) {
428     // In principle we could tell the cleanup where we are more
429     // directly, but the control flow can get so varied here that it
430     // would actually be quite complex.  Therefore we go through an
431     // alloca.
432     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
433                                      "arrayinit.endOfInit");
434     cleanupDominator = Builder.CreateStore(begin, endOfInit);
435     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
436                                          elementAlign,
437                                          CGF.getDestroyer(dtorKind));
438     cleanup = CGF.EHStack.stable_begin();
439 
440   // Otherwise, remember that we didn't need a cleanup.
441   } else {
442     dtorKind = QualType::DK_none;
443   }
444 
445   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
446 
447   // The 'current element to initialize'.  The invariants on this
448   // variable are complicated.  Essentially, after each iteration of
449   // the loop, it points to the last initialized element, except
450   // that it points to the beginning of the array before any
451   // elements have been initialized.
452   llvm::Value *element = begin;
453 
454   // Emit the explicit initializers.
455   for (uint64_t i = 0; i != NumInitElements; ++i) {
456     // Advance to the next element.
457     if (i > 0) {
458       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
459 
460       // Tell the cleanup that it needs to destroy up to this
461       // element.  TODO: some of these stores can be trivially
462       // observed to be unnecessary.
463       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
464     }
465 
466     LValue elementLV =
467       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
468     EmitInitializationToLValue(E->getInit(i), elementLV);
469   }
470 
471   // Check whether there's a non-trivial array-fill expression.
472   Expr *filler = E->getArrayFiller();
473   bool hasTrivialFiller = isTrivialFiller(filler);
474 
475   // Any remaining elements need to be zero-initialized, possibly
476   // using the filler expression.  We can skip this if the we're
477   // emitting to zeroed memory.
478   if (NumInitElements != NumArrayElements &&
479       !(Dest.isZeroed() && hasTrivialFiller &&
480         CGF.getTypes().isZeroInitializable(elementType))) {
481 
482     // Use an actual loop.  This is basically
483     //   do { *array++ = filler; } while (array != end);
484 
485     // Advance to the start of the rest of the array.
486     if (NumInitElements) {
487       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
488       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
489     }
490 
491     // Compute the end of the array.
492     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
493                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
494                                                  "arrayinit.end");
495 
496     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
497     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
498 
499     // Jump into the body.
500     CGF.EmitBlock(bodyBB);
501     llvm::PHINode *currentElement =
502       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
503     currentElement->addIncoming(element, entryBB);
504 
505     // Emit the actual filler expression.
506     LValue elementLV =
507       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
508     if (filler)
509       EmitInitializationToLValue(filler, elementLV);
510     else
511       EmitNullInitializationToLValue(elementLV);
512 
513     // Move on to the next element.
514     llvm::Value *nextElement =
515       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
516 
517     // Tell the EH cleanup that we finished with the last element.
518     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
519 
520     // Leave the loop if we're done.
521     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
522                                              "arrayinit.done");
523     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
524     Builder.CreateCondBr(done, endBB, bodyBB);
525     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
526 
527     CGF.EmitBlock(endBB);
528   }
529 
530   // Leave the partial-array cleanup if we entered one.
531   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
532 }
533 
534 //===----------------------------------------------------------------------===//
535 //                            Visitor Methods
536 //===----------------------------------------------------------------------===//
537 
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)538 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
539   Visit(E->GetTemporaryExpr());
540 }
541 
VisitOpaqueValueExpr(OpaqueValueExpr * e)542 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
543   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
544 }
545 
546 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)547 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
548   if (Dest.isPotentiallyAliased() &&
549       E->getType().isPODType(CGF.getContext())) {
550     // For a POD type, just emit a load of the lvalue + a copy, because our
551     // compound literal might alias the destination.
552     EmitAggLoadOfLValue(E);
553     return;
554   }
555 
556   AggValueSlot Slot = EnsureSlot(E->getType());
557   CGF.EmitAggExpr(E->getInitializer(), Slot);
558 }
559 
560 /// Attempt to look through various unimportant expressions to find a
561 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind)562 static Expr *findPeephole(Expr *op, CastKind kind) {
563   while (true) {
564     op = op->IgnoreParens();
565     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
566       if (castE->getCastKind() == kind)
567         return castE->getSubExpr();
568       if (castE->getCastKind() == CK_NoOp)
569         continue;
570     }
571     return nullptr;
572   }
573 }
574 
VisitCastExpr(CastExpr * E)575 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
576   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
577     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
578   switch (E->getCastKind()) {
579   case CK_Dynamic: {
580     // FIXME: Can this actually happen? We have no test coverage for it.
581     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
582     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
583                                       CodeGenFunction::TCK_Load);
584     // FIXME: Do we also need to handle property references here?
585     if (LV.isSimple())
586       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
587     else
588       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
589 
590     if (!Dest.isIgnored())
591       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
592     break;
593   }
594 
595   case CK_ToUnion: {
596     // Evaluate even if the destination is ignored.
597     if (Dest.isIgnored()) {
598       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
599                       /*ignoreResult=*/true);
600       break;
601     }
602 
603     // GCC union extension
604     QualType Ty = E->getSubExpr()->getType();
605     Address CastPtr =
606       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
607     EmitInitializationToLValue(E->getSubExpr(),
608                                CGF.MakeAddrLValue(CastPtr, Ty));
609     break;
610   }
611 
612   case CK_DerivedToBase:
613   case CK_BaseToDerived:
614   case CK_UncheckedDerivedToBase: {
615     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
616                 "should have been unpacked before we got here");
617   }
618 
619   case CK_NonAtomicToAtomic:
620   case CK_AtomicToNonAtomic: {
621     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
622 
623     // Determine the atomic and value types.
624     QualType atomicType = E->getSubExpr()->getType();
625     QualType valueType = E->getType();
626     if (isToAtomic) std::swap(atomicType, valueType);
627 
628     assert(atomicType->isAtomicType());
629     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
630                           atomicType->castAs<AtomicType>()->getValueType()));
631 
632     // Just recurse normally if we're ignoring the result or the
633     // atomic type doesn't change representation.
634     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
635       return Visit(E->getSubExpr());
636     }
637 
638     CastKind peepholeTarget =
639       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
640 
641     // These two cases are reverses of each other; try to peephole them.
642     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
643       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
644                                                      E->getType()) &&
645            "peephole significantly changed types?");
646       return Visit(op);
647     }
648 
649     // If we're converting an r-value of non-atomic type to an r-value
650     // of atomic type, just emit directly into the relevant sub-object.
651     if (isToAtomic) {
652       AggValueSlot valueDest = Dest;
653       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
654         // Zero-initialize.  (Strictly speaking, we only need to intialize
655         // the padding at the end, but this is simpler.)
656         if (!Dest.isZeroed())
657           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
658 
659         // Build a GEP to refer to the subobject.
660         Address valueAddr =
661             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
662                                         CharUnits());
663         valueDest = AggValueSlot::forAddr(valueAddr,
664                                           valueDest.getQualifiers(),
665                                           valueDest.isExternallyDestructed(),
666                                           valueDest.requiresGCollection(),
667                                           valueDest.isPotentiallyAliased(),
668                                           AggValueSlot::IsZeroed);
669       }
670 
671       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
672       return;
673     }
674 
675     // Otherwise, we're converting an atomic type to a non-atomic type.
676     // Make an atomic temporary, emit into that, and then copy the value out.
677     AggValueSlot atomicSlot =
678       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
679     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
680 
681     Address valueAddr =
682       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
683     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
684     return EmitFinalDestCopy(valueType, rvalue);
685   }
686 
687   case CK_LValueToRValue:
688     // If we're loading from a volatile type, force the destination
689     // into existence.
690     if (E->getSubExpr()->getType().isVolatileQualified()) {
691       EnsureDest(E->getType());
692       return Visit(E->getSubExpr());
693     }
694 
695     // fallthrough
696 
697   case CK_NoOp:
698   case CK_UserDefinedConversion:
699   case CK_ConstructorConversion:
700     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
701                                                    E->getType()) &&
702            "Implicit cast types must be compatible");
703     Visit(E->getSubExpr());
704     break;
705 
706   case CK_LValueBitCast:
707     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
708 
709   case CK_Dependent:
710   case CK_BitCast:
711   case CK_ArrayToPointerDecay:
712   case CK_FunctionToPointerDecay:
713   case CK_NullToPointer:
714   case CK_NullToMemberPointer:
715   case CK_BaseToDerivedMemberPointer:
716   case CK_DerivedToBaseMemberPointer:
717   case CK_MemberPointerToBoolean:
718   case CK_ReinterpretMemberPointer:
719   case CK_IntegralToPointer:
720   case CK_PointerToIntegral:
721   case CK_PointerToBoolean:
722   case CK_ToVoid:
723   case CK_VectorSplat:
724   case CK_IntegralCast:
725   case CK_BooleanToSignedIntegral:
726   case CK_IntegralToBoolean:
727   case CK_IntegralToFloating:
728   case CK_FloatingToIntegral:
729   case CK_FloatingToBoolean:
730   case CK_FloatingCast:
731   case CK_CPointerToObjCPointerCast:
732   case CK_BlockPointerToObjCPointerCast:
733   case CK_AnyPointerToBlockPointerCast:
734   case CK_ObjCObjectLValueCast:
735   case CK_FloatingRealToComplex:
736   case CK_FloatingComplexToReal:
737   case CK_FloatingComplexToBoolean:
738   case CK_FloatingComplexCast:
739   case CK_FloatingComplexToIntegralComplex:
740   case CK_IntegralRealToComplex:
741   case CK_IntegralComplexToReal:
742   case CK_IntegralComplexToBoolean:
743   case CK_IntegralComplexCast:
744   case CK_IntegralComplexToFloatingComplex:
745   case CK_ARCProduceObject:
746   case CK_ARCConsumeObject:
747   case CK_ARCReclaimReturnedObject:
748   case CK_ARCExtendBlockObject:
749   case CK_CopyAndAutoreleaseBlockObject:
750   case CK_BuiltinFnToFnPtr:
751   case CK_ZeroToOCLEvent:
752   case CK_AddressSpaceConversion:
753     llvm_unreachable("cast kind invalid for aggregate types");
754   }
755 }
756 
VisitCallExpr(const CallExpr * E)757 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
758   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
759     EmitAggLoadOfLValue(E);
760     return;
761   }
762 
763   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
764   EmitMoveFromReturnSlot(E, RV);
765 }
766 
VisitObjCMessageExpr(ObjCMessageExpr * E)767 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
768   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
769   EmitMoveFromReturnSlot(E, RV);
770 }
771 
VisitBinComma(const BinaryOperator * E)772 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
773   CGF.EmitIgnoredExpr(E->getLHS());
774   Visit(E->getRHS());
775 }
776 
VisitStmtExpr(const StmtExpr * E)777 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
778   CodeGenFunction::StmtExprEvaluation eval(CGF);
779   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
780 }
781 
VisitBinaryOperator(const BinaryOperator * E)782 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
783   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
784     VisitPointerToDataMemberBinaryOperator(E);
785   else
786     CGF.ErrorUnsupported(E, "aggregate binary expression");
787 }
788 
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)789 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
790                                                     const BinaryOperator *E) {
791   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
792   EmitFinalDestCopy(E->getType(), LV);
793 }
794 
795 /// Is the value of the given expression possibly a reference to or
796 /// into a __block variable?
isBlockVarRef(const Expr * E)797 static bool isBlockVarRef(const Expr *E) {
798   // Make sure we look through parens.
799   E = E->IgnoreParens();
800 
801   // Check for a direct reference to a __block variable.
802   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
803     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
804     return (var && var->hasAttr<BlocksAttr>());
805   }
806 
807   // More complicated stuff.
808 
809   // Binary operators.
810   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
811     // For an assignment or pointer-to-member operation, just care
812     // about the LHS.
813     if (op->isAssignmentOp() || op->isPtrMemOp())
814       return isBlockVarRef(op->getLHS());
815 
816     // For a comma, just care about the RHS.
817     if (op->getOpcode() == BO_Comma)
818       return isBlockVarRef(op->getRHS());
819 
820     // FIXME: pointer arithmetic?
821     return false;
822 
823   // Check both sides of a conditional operator.
824   } else if (const AbstractConditionalOperator *op
825                = dyn_cast<AbstractConditionalOperator>(E)) {
826     return isBlockVarRef(op->getTrueExpr())
827         || isBlockVarRef(op->getFalseExpr());
828 
829   // OVEs are required to support BinaryConditionalOperators.
830   } else if (const OpaqueValueExpr *op
831                = dyn_cast<OpaqueValueExpr>(E)) {
832     if (const Expr *src = op->getSourceExpr())
833       return isBlockVarRef(src);
834 
835   // Casts are necessary to get things like (*(int*)&var) = foo().
836   // We don't really care about the kind of cast here, except
837   // we don't want to look through l2r casts, because it's okay
838   // to get the *value* in a __block variable.
839   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
840     if (cast->getCastKind() == CK_LValueToRValue)
841       return false;
842     return isBlockVarRef(cast->getSubExpr());
843 
844   // Handle unary operators.  Again, just aggressively look through
845   // it, ignoring the operation.
846   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
847     return isBlockVarRef(uop->getSubExpr());
848 
849   // Look into the base of a field access.
850   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
851     return isBlockVarRef(mem->getBase());
852 
853   // Look into the base of a subscript.
854   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
855     return isBlockVarRef(sub->getBase());
856   }
857 
858   return false;
859 }
860 
VisitBinAssign(const BinaryOperator * E)861 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
862   // For an assignment to work, the value on the right has
863   // to be compatible with the value on the left.
864   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
865                                                  E->getRHS()->getType())
866          && "Invalid assignment");
867 
868   // If the LHS might be a __block variable, and the RHS can
869   // potentially cause a block copy, we need to evaluate the RHS first
870   // so that the assignment goes the right place.
871   // This is pretty semantically fragile.
872   if (isBlockVarRef(E->getLHS()) &&
873       E->getRHS()->HasSideEffects(CGF.getContext())) {
874     // Ensure that we have a destination, and evaluate the RHS into that.
875     EnsureDest(E->getRHS()->getType());
876     Visit(E->getRHS());
877 
878     // Now emit the LHS and copy into it.
879     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
880 
881     // That copy is an atomic copy if the LHS is atomic.
882     if (LHS.getType()->isAtomicType() ||
883         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
884       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
885       return;
886     }
887 
888     EmitCopy(E->getLHS()->getType(),
889              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
890                                      needsGC(E->getLHS()->getType()),
891                                      AggValueSlot::IsAliased),
892              Dest);
893     return;
894   }
895 
896   LValue LHS = CGF.EmitLValue(E->getLHS());
897 
898   // If we have an atomic type, evaluate into the destination and then
899   // do an atomic copy.
900   if (LHS.getType()->isAtomicType() ||
901       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
902     EnsureDest(E->getRHS()->getType());
903     Visit(E->getRHS());
904     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
905     return;
906   }
907 
908   // Codegen the RHS so that it stores directly into the LHS.
909   AggValueSlot LHSSlot =
910     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
911                             needsGC(E->getLHS()->getType()),
912                             AggValueSlot::IsAliased);
913   // A non-volatile aggregate destination might have volatile member.
914   if (!LHSSlot.isVolatile() &&
915       CGF.hasVolatileMember(E->getLHS()->getType()))
916     LHSSlot.setVolatile(true);
917 
918   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
919 
920   // Copy into the destination if the assignment isn't ignored.
921   EmitFinalDestCopy(E->getType(), LHS);
922 }
923 
924 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)925 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
926   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
927   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
928   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
929 
930   // Bind the common expression if necessary.
931   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
932 
933   CodeGenFunction::ConditionalEvaluation eval(CGF);
934   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
935                            CGF.getProfileCount(E));
936 
937   // Save whether the destination's lifetime is externally managed.
938   bool isExternallyDestructed = Dest.isExternallyDestructed();
939 
940   eval.begin(CGF);
941   CGF.EmitBlock(LHSBlock);
942   CGF.incrementProfileCounter(E);
943   Visit(E->getTrueExpr());
944   eval.end(CGF);
945 
946   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
947   CGF.Builder.CreateBr(ContBlock);
948 
949   // If the result of an agg expression is unused, then the emission
950   // of the LHS might need to create a destination slot.  That's fine
951   // with us, and we can safely emit the RHS into the same slot, but
952   // we shouldn't claim that it's already being destructed.
953   Dest.setExternallyDestructed(isExternallyDestructed);
954 
955   eval.begin(CGF);
956   CGF.EmitBlock(RHSBlock);
957   Visit(E->getFalseExpr());
958   eval.end(CGF);
959 
960   CGF.EmitBlock(ContBlock);
961 }
962 
VisitChooseExpr(const ChooseExpr * CE)963 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
964   Visit(CE->getChosenSubExpr());
965 }
966 
VisitVAArgExpr(VAArgExpr * VE)967 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
968   Address ArgValue = Address::invalid();
969   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
970 
971   // If EmitVAArg fails, emit an error.
972   if (!ArgPtr.isValid()) {
973     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
974     return;
975   }
976 
977   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
978 }
979 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
981   // Ensure that we have a slot, but if we already do, remember
982   // whether it was externally destructed.
983   bool wasExternallyDestructed = Dest.isExternallyDestructed();
984   EnsureDest(E->getType());
985 
986   // We're going to push a destructor if there isn't already one.
987   Dest.setExternallyDestructed();
988 
989   Visit(E->getSubExpr());
990 
991   // Push that destructor we promised.
992   if (!wasExternallyDestructed)
993     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
994 }
995 
996 void
VisitCXXConstructExpr(const CXXConstructExpr * E)997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
998   AggValueSlot Slot = EnsureSlot(E->getType());
999   CGF.EmitCXXConstructExpr(E, Slot);
1000 }
1001 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1002 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1003     const CXXInheritedCtorInitExpr *E) {
1004   AggValueSlot Slot = EnsureSlot(E->getType());
1005   CGF.EmitInheritedCXXConstructorCall(
1006       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1007       E->inheritedFromVBase(), E);
1008 }
1009 
1010 void
VisitLambdaExpr(LambdaExpr * E)1011 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1012   AggValueSlot Slot = EnsureSlot(E->getType());
1013   CGF.EmitLambdaExpr(E, Slot);
1014 }
1015 
VisitExprWithCleanups(ExprWithCleanups * E)1016 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1017   CGF.enterFullExpression(E);
1018   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1019   Visit(E->getSubExpr());
1020 }
1021 
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1022 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1023   QualType T = E->getType();
1024   AggValueSlot Slot = EnsureSlot(T);
1025   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1026 }
1027 
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1028 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1029   QualType T = E->getType();
1030   AggValueSlot Slot = EnsureSlot(T);
1031   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1032 }
1033 
1034 /// isSimpleZero - If emitting this value will obviously just cause a store of
1035 /// zero to memory, return true.  This can return false if uncertain, so it just
1036 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1037 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1038   E = E->IgnoreParens();
1039 
1040   // 0
1041   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1042     return IL->getValue() == 0;
1043   // +0.0
1044   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1045     return FL->getValue().isPosZero();
1046   // int()
1047   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1048       CGF.getTypes().isZeroInitializable(E->getType()))
1049     return true;
1050   // (int*)0 - Null pointer expressions.
1051   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1052     return ICE->getCastKind() == CK_NullToPointer;
1053   // '\0'
1054   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1055     return CL->getValue() == 0;
1056 
1057   // Otherwise, hard case: conservatively return false.
1058   return false;
1059 }
1060 
1061 
1062 void
EmitInitializationToLValue(Expr * E,LValue LV)1063 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1064   QualType type = LV.getType();
1065   // FIXME: Ignore result?
1066   // FIXME: Are initializers affected by volatile?
1067   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1068     // Storing "i32 0" to a zero'd memory location is a noop.
1069     return;
1070   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1071     return EmitNullInitializationToLValue(LV);
1072   } else if (isa<NoInitExpr>(E)) {
1073     // Do nothing.
1074     return;
1075   } else if (type->isReferenceType()) {
1076     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1077     return CGF.EmitStoreThroughLValue(RV, LV);
1078   }
1079 
1080   switch (CGF.getEvaluationKind(type)) {
1081   case TEK_Complex:
1082     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1083     return;
1084   case TEK_Aggregate:
1085     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1086                                                AggValueSlot::IsDestructed,
1087                                       AggValueSlot::DoesNotNeedGCBarriers,
1088                                                AggValueSlot::IsNotAliased,
1089                                                Dest.isZeroed()));
1090     return;
1091   case TEK_Scalar:
1092     if (LV.isSimple()) {
1093       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1094     } else {
1095       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1096     }
1097     return;
1098   }
1099   llvm_unreachable("bad evaluation kind");
1100 }
1101 
EmitNullInitializationToLValue(LValue lv)1102 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1103   QualType type = lv.getType();
1104 
1105   // If the destination slot is already zeroed out before the aggregate is
1106   // copied into it, we don't have to emit any zeros here.
1107   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1108     return;
1109 
1110   if (CGF.hasScalarEvaluationKind(type)) {
1111     // For non-aggregates, we can store the appropriate null constant.
1112     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1113     // Note that the following is not equivalent to
1114     // EmitStoreThroughBitfieldLValue for ARC types.
1115     if (lv.isBitField()) {
1116       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1117     } else {
1118       assert(lv.isSimple());
1119       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1120     }
1121   } else {
1122     // There's a potential optimization opportunity in combining
1123     // memsets; that would be easy for arrays, but relatively
1124     // difficult for structures with the current code.
1125     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1126   }
1127 }
1128 
VisitInitListExpr(InitListExpr * E)1129 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1130 #if 0
1131   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1132   // (Length of globals? Chunks of zeroed-out space?).
1133   //
1134   // If we can, prefer a copy from a global; this is a lot less code for long
1135   // globals, and it's easier for the current optimizers to analyze.
1136   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1137     llvm::GlobalVariable* GV =
1138     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1139                              llvm::GlobalValue::InternalLinkage, C, "");
1140     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1141     return;
1142   }
1143 #endif
1144   if (E->hadArrayRangeDesignator())
1145     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1146 
1147   AggValueSlot Dest = EnsureSlot(E->getType());
1148 
1149   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1150 
1151   // Handle initialization of an array.
1152   if (E->getType()->isArrayType()) {
1153     if (E->isStringLiteralInit())
1154       return Visit(E->getInit(0));
1155 
1156     QualType elementType =
1157         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1158 
1159     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1160     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1161     return;
1162   }
1163 
1164   if (E->getType()->isAtomicType()) {
1165     // An _Atomic(T) object can be list-initialized from an expression
1166     // of the same type.
1167     assert(E->getNumInits() == 1 &&
1168            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1169                                                    E->getType()) &&
1170            "unexpected list initialization for atomic object");
1171     return Visit(E->getInit(0));
1172   }
1173 
1174   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1175 
1176   // Do struct initialization; this code just sets each individual member
1177   // to the approprate value.  This makes bitfield support automatic;
1178   // the disadvantage is that the generated code is more difficult for
1179   // the optimizer, especially with bitfields.
1180   unsigned NumInitElements = E->getNumInits();
1181   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1182 
1183   // We'll need to enter cleanup scopes in case any of the element
1184   // initializers throws an exception.
1185   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1186   llvm::Instruction *cleanupDominator = nullptr;
1187 
1188   unsigned curInitIndex = 0;
1189 
1190   // Emit initialization of base classes.
1191   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1192     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1193            "missing initializer for base class");
1194     for (auto &Base : CXXRD->bases()) {
1195       assert(!Base.isVirtual() && "should not see vbases here");
1196       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1197       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1198           Dest.getAddress(), CXXRD, BaseRD,
1199           /*isBaseVirtual*/ false);
1200       AggValueSlot AggSlot =
1201         AggValueSlot::forAddr(V, Qualifiers(),
1202                               AggValueSlot::IsDestructed,
1203                               AggValueSlot::DoesNotNeedGCBarriers,
1204                               AggValueSlot::IsNotAliased);
1205       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1206 
1207       if (QualType::DestructionKind dtorKind =
1208               Base.getType().isDestructedType()) {
1209         CGF.pushDestroy(dtorKind, V, Base.getType());
1210         cleanups.push_back(CGF.EHStack.stable_begin());
1211       }
1212     }
1213   }
1214 
1215   // Prepare a 'this' for CXXDefaultInitExprs.
1216   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1217 
1218   if (record->isUnion()) {
1219     // Only initialize one field of a union. The field itself is
1220     // specified by the initializer list.
1221     if (!E->getInitializedFieldInUnion()) {
1222       // Empty union; we have nothing to do.
1223 
1224 #ifndef NDEBUG
1225       // Make sure that it's really an empty and not a failure of
1226       // semantic analysis.
1227       for (const auto *Field : record->fields())
1228         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1229 #endif
1230       return;
1231     }
1232 
1233     // FIXME: volatility
1234     FieldDecl *Field = E->getInitializedFieldInUnion();
1235 
1236     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1237     if (NumInitElements) {
1238       // Store the initializer into the field
1239       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1240     } else {
1241       // Default-initialize to null.
1242       EmitNullInitializationToLValue(FieldLoc);
1243     }
1244 
1245     return;
1246   }
1247 
1248   // Here we iterate over the fields; this makes it simpler to both
1249   // default-initialize fields and skip over unnamed fields.
1250   for (const auto *field : record->fields()) {
1251     // We're done once we hit the flexible array member.
1252     if (field->getType()->isIncompleteArrayType())
1253       break;
1254 
1255     // Always skip anonymous bitfields.
1256     if (field->isUnnamedBitfield())
1257       continue;
1258 
1259     // We're done if we reach the end of the explicit initializers, we
1260     // have a zeroed object, and the rest of the fields are
1261     // zero-initializable.
1262     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1263         CGF.getTypes().isZeroInitializable(E->getType()))
1264       break;
1265 
1266 
1267     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1268     // We never generate write-barries for initialized fields.
1269     LV.setNonGC(true);
1270 
1271     if (curInitIndex < NumInitElements) {
1272       // Store the initializer into the field.
1273       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1274     } else {
1275       // We're out of initalizers; default-initialize to null
1276       EmitNullInitializationToLValue(LV);
1277     }
1278 
1279     // Push a destructor if necessary.
1280     // FIXME: if we have an array of structures, all explicitly
1281     // initialized, we can end up pushing a linear number of cleanups.
1282     bool pushedCleanup = false;
1283     if (QualType::DestructionKind dtorKind
1284           = field->getType().isDestructedType()) {
1285       assert(LV.isSimple());
1286       if (CGF.needsEHCleanup(dtorKind)) {
1287         if (!cleanupDominator)
1288           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1289               CGF.Int8Ty,
1290               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1291               CharUnits::One()); // placeholder
1292 
1293         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1294                         CGF.getDestroyer(dtorKind), false);
1295         cleanups.push_back(CGF.EHStack.stable_begin());
1296         pushedCleanup = true;
1297       }
1298     }
1299 
1300     // If the GEP didn't get used because of a dead zero init or something
1301     // else, clean it up for -O0 builds and general tidiness.
1302     if (!pushedCleanup && LV.isSimple())
1303       if (llvm::GetElementPtrInst *GEP =
1304             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1305         if (GEP->use_empty())
1306           GEP->eraseFromParent();
1307   }
1308 
1309   // Deactivate all the partial cleanups in reverse order, which
1310   // generally means popping them.
1311   for (unsigned i = cleanups.size(); i != 0; --i)
1312     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1313 
1314   // Destroy the placeholder if we made one.
1315   if (cleanupDominator)
1316     cleanupDominator->eraseFromParent();
1317 }
1318 
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1319 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1320   AggValueSlot Dest = EnsureSlot(E->getType());
1321 
1322   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1323   EmitInitializationToLValue(E->getBase(), DestLV);
1324   VisitInitListExpr(E->getUpdater());
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 //                        Entry Points into this File
1329 //===----------------------------------------------------------------------===//
1330 
1331 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1332 /// non-zero bytes that will be stored when outputting the initializer for the
1333 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1334 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1335   E = E->IgnoreParens();
1336 
1337   // 0 and 0.0 won't require any non-zero stores!
1338   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1339 
1340   // If this is an initlist expr, sum up the size of sizes of the (present)
1341   // elements.  If this is something weird, assume the whole thing is non-zero.
1342   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1343   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1344     return CGF.getContext().getTypeSizeInChars(E->getType());
1345 
1346   // InitListExprs for structs have to be handled carefully.  If there are
1347   // reference members, we need to consider the size of the reference, not the
1348   // referencee.  InitListExprs for unions and arrays can't have references.
1349   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1350     if (!RT->isUnionType()) {
1351       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1352       CharUnits NumNonZeroBytes = CharUnits::Zero();
1353 
1354       unsigned ILEElement = 0;
1355       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1356         while (ILEElement != CXXRD->getNumBases())
1357           NumNonZeroBytes +=
1358               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1359       for (const auto *Field : SD->fields()) {
1360         // We're done once we hit the flexible array member or run out of
1361         // InitListExpr elements.
1362         if (Field->getType()->isIncompleteArrayType() ||
1363             ILEElement == ILE->getNumInits())
1364           break;
1365         if (Field->isUnnamedBitfield())
1366           continue;
1367 
1368         const Expr *E = ILE->getInit(ILEElement++);
1369 
1370         // Reference values are always non-null and have the width of a pointer.
1371         if (Field->getType()->isReferenceType())
1372           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1373               CGF.getTarget().getPointerWidth(0));
1374         else
1375           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1376       }
1377 
1378       return NumNonZeroBytes;
1379     }
1380   }
1381 
1382 
1383   CharUnits NumNonZeroBytes = CharUnits::Zero();
1384   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1385     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1386   return NumNonZeroBytes;
1387 }
1388 
1389 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1390 /// zeros in it, emit a memset and avoid storing the individual zeros.
1391 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1392 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1393                                      CodeGenFunction &CGF) {
1394   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1395   // volatile stores.
1396   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1397     return;
1398 
1399   // C++ objects with a user-declared constructor don't need zero'ing.
1400   if (CGF.getLangOpts().CPlusPlus)
1401     if (const RecordType *RT = CGF.getContext()
1402                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1403       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1404       if (RD->hasUserDeclaredConstructor())
1405         return;
1406     }
1407 
1408   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1409   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1410   if (Size <= CharUnits::fromQuantity(16))
1411     return;
1412 
1413   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1414   // we prefer to emit memset + individual stores for the rest.
1415   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1416   if (NumNonZeroBytes*4 > Size)
1417     return;
1418 
1419   // Okay, it seems like a good idea to use an initial memset, emit the call.
1420   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1421 
1422   Address Loc = Slot.getAddress();
1423   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1424   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1425 
1426   // Tell the AggExprEmitter that the slot is known zero.
1427   Slot.setZeroed();
1428 }
1429 
1430 
1431 
1432 
1433 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1434 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1435 /// the value of the aggregate expression is not needed.  If VolatileDest is
1436 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1437 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1438   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1439          "Invalid aggregate expression to emit");
1440   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1441          "slot has bits but no address");
1442 
1443   // Optimize the slot if possible.
1444   CheckAggExprForMemSetUse(Slot, E, *this);
1445 
1446   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1447 }
1448 
EmitAggExprToLValue(const Expr * E)1449 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1450   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1451   Address Temp = CreateMemTemp(E->getType());
1452   LValue LV = MakeAddrLValue(Temp, E->getType());
1453   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1454                                          AggValueSlot::DoesNotNeedGCBarriers,
1455                                          AggValueSlot::IsNotAliased));
1456   return LV;
1457 }
1458 
EmitAggregateCopy(Address DestPtr,Address SrcPtr,QualType Ty,bool isVolatile,bool isAssignment)1459 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1460                                         Address SrcPtr, QualType Ty,
1461                                         bool isVolatile,
1462                                         bool isAssignment) {
1463   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1464 
1465   if (getLangOpts().CPlusPlus) {
1466     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1467       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1468       assert((Record->hasTrivialCopyConstructor() ||
1469               Record->hasTrivialCopyAssignment() ||
1470               Record->hasTrivialMoveConstructor() ||
1471               Record->hasTrivialMoveAssignment() ||
1472               Record->isUnion()) &&
1473              "Trying to aggregate-copy a type without a trivial copy/move "
1474              "constructor or assignment operator");
1475       // Ignore empty classes in C++.
1476       if (Record->isEmpty())
1477         return;
1478     }
1479   }
1480 
1481   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1482   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1483   // read from another object that overlaps in anyway the storage of the first
1484   // object, then the overlap shall be exact and the two objects shall have
1485   // qualified or unqualified versions of a compatible type."
1486   //
1487   // memcpy is not defined if the source and destination pointers are exactly
1488   // equal, but other compilers do this optimization, and almost every memcpy
1489   // implementation handles this case safely.  If there is a libc that does not
1490   // safely handle this, we can add a target hook.
1491 
1492   // Get data size info for this aggregate. If this is an assignment,
1493   // don't copy the tail padding, because we might be assigning into a
1494   // base subobject where the tail padding is claimed.  Otherwise,
1495   // copying it is fine.
1496   std::pair<CharUnits, CharUnits> TypeInfo;
1497   if (isAssignment)
1498     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1499   else
1500     TypeInfo = getContext().getTypeInfoInChars(Ty);
1501 
1502   llvm::Value *SizeVal = nullptr;
1503   if (TypeInfo.first.isZero()) {
1504     // But note that getTypeInfo returns 0 for a VLA.
1505     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1506             getContext().getAsArrayType(Ty))) {
1507       QualType BaseEltTy;
1508       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1509       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1510       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1511       if (!isAssignment)
1512         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1513       assert(!TypeInfo.first.isZero());
1514       SizeVal = Builder.CreateNUWMul(
1515           SizeVal,
1516           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1517       if (!isAssignment) {
1518         SizeVal = Builder.CreateNUWSub(
1519             SizeVal,
1520             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1521         SizeVal = Builder.CreateNUWAdd(
1522             SizeVal, llvm::ConstantInt::get(
1523                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1524       }
1525     }
1526   }
1527   if (!SizeVal) {
1528     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1529   }
1530 
1531   // FIXME: If we have a volatile struct, the optimizer can remove what might
1532   // appear to be `extra' memory ops:
1533   //
1534   // volatile struct { int i; } a, b;
1535   //
1536   // int main() {
1537   //   a = b;
1538   //   a = b;
1539   // }
1540   //
1541   // we need to use a different call here.  We use isVolatile to indicate when
1542   // either the source or the destination is volatile.
1543 
1544   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1545   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1546 
1547   // Don't do any of the memmove_collectable tests if GC isn't set.
1548   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1549     // fall through
1550   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1551     RecordDecl *Record = RecordTy->getDecl();
1552     if (Record->hasObjectMember()) {
1553       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1554                                                     SizeVal);
1555       return;
1556     }
1557   } else if (Ty->isArrayType()) {
1558     QualType BaseType = getContext().getBaseElementType(Ty);
1559     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1560       if (RecordTy->getDecl()->hasObjectMember()) {
1561         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1562                                                       SizeVal);
1563         return;
1564       }
1565     }
1566   }
1567 
1568   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1569 
1570   // Determine the metadata to describe the position of any padding in this
1571   // memcpy, as well as the TBAA tags for the members of the struct, in case
1572   // the optimizer wishes to expand it in to scalar memory operations.
1573   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1574     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1575 }
1576