1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Platform-specific code for Win32.
6 
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif  // MINGW_HAS_SECURE_API
16 #endif  // __MINGW32__
17 
18 #include <limits>
19 
20 #include "src/base/win32-headers.h"
21 
22 #include "src/base/bits.h"
23 #include "src/base/lazy-instance.h"
24 #include "src/base/macros.h"
25 #include "src/base/platform/platform.h"
26 #include "src/base/platform/time.h"
27 #include "src/base/timezone-cache.h"
28 #include "src/base/utils/random-number-generator.h"
29 
30 #include <VersionHelpers.h>
31 
32 #if defined(_MSC_VER)
33 #include <crtdbg.h>  // NOLINT
34 #endif               // defined(_MSC_VER)
35 
36 // Extra functions for MinGW. Most of these are the _s functions which are in
37 // the Microsoft Visual Studio C++ CRT.
38 #ifdef __MINGW32__
39 
40 
41 #ifndef __MINGW64_VERSION_MAJOR
42 
43 #define _TRUNCATE 0
44 #define STRUNCATE 80
45 
MemoryFence()46 inline void MemoryFence() {
47   int barrier = 0;
48   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
49 }
50 
51 #endif  // __MINGW64_VERSION_MAJOR
52 
53 
localtime_s(tm * out_tm,const time_t * time)54 int localtime_s(tm* out_tm, const time_t* time) {
55   tm* posix_local_time_struct = localtime_r(time, out_tm);
56   if (posix_local_time_struct == nullptr) return 1;
57   return 0;
58 }
59 
60 
fopen_s(FILE ** pFile,const char * filename,const char * mode)61 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
62   *pFile = fopen(filename, mode);
63   return *pFile != nullptr ? 0 : 1;
64 }
65 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)66 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
67                  const char* format, va_list argptr) {
68   DCHECK(count == _TRUNCATE);
69   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
70 }
71 
72 
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)73 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
74   CHECK(source != nullptr);
75   CHECK(dest != nullptr);
76   CHECK_GT(dest_size, 0);
77 
78   if (count == _TRUNCATE) {
79     while (dest_size > 0 && *source != 0) {
80       *(dest++) = *(source++);
81       --dest_size;
82     }
83     if (dest_size == 0) {
84       *(dest - 1) = 0;
85       return STRUNCATE;
86     }
87   } else {
88     while (dest_size > 0 && count > 0 && *source != 0) {
89       *(dest++) = *(source++);
90       --dest_size;
91       --count;
92     }
93   }
94   CHECK_GT(dest_size, 0);
95   *dest = 0;
96   return 0;
97 }
98 
99 #endif  // __MINGW32__
100 
101 namespace v8 {
102 namespace base {
103 
104 namespace {
105 
106 bool g_hard_abort = false;
107 
108 }  // namespace
109 
110 class WindowsTimezoneCache : public TimezoneCache {
111  public:
WindowsTimezoneCache()112   WindowsTimezoneCache() : initialized_(false) {}
113 
~WindowsTimezoneCache()114   ~WindowsTimezoneCache() override {}
115 
Clear()116   void Clear() override { initialized_ = false; }
117 
118   const char* LocalTimezone(double time) override;
119 
120   double LocalTimeOffset(double time, bool is_utc) override;
121 
122   double DaylightSavingsOffset(double time) override;
123 
124   // Initialize timezone information. The timezone information is obtained from
125   // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()126   void InitializeIfNeeded() {
127     // Just return if timezone information has already been initialized.
128     if (initialized_) return;
129 
130     // Initialize POSIX time zone data.
131     _tzset();
132     // Obtain timezone information from operating system.
133     memset(&tzinfo_, 0, sizeof(tzinfo_));
134     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
135       // If we cannot get timezone information we fall back to CET.
136       tzinfo_.Bias = -60;
137       tzinfo_.StandardDate.wMonth = 10;
138       tzinfo_.StandardDate.wDay = 5;
139       tzinfo_.StandardDate.wHour = 3;
140       tzinfo_.StandardBias = 0;
141       tzinfo_.DaylightDate.wMonth = 3;
142       tzinfo_.DaylightDate.wDay = 5;
143       tzinfo_.DaylightDate.wHour = 2;
144       tzinfo_.DaylightBias = -60;
145     }
146 
147     // Make standard and DST timezone names.
148     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, std_tz_name_,
149                         kTzNameSize, nullptr, nullptr);
150     std_tz_name_[kTzNameSize - 1] = '\0';
151     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, dst_tz_name_,
152                         kTzNameSize, nullptr, nullptr);
153     dst_tz_name_[kTzNameSize - 1] = '\0';
154 
155     // If OS returned empty string or resource id (like "@tzres.dll,-211")
156     // simply guess the name from the UTC bias of the timezone.
157     // To properly resolve the resource identifier requires a library load,
158     // which is not possible in a sandbox.
159     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
160       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
161                    "%s Standard Time",
162                    GuessTimezoneNameFromBias(tzinfo_.Bias));
163     }
164     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
165       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
166                    "%s Daylight Time",
167                    GuessTimezoneNameFromBias(tzinfo_.Bias));
168     }
169     // Timezone information initialized.
170     initialized_ = true;
171   }
172 
173   // Guess the name of the timezone from the bias.
174   // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)175   const char* GuessTimezoneNameFromBias(int bias) {
176     static const int kHour = 60;
177     switch (-bias) {
178       case -9*kHour: return "Alaska";
179       case -8*kHour: return "Pacific";
180       case -7*kHour: return "Mountain";
181       case -6*kHour: return "Central";
182       case -5*kHour: return "Eastern";
183       case -4*kHour: return "Atlantic";
184       case  0*kHour: return "GMT";
185       case +1*kHour: return "Central Europe";
186       case +2*kHour: return "Eastern Europe";
187       case +3*kHour: return "Russia";
188       case +5*kHour + 30: return "India";
189       case +8*kHour: return "China";
190       case +9*kHour: return "Japan";
191       case +12*kHour: return "New Zealand";
192       default: return "Local";
193     }
194   }
195 
196 
197  private:
198   static const int kTzNameSize = 128;
199   bool initialized_;
200   char std_tz_name_[kTzNameSize];
201   char dst_tz_name_[kTzNameSize];
202   TIME_ZONE_INFORMATION tzinfo_;
203   friend class Win32Time;
204 };
205 
206 
207 // ----------------------------------------------------------------------------
208 // The Time class represents time on win32. A timestamp is represented as
209 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
210 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
211 // January 1, 1970.
212 
213 class Win32Time {
214  public:
215   // Constructors.
216   Win32Time();
217   explicit Win32Time(double jstime);
218   Win32Time(int year, int mon, int day, int hour, int min, int sec);
219 
220   // Convert timestamp to JavaScript representation.
221   double ToJSTime();
222 
223   // Set timestamp to current time.
224   void SetToCurrentTime();
225 
226   // Returns the local timezone offset in milliseconds east of UTC. This is
227   // the number of milliseconds you must add to UTC to get local time, i.e.
228   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
229   // routine also takes into account whether daylight saving is effect
230   // at the time.
231   int64_t LocalOffset(WindowsTimezoneCache* cache);
232 
233   // Returns the daylight savings time offset for the time in milliseconds.
234   int64_t DaylightSavingsOffset(WindowsTimezoneCache* cache);
235 
236   // Returns a string identifying the current timezone for the
237   // timestamp taking into account daylight saving.
238   char* LocalTimezone(WindowsTimezoneCache* cache);
239 
240  private:
241   // Constants for time conversion.
242   static const int64_t kTimeEpoc = 116444736000000000LL;
243   static const int64_t kTimeScaler = 10000;
244   static const int64_t kMsPerMinute = 60000;
245 
246   // Constants for timezone information.
247   static const bool kShortTzNames = false;
248 
249   // Return whether or not daylight savings time is in effect at this time.
250   bool InDST(WindowsTimezoneCache* cache);
251 
252   // Accessor for FILETIME representation.
ft()253   FILETIME& ft() { return time_.ft_; }
254 
255   // Accessor for integer representation.
t()256   int64_t& t() { return time_.t_; }
257 
258   // Although win32 uses 64-bit integers for representing timestamps,
259   // these are packed into a FILETIME structure. The FILETIME structure
260   // is just a struct representing a 64-bit integer. The TimeStamp union
261   // allows access to both a FILETIME and an integer representation of
262   // the timestamp.
263   union TimeStamp {
264     FILETIME ft_;
265     int64_t t_;
266   };
267 
268   TimeStamp time_;
269 };
270 
271 
272 // Initialize timestamp to start of epoc.
Win32Time()273 Win32Time::Win32Time() {
274   t() = 0;
275 }
276 
277 
278 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)279 Win32Time::Win32Time(double jstime) {
280   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
281 }
282 
283 
284 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)285 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
286   SYSTEMTIME st;
287   st.wYear = year;
288   st.wMonth = mon;
289   st.wDay = day;
290   st.wHour = hour;
291   st.wMinute = min;
292   st.wSecond = sec;
293   st.wMilliseconds = 0;
294   SystemTimeToFileTime(&st, &ft());
295 }
296 
297 
298 // Convert timestamp to JavaScript timestamp.
ToJSTime()299 double Win32Time::ToJSTime() {
300   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
301 }
302 
303 
304 // Set timestamp to current time.
SetToCurrentTime()305 void Win32Time::SetToCurrentTime() {
306   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
307   // Because we're fast, we like fast timers which have at least a
308   // 1ms resolution.
309   //
310   // timeGetTime() provides 1ms granularity when combined with
311   // timeBeginPeriod().  If the host application for v8 wants fast
312   // timers, it can use timeBeginPeriod to increase the resolution.
313   //
314   // Using timeGetTime() has a drawback because it is a 32bit value
315   // and hence rolls-over every ~49days.
316   //
317   // To use the clock, we use GetSystemTimeAsFileTime as our base;
318   // and then use timeGetTime to extrapolate current time from the
319   // start time.  To deal with rollovers, we resync the clock
320   // any time when more than kMaxClockElapsedTime has passed or
321   // whenever timeGetTime creates a rollover.
322 
323   static bool initialized = false;
324   static TimeStamp init_time;
325   static DWORD init_ticks;
326   static const int64_t kHundredNanosecondsPerSecond = 10000000;
327   static const int64_t kMaxClockElapsedTime =
328       60*kHundredNanosecondsPerSecond;  // 1 minute
329 
330   // If we are uninitialized, we need to resync the clock.
331   bool needs_resync = !initialized;
332 
333   // Get the current time.
334   TimeStamp time_now;
335   GetSystemTimeAsFileTime(&time_now.ft_);
336   DWORD ticks_now = timeGetTime();
337 
338   // Check if we need to resync due to clock rollover.
339   needs_resync |= ticks_now < init_ticks;
340 
341   // Check if we need to resync due to elapsed time.
342   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
343 
344   // Check if we need to resync due to backwards time change.
345   needs_resync |= time_now.t_ < init_time.t_;
346 
347   // Resync the clock if necessary.
348   if (needs_resync) {
349     GetSystemTimeAsFileTime(&init_time.ft_);
350     init_ticks = ticks_now = timeGetTime();
351     initialized = true;
352   }
353 
354   // Finally, compute the actual time.  Why is this so hard.
355   DWORD elapsed = ticks_now - init_ticks;
356   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
357 }
358 
359 
360 // Return the local timezone offset in milliseconds east of UTC. This
361 // takes into account whether daylight saving is in effect at the time.
362 // Only times in the 32-bit Unix range may be passed to this function.
363 // Also, adding the time-zone offset to the input must not overflow.
364 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(WindowsTimezoneCache * cache)365 int64_t Win32Time::LocalOffset(WindowsTimezoneCache* cache) {
366   cache->InitializeIfNeeded();
367 
368   Win32Time rounded_to_second(*this);
369   rounded_to_second.t() =
370       rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
371   // Convert to local time using POSIX localtime function.
372   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
373   // very slow.  Other browsers use localtime().
374 
375   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
376   // POSIX seconds past 1/1/1970 0:00:00.
377   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
378   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
379     return 0;
380   }
381   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
382   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
383 
384   // Convert to local time, as struct with fields for day, hour, year, etc.
385   tm posix_local_time_struct;
386   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
387 
388   if (posix_local_time_struct.tm_isdst > 0) {
389     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
390   } else if (posix_local_time_struct.tm_isdst == 0) {
391     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
392   } else {
393     return cache->tzinfo_.Bias * -kMsPerMinute;
394   }
395 }
396 
397 
398 // Return whether or not daylight savings time is in effect at this time.
InDST(WindowsTimezoneCache * cache)399 bool Win32Time::InDST(WindowsTimezoneCache* cache) {
400   cache->InitializeIfNeeded();
401 
402   // Determine if DST is in effect at the specified time.
403   bool in_dst = false;
404   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
405       cache->tzinfo_.DaylightDate.wMonth != 0) {
406     // Get the local timezone offset for the timestamp in milliseconds.
407     int64_t offset = LocalOffset(cache);
408 
409     // Compute the offset for DST. The bias parameters in the timezone info
410     // are specified in minutes. These must be converted to milliseconds.
411     int64_t dstofs =
412         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
413 
414     // If the local time offset equals the timezone bias plus the daylight
415     // bias then DST is in effect.
416     in_dst = offset == dstofs;
417   }
418 
419   return in_dst;
420 }
421 
422 
423 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(WindowsTimezoneCache * cache)424 int64_t Win32Time::DaylightSavingsOffset(WindowsTimezoneCache* cache) {
425   return InDST(cache) ? 60 * kMsPerMinute : 0;
426 }
427 
428 
429 // Returns a string identifying the current timezone for the
430 // timestamp taking into account daylight saving.
LocalTimezone(WindowsTimezoneCache * cache)431 char* Win32Time::LocalTimezone(WindowsTimezoneCache* cache) {
432   // Return the standard or DST time zone name based on whether daylight
433   // saving is in effect at the given time.
434   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
435 }
436 
437 
438 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)439 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
440   FILETIME dummy;
441   uint64_t usertime;
442 
443   // Get the amount of time that the thread has executed in user mode.
444   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
445                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
446 
447   // Adjust the resolution to micro-seconds.
448   usertime /= 10;
449 
450   // Convert to seconds and microseconds
451   *secs = static_cast<uint32_t>(usertime / 1000000);
452   *usecs = static_cast<uint32_t>(usertime % 1000000);
453   return 0;
454 }
455 
456 
457 // Returns current time as the number of milliseconds since
458 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()459 double OS::TimeCurrentMillis() {
460   return Time::Now().ToJsTime();
461 }
462 
463 // Returns a string identifying the current timezone taking into
464 // account daylight saving.
LocalTimezone(double time)465 const char* WindowsTimezoneCache::LocalTimezone(double time) {
466   return Win32Time(time).LocalTimezone(this);
467 }
468 
469 // Returns the local time offset in milliseconds east of UTC without
470 // taking daylight savings time into account.
LocalTimeOffset(double time_ms,bool is_utc)471 double WindowsTimezoneCache::LocalTimeOffset(double time_ms, bool is_utc) {
472   // Ignore is_utc and time_ms for now. That way, the behavior wouldn't
473   // change with icu_timezone_data disabled.
474   // Use current time, rounded to the millisecond.
475   Win32Time t(OS::TimeCurrentMillis());
476   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
477   return static_cast<double>(t.LocalOffset(this) -
478                              t.DaylightSavingsOffset(this));
479 }
480 
481 // Returns the daylight savings offset in milliseconds for the given
482 // time.
DaylightSavingsOffset(double time)483 double WindowsTimezoneCache::DaylightSavingsOffset(double time) {
484   int64_t offset = Win32Time(time).DaylightSavingsOffset(this);
485   return static_cast<double>(offset);
486 }
487 
CreateTimezoneCache()488 TimezoneCache* OS::CreateTimezoneCache() { return new WindowsTimezoneCache(); }
489 
GetLastError()490 int OS::GetLastError() {
491   return ::GetLastError();
492 }
493 
494 
GetCurrentProcessId()495 int OS::GetCurrentProcessId() {
496   return static_cast<int>(::GetCurrentProcessId());
497 }
498 
499 
GetCurrentThreadId()500 int OS::GetCurrentThreadId() {
501   return static_cast<int>(::GetCurrentThreadId());
502 }
503 
ExitProcess(int exit_code)504 void OS::ExitProcess(int exit_code) {
505   // Use TerminateProcess avoid races between isolate threads and
506   // static destructors.
507   fflush(stdout);
508   fflush(stderr);
509   TerminateProcess(GetCurrentProcess(), exit_code);
510 }
511 
512 // ----------------------------------------------------------------------------
513 // Win32 console output.
514 //
515 // If a Win32 application is linked as a console application it has a normal
516 // standard output and standard error. In this case normal printf works fine
517 // for output. However, if the application is linked as a GUI application,
518 // the process doesn't have a console, and therefore (debugging) output is lost.
519 // This is the case if we are embedded in a windows program (like a browser).
520 // In order to be able to get debug output in this case the the debugging
521 // facility using OutputDebugString. This output goes to the active debugger
522 // for the process (if any). Else the output can be monitored using DBMON.EXE.
523 
524 enum OutputMode {
525   UNKNOWN,  // Output method has not yet been determined.
526   CONSOLE,  // Output is written to stdout.
527   ODS       // Output is written to debug facility.
528 };
529 
530 static OutputMode output_mode = UNKNOWN;  // Current output mode.
531 
532 
533 // Determine if the process has a console for output.
HasConsole()534 static bool HasConsole() {
535   // Only check the first time. Eventual race conditions are not a problem,
536   // because all threads will eventually determine the same mode.
537   if (output_mode == UNKNOWN) {
538     // We cannot just check that the standard output is attached to a console
539     // because this would fail if output is redirected to a file. Therefore we
540     // say that a process does not have an output console if either the
541     // standard output handle is invalid or its file type is unknown.
542     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
543         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
544       output_mode = CONSOLE;
545     else
546       output_mode = ODS;
547   }
548   return output_mode == CONSOLE;
549 }
550 
551 
VPrintHelper(FILE * stream,const char * format,va_list args)552 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
553   if ((stream == stdout || stream == stderr) && !HasConsole()) {
554     // It is important to use safe print here in order to avoid
555     // overflowing the buffer. We might truncate the output, but this
556     // does not crash.
557     char buffer[4096];
558     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
559     OutputDebugStringA(buffer);
560   } else {
561     vfprintf(stream, format, args);
562   }
563 }
564 
565 
FOpen(const char * path,const char * mode)566 FILE* OS::FOpen(const char* path, const char* mode) {
567   FILE* result;
568   if (fopen_s(&result, path, mode) == 0) {
569     return result;
570   } else {
571     return nullptr;
572   }
573 }
574 
575 
Remove(const char * path)576 bool OS::Remove(const char* path) {
577   return (DeleteFileA(path) != 0);
578 }
579 
DirectorySeparator()580 char OS::DirectorySeparator() { return '\\'; }
581 
isDirectorySeparator(const char ch)582 bool OS::isDirectorySeparator(const char ch) {
583   return ch == '/' || ch == '\\';
584 }
585 
586 
OpenTemporaryFile()587 FILE* OS::OpenTemporaryFile() {
588   // tmpfile_s tries to use the root dir, don't use it.
589   char tempPathBuffer[MAX_PATH];
590   DWORD path_result = 0;
591   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
592   if (path_result > MAX_PATH || path_result == 0) return nullptr;
593   UINT name_result = 0;
594   char tempNameBuffer[MAX_PATH];
595   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
596   if (name_result == 0) return nullptr;
597   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
598   if (result != nullptr) {
599     Remove(tempNameBuffer);  // Delete on close.
600   }
601   return result;
602 }
603 
604 
605 // Open log file in binary mode to avoid /n -> /r/n conversion.
606 const char* const OS::LogFileOpenMode = "wb";
607 
608 
609 // Print (debug) message to console.
Print(const char * format,...)610 void OS::Print(const char* format, ...) {
611   va_list args;
612   va_start(args, format);
613   VPrint(format, args);
614   va_end(args);
615 }
616 
617 
VPrint(const char * format,va_list args)618 void OS::VPrint(const char* format, va_list args) {
619   VPrintHelper(stdout, format, args);
620 }
621 
622 
FPrint(FILE * out,const char * format,...)623 void OS::FPrint(FILE* out, const char* format, ...) {
624   va_list args;
625   va_start(args, format);
626   VFPrint(out, format, args);
627   va_end(args);
628 }
629 
630 
VFPrint(FILE * out,const char * format,va_list args)631 void OS::VFPrint(FILE* out, const char* format, va_list args) {
632   VPrintHelper(out, format, args);
633 }
634 
635 
636 // Print error message to console.
PrintError(const char * format,...)637 void OS::PrintError(const char* format, ...) {
638   va_list args;
639   va_start(args, format);
640   VPrintError(format, args);
641   va_end(args);
642 }
643 
644 
VPrintError(const char * format,va_list args)645 void OS::VPrintError(const char* format, va_list args) {
646   VPrintHelper(stderr, format, args);
647 }
648 
649 
SNPrintF(char * str,int length,const char * format,...)650 int OS::SNPrintF(char* str, int length, const char* format, ...) {
651   va_list args;
652   va_start(args, format);
653   int result = VSNPrintF(str, length, format, args);
654   va_end(args);
655   return result;
656 }
657 
658 
VSNPrintF(char * str,int length,const char * format,va_list args)659 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
660   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
661   // Make sure to zero-terminate the string if the output was
662   // truncated or if there was an error.
663   if (n < 0 || n >= length) {
664     if (length > 0)
665       str[length - 1] = '\0';
666     return -1;
667   } else {
668     return n;
669   }
670 }
671 
672 
StrChr(char * str,int c)673 char* OS::StrChr(char* str, int c) {
674   return const_cast<char*>(strchr(str, c));
675 }
676 
677 
StrNCpy(char * dest,int length,const char * src,size_t n)678 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
679   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
680   size_t buffer_size = static_cast<size_t>(length);
681   if (n + 1 > buffer_size)  // count for trailing '\0'
682     n = _TRUNCATE;
683   int result = strncpy_s(dest, length, src, n);
684   USE(result);
685   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
686 }
687 
688 
689 #undef _TRUNCATE
690 #undef STRUNCATE
691 
692 static LazyInstance<RandomNumberGenerator>::type
693     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
694 static LazyMutex rng_mutex = LAZY_MUTEX_INITIALIZER;
695 
Initialize(bool hard_abort,const char * const gc_fake_mmap)696 void OS::Initialize(bool hard_abort, const char* const gc_fake_mmap) {
697   g_hard_abort = hard_abort;
698 }
699 
700 // static
AllocatePageSize()701 size_t OS::AllocatePageSize() {
702   static size_t allocate_alignment = 0;
703   if (allocate_alignment == 0) {
704     SYSTEM_INFO info;
705     GetSystemInfo(&info);
706     allocate_alignment = info.dwAllocationGranularity;
707   }
708   return allocate_alignment;
709 }
710 
711 // static
CommitPageSize()712 size_t OS::CommitPageSize() {
713   static size_t page_size = 0;
714   if (page_size == 0) {
715     SYSTEM_INFO info;
716     GetSystemInfo(&info);
717     page_size = info.dwPageSize;
718     DCHECK_EQ(4096, page_size);
719   }
720   return page_size;
721 }
722 
723 // static
SetRandomMmapSeed(int64_t seed)724 void OS::SetRandomMmapSeed(int64_t seed) {
725   if (seed) {
726     LockGuard<Mutex> guard(rng_mutex.Pointer());
727     platform_random_number_generator.Pointer()->SetSeed(seed);
728   }
729 }
730 
731 // static
GetRandomMmapAddr()732 void* OS::GetRandomMmapAddr() {
733 // The address range used to randomize RWX allocations in OS::Allocate
734 // Try not to map pages into the default range that windows loads DLLs
735 // Use a multiple of 64k to prevent committing unused memory.
736 // Note: This does not guarantee RWX regions will be within the
737 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
738 #ifdef V8_HOST_ARCH_64_BIT
739   static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
740   static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
741 #else
742   static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
743   static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
744 #endif
745   uintptr_t address;
746   {
747     LockGuard<Mutex> guard(rng_mutex.Pointer());
748     platform_random_number_generator.Pointer()->NextBytes(&address,
749                                                           sizeof(address));
750   }
751   address <<= kPageSizeBits;
752   address += kAllocationRandomAddressMin;
753   address &= kAllocationRandomAddressMax;
754   return reinterpret_cast<void*>(address);
755 }
756 
757 namespace {
758 
GetProtectionFromMemoryPermission(OS::MemoryPermission access)759 DWORD GetProtectionFromMemoryPermission(OS::MemoryPermission access) {
760   switch (access) {
761     case OS::MemoryPermission::kNoAccess:
762       return PAGE_NOACCESS;
763     case OS::MemoryPermission::kRead:
764       return PAGE_READONLY;
765     case OS::MemoryPermission::kReadWrite:
766       return PAGE_READWRITE;
767     case OS::MemoryPermission::kReadWriteExecute:
768       if (IsWindows10OrGreater())
769         return PAGE_EXECUTE_READWRITE | PAGE_TARGETS_INVALID;
770       return PAGE_EXECUTE_READWRITE;
771     case OS::MemoryPermission::kReadExecute:
772       if (IsWindows10OrGreater())
773         return PAGE_EXECUTE_READ | PAGE_TARGETS_INVALID;
774       return PAGE_EXECUTE_READ;
775   }
776   UNREACHABLE();
777 }
778 
RandomizedVirtualAlloc(size_t size,DWORD flags,DWORD protect,void * hint)779 uint8_t* RandomizedVirtualAlloc(size_t size, DWORD flags, DWORD protect,
780                                 void* hint) {
781   LPVOID base = nullptr;
782   static BOOL use_aslr = -1;
783 #ifdef V8_HOST_ARCH_32_BIT
784   // Don't bother randomizing on 32-bit hosts, because they lack the room and
785   // don't have viable ASLR anyway.
786   if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
787     use_aslr = FALSE;
788 #else
789   use_aslr = TRUE;
790 #endif
791 
792   if (use_aslr && protect != PAGE_READWRITE) {
793     // For executable or reserved pages try to randomize the allocation address.
794     base = VirtualAlloc(hint, size, flags, protect);
795   }
796 
797   // On failure, let the OS find an address to use.
798   if (base == nullptr) {
799     base = VirtualAlloc(nullptr, size, flags, protect);
800   }
801   return reinterpret_cast<uint8_t*>(base);
802 }
803 
804 }  // namespace
805 
806 // static
Allocate(void * address,size_t size,size_t alignment,MemoryPermission access)807 void* OS::Allocate(void* address, size_t size, size_t alignment,
808                    MemoryPermission access) {
809   size_t page_size = AllocatePageSize();
810   DCHECK_EQ(0, size % page_size);
811   DCHECK_EQ(0, alignment % page_size);
812   DCHECK_LE(page_size, alignment);
813   address = AlignedAddress(address, alignment);
814 
815   DWORD flags = (access == OS::MemoryPermission::kNoAccess)
816                     ? MEM_RESERVE
817                     : MEM_RESERVE | MEM_COMMIT;
818   DWORD protect = GetProtectionFromMemoryPermission(access);
819 
820   // First, try an exact size aligned allocation.
821   uint8_t* base = RandomizedVirtualAlloc(size, flags, protect, address);
822   if (base == nullptr) return nullptr;  // Can't allocate, we're OOM.
823 
824   // If address is suitably aligned, we're done.
825   uint8_t* aligned_base = RoundUp(base, alignment);
826   if (base == aligned_base) return reinterpret_cast<void*>(base);
827 
828   // Otherwise, free it and try a larger allocation.
829   CHECK(Free(base, size));
830 
831   // Clear the hint. It's unlikely we can allocate at this address.
832   address = nullptr;
833 
834   // Add the maximum misalignment so we are guaranteed an aligned base address
835   // in the allocated region.
836   size_t padded_size = size + (alignment - page_size);
837   const int kMaxAttempts = 3;
838   aligned_base = nullptr;
839   for (int i = 0; i < kMaxAttempts; ++i) {
840     base = RandomizedVirtualAlloc(padded_size, flags, protect, address);
841     if (base == nullptr) return nullptr;  // Can't allocate, we're OOM.
842 
843     // Try to trim the allocation by freeing the padded allocation and then
844     // calling VirtualAlloc at the aligned base.
845     CHECK(Free(base, padded_size));
846     aligned_base = RoundUp(base, alignment);
847     base = reinterpret_cast<uint8_t*>(
848         VirtualAlloc(aligned_base, size, flags, protect));
849     // We might not get the reduced allocation due to a race. In that case,
850     // base will be nullptr.
851     if (base != nullptr) break;
852   }
853   DCHECK_IMPLIES(base, base == aligned_base);
854   return reinterpret_cast<void*>(base);
855 }
856 
857 // static
Free(void * address,const size_t size)858 bool OS::Free(void* address, const size_t size) {
859   DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % AllocatePageSize());
860   DCHECK_EQ(0, size % AllocatePageSize());
861   USE(size);
862   return VirtualFree(address, 0, MEM_RELEASE) != 0;
863 }
864 
865 // static
Release(void * address,size_t size)866 bool OS::Release(void* address, size_t size) {
867   DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
868   DCHECK_EQ(0, size % CommitPageSize());
869   return VirtualFree(address, size, MEM_DECOMMIT) != 0;
870 }
871 
872 // static
SetPermissions(void * address,size_t size,MemoryPermission access)873 bool OS::SetPermissions(void* address, size_t size, MemoryPermission access) {
874   DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
875   DCHECK_EQ(0, size % CommitPageSize());
876   if (access == MemoryPermission::kNoAccess) {
877     return VirtualFree(address, size, MEM_DECOMMIT) != 0;
878   }
879   DWORD protect = GetProtectionFromMemoryPermission(access);
880   return VirtualAlloc(address, size, MEM_COMMIT, protect) != nullptr;
881 }
882 
883 // static
HasLazyCommits()884 bool OS::HasLazyCommits() {
885   // TODO(alph): implement for the platform.
886   return false;
887 }
888 
Sleep(TimeDelta interval)889 void OS::Sleep(TimeDelta interval) {
890   ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
891 }
892 
893 
Abort()894 void OS::Abort() {
895   // Before aborting, make sure to flush output buffers.
896   fflush(stdout);
897   fflush(stderr);
898 
899   if (g_hard_abort) {
900     V8_IMMEDIATE_CRASH();
901   }
902   // Make the MSVCRT do a silent abort.
903   raise(SIGABRT);
904 
905   // Make sure function doesn't return.
906   abort();
907 }
908 
909 
DebugBreak()910 void OS::DebugBreak() {
911 #if V8_CC_MSVC
912   // To avoid Visual Studio runtime support the following code can be used
913   // instead
914   // __asm { int 3 }
915   __debugbreak();
916 #else
917   ::DebugBreak();
918 #endif
919 }
920 
921 
922 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
923  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,size_t size)924   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
925                         size_t size)
926       : file_(file),
927         file_mapping_(file_mapping),
928         memory_(memory),
929         size_(size) {}
930   ~Win32MemoryMappedFile() final;
memory() const931   void* memory() const final { return memory_; }
size() const932   size_t size() const final { return size_; }
933 
934  private:
935   HANDLE const file_;
936   HANDLE const file_mapping_;
937   void* const memory_;
938   size_t const size_;
939 };
940 
941 
942 // static
open(const char * name)943 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
944   // Open a physical file
945   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
946                             FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
947                             OPEN_EXISTING, 0, nullptr);
948   if (file == INVALID_HANDLE_VALUE) return nullptr;
949 
950   DWORD size = GetFileSize(file, nullptr);
951 
952   // Create a file mapping for the physical file
953   HANDLE file_mapping =
954       CreateFileMapping(file, nullptr, PAGE_READWRITE, 0, size, nullptr);
955   if (file_mapping == nullptr) return nullptr;
956 
957   // Map a view of the file into memory
958   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
959   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
960 }
961 
962 
963 // static
create(const char * name,size_t size,void * initial)964 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
965                                                    size_t size, void* initial) {
966   // Open a physical file
967   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
968                             FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
969                             OPEN_ALWAYS, 0, nullptr);
970   if (file == nullptr) return nullptr;
971   // Create a file mapping for the physical file
972   HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0,
973                                           static_cast<DWORD>(size), nullptr);
974   if (file_mapping == nullptr) return nullptr;
975   // Map a view of the file into memory
976   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
977   if (memory) memmove(memory, initial, size);
978   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
979 }
980 
981 
~Win32MemoryMappedFile()982 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
983   if (memory_) UnmapViewOfFile(memory_);
984   CloseHandle(file_mapping_);
985   CloseHandle(file_);
986 }
987 
988 
989 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
990 // dynamically. This is to avoid being depending on dbghelp.dll and
991 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
992 // kernel32.dll at some point so loading functions defines in TlHelp32.h
993 // dynamically might not be necessary any more - for some versions of Windows?).
994 
995 // Function pointers to functions dynamically loaded from dbghelp.dll.
996 #define DBGHELP_FUNCTION_LIST(V)  \
997   V(SymInitialize)                \
998   V(SymGetOptions)                \
999   V(SymSetOptions)                \
1000   V(SymGetSearchPath)             \
1001   V(SymLoadModule64)              \
1002   V(StackWalk64)                  \
1003   V(SymGetSymFromAddr64)          \
1004   V(SymGetLineFromAddr64)         \
1005   V(SymFunctionTableAccess64)     \
1006   V(SymGetModuleBase64)
1007 
1008 // Function pointers to functions dynamically loaded from dbghelp.dll.
1009 #define TLHELP32_FUNCTION_LIST(V)  \
1010   V(CreateToolhelp32Snapshot)      \
1011   V(Module32FirstW)                \
1012   V(Module32NextW)
1013 
1014 // Define the decoration to use for the type and variable name used for
1015 // dynamically loaded DLL function..
1016 #define DLL_FUNC_TYPE(name) _##name##_
1017 #define DLL_FUNC_VAR(name) _##name
1018 
1019 // Define the type for each dynamically loaded DLL function. The function
1020 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1021 // from the Windows include files are redefined here to have the function
1022 // definitions to be as close to the ones in the original .h files as possible.
1023 #ifndef IN
1024 #define IN
1025 #endif
1026 #ifndef VOID
1027 #define VOID void
1028 #endif
1029 
1030 // DbgHelp isn't supported on MinGW yet
1031 #ifndef __MINGW32__
1032 // DbgHelp.h functions.
1033 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1034                                                        IN PSTR UserSearchPath,
1035                                                        IN BOOL fInvadeProcess);
1036 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1037 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1038 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1039     IN HANDLE hProcess,
1040     OUT PSTR SearchPath,
1041     IN DWORD SearchPathLength);
1042 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1043     IN HANDLE hProcess,
1044     IN HANDLE hFile,
1045     IN PSTR ImageName,
1046     IN PSTR ModuleName,
1047     IN DWORD64 BaseOfDll,
1048     IN DWORD SizeOfDll);
1049 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1050     DWORD MachineType,
1051     HANDLE hProcess,
1052     HANDLE hThread,
1053     LPSTACKFRAME64 StackFrame,
1054     PVOID ContextRecord,
1055     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1056     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1057     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1058     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1059 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1060     IN HANDLE hProcess,
1061     IN DWORD64 qwAddr,
1062     OUT PDWORD64 pdwDisplacement,
1063     OUT PIMAGEHLP_SYMBOL64 Symbol);
1064 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1065     IN HANDLE hProcess,
1066     IN DWORD64 qwAddr,
1067     OUT PDWORD pdwDisplacement,
1068     OUT PIMAGEHLP_LINE64 Line64);
1069 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1070 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1071     HANDLE hProcess,
1072     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1073 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1074     HANDLE hProcess,
1075     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1076 
1077 // TlHelp32.h functions.
1078 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1079     DWORD dwFlags,
1080     DWORD th32ProcessID);
1081 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1082                                                         LPMODULEENTRY32W lpme);
1083 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1084                                                        LPMODULEENTRY32W lpme);
1085 
1086 #undef IN
1087 #undef VOID
1088 
1089 // Declare a variable for each dynamically loaded DLL function.
1090 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = nullptr;
1091 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1092 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1093 #undef DEF_DLL_FUNCTION
1094 
1095 // Load the functions. This function has a lot of "ugly" macros in order to
1096 // keep down code duplication.
1097 
1098 static bool LoadDbgHelpAndTlHelp32() {
1099   static bool dbghelp_loaded = false;
1100 
1101   if (dbghelp_loaded) return true;
1102 
1103   HMODULE module;
1104 
1105   // Load functions from the dbghelp.dll module.
1106   module = LoadLibrary(TEXT("dbghelp.dll"));
1107   if (module == nullptr) {
1108     return false;
1109   }
1110 
1111 #define LOAD_DLL_FUNC(name)                                                 \
1112   DLL_FUNC_VAR(name) =                                                      \
1113       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1114 
1115 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1116 
1117 #undef LOAD_DLL_FUNC
1118 
1119   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1120   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1121   module = LoadLibrary(TEXT("kernel32.dll"));
1122   if (module == nullptr) {
1123     return false;
1124   }
1125 
1126 #define LOAD_DLL_FUNC(name)                                                 \
1127   DLL_FUNC_VAR(name) =                                                      \
1128       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1129 
1130 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1131 
1132 #undef LOAD_DLL_FUNC
1133 
1134   // Check that all functions where loaded.
1135 bool result =
1136 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != nullptr)&&
1137 
1138     DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1139         TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1140 
1141 #undef DLL_FUNC_LOADED
1142             true;
1143 
1144   dbghelp_loaded = result;
1145   return result;
1146   // NOTE: The modules are never unloaded and will stay around until the
1147   // application is closed.
1148 }
1149 
1150 #undef DBGHELP_FUNCTION_LIST
1151 #undef TLHELP32_FUNCTION_LIST
1152 #undef DLL_FUNC_VAR
1153 #undef DLL_FUNC_TYPE
1154 
1155 
1156 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1157 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1158     HANDLE process_handle) {
1159   static std::vector<OS::SharedLibraryAddress> result;
1160 
1161   static bool symbols_loaded = false;
1162 
1163   if (symbols_loaded) return result;
1164 
1165   BOOL ok;
1166 
1167   // Initialize the symbol engine.
1168   ok = _SymInitialize(process_handle,  // hProcess
1169                       nullptr,         // UserSearchPath
1170                       false);          // fInvadeProcess
1171   if (!ok) return result;
1172 
1173   DWORD options = _SymGetOptions();
1174   options |= SYMOPT_LOAD_LINES;
1175   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1176   options = _SymSetOptions(options);
1177 
1178   char buf[OS::kStackWalkMaxNameLen] = {0};
1179   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1180   if (!ok) {
1181     int err = GetLastError();
1182     OS::Print("%d\n", err);
1183     return result;
1184   }
1185 
1186   HANDLE snapshot = _CreateToolhelp32Snapshot(
1187       TH32CS_SNAPMODULE,       // dwFlags
1188       GetCurrentProcessId());  // th32ProcessId
1189   if (snapshot == INVALID_HANDLE_VALUE) return result;
1190   MODULEENTRY32W module_entry;
1191   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1192   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1193   while (cont) {
1194     DWORD64 base;
1195     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1196     // both unicode and ASCII strings even though the parameter is PSTR.
1197     base = _SymLoadModule64(
1198         process_handle,                                       // hProcess
1199         0,                                                    // hFile
1200         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1201         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1202         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1203         module_entry.modBaseSize);                            // SizeOfDll
1204     if (base == 0) {
1205       int err = GetLastError();
1206       if (err != ERROR_MOD_NOT_FOUND &&
1207           err != ERROR_INVALID_HANDLE) {
1208         result.clear();
1209         return result;
1210       }
1211     }
1212     int lib_name_length = WideCharToMultiByte(
1213         CP_UTF8, 0, module_entry.szExePath, -1, nullptr, 0, nullptr, nullptr);
1214     std::string lib_name(lib_name_length, 0);
1215     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1216                         lib_name_length, nullptr, nullptr);
1217     result.push_back(OS::SharedLibraryAddress(
1218         lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
1219         reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
1220                                     module_entry.modBaseSize)));
1221     cont = _Module32NextW(snapshot, &module_entry);
1222   }
1223   CloseHandle(snapshot);
1224 
1225   symbols_loaded = true;
1226   return result;
1227 }
1228 
1229 
GetSharedLibraryAddresses()1230 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1231   // SharedLibraryEvents are logged when loading symbol information.
1232   // Only the shared libraries loaded at the time of the call to
1233   // GetSharedLibraryAddresses are logged.  DLLs loaded after
1234   // initialization are not accounted for.
1235   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1236   HANDLE process_handle = GetCurrentProcess();
1237   return LoadSymbols(process_handle);
1238 }
1239 
SignalCodeMovingGC()1240 void OS::SignalCodeMovingGC() {}
1241 
1242 #else  // __MINGW32__
GetSharedLibraryAddresses()1243 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1244   return std::vector<OS::SharedLibraryAddress>();
1245 }
1246 
SignalCodeMovingGC()1247 void OS::SignalCodeMovingGC() {}
1248 #endif  // __MINGW32__
1249 
1250 
ActivationFrameAlignment()1251 int OS::ActivationFrameAlignment() {
1252 #ifdef _WIN64
1253   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1254 #elif defined(__MINGW32__)
1255   // With gcc 4.4 the tree vectorization optimizer can generate code
1256   // that requires 16 byte alignment such as movdqa on x86.
1257   return 16;
1258 #else
1259   return 8;  // Floating-point math runs faster with 8-byte alignment.
1260 #endif
1261 }
1262 
1263 #if (defined(_WIN32) || defined(_WIN64))
EnsureConsoleOutputWin32()1264 void EnsureConsoleOutputWin32() {
1265   UINT new_flags =
1266       SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX;
1267   UINT existing_flags = SetErrorMode(new_flags);
1268   SetErrorMode(existing_flags | new_flags);
1269 #if defined(_MSC_VER)
1270   _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1271   _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
1272   _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1273   _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
1274   _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1275   _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);
1276   _set_error_mode(_OUT_TO_STDERR);
1277 #endif  // defined(_MSC_VER)
1278 }
1279 #endif  // (defined(_WIN32) || defined(_WIN64))
1280 
1281 // ----------------------------------------------------------------------------
1282 // Win32 thread support.
1283 
1284 // Definition of invalid thread handle and id.
1285 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1286 
1287 // Entry point for threads. The supplied argument is a pointer to the thread
1288 // object. The entry function dispatches to the run method in the thread
1289 // object. It is important that this function has __stdcall calling
1290 // convention.
ThreadEntry(void * arg)1291 static unsigned int __stdcall ThreadEntry(void* arg) {
1292   Thread* thread = reinterpret_cast<Thread*>(arg);
1293   thread->NotifyStartedAndRun();
1294   return 0;
1295 }
1296 
1297 
1298 class Thread::PlatformData {
1299  public:
PlatformData(HANDLE thread)1300   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1301   HANDLE thread_;
1302   unsigned thread_id_;
1303 };
1304 
1305 
1306 // Initialize a Win32 thread object. The thread has an invalid thread
1307 // handle until it is started.
1308 
Thread(const Options & options)1309 Thread::Thread(const Options& options)
1310     : stack_size_(options.stack_size()), start_semaphore_(nullptr) {
1311   data_ = new PlatformData(kNoThread);
1312   set_name(options.name());
1313 }
1314 
1315 
set_name(const char * name)1316 void Thread::set_name(const char* name) {
1317   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1318   name_[sizeof(name_) - 1] = '\0';
1319 }
1320 
1321 
1322 // Close our own handle for the thread.
~Thread()1323 Thread::~Thread() {
1324   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1325   delete data_;
1326 }
1327 
1328 
1329 // Create a new thread. It is important to use _beginthreadex() instead of
1330 // the Win32 function CreateThread(), because the CreateThread() does not
1331 // initialize thread specific structures in the C runtime library.
Start()1332 void Thread::Start() {
1333   data_->thread_ = reinterpret_cast<HANDLE>(
1334       _beginthreadex(nullptr, static_cast<unsigned>(stack_size_), ThreadEntry,
1335                      this, 0, &data_->thread_id_));
1336 }
1337 
1338 
1339 // Wait for thread to terminate.
Join()1340 void Thread::Join() {
1341   if (data_->thread_id_ != GetCurrentThreadId()) {
1342     WaitForSingleObject(data_->thread_, INFINITE);
1343   }
1344 }
1345 
1346 
CreateThreadLocalKey()1347 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1348   DWORD result = TlsAlloc();
1349   DCHECK(result != TLS_OUT_OF_INDEXES);
1350   return static_cast<LocalStorageKey>(result);
1351 }
1352 
1353 
DeleteThreadLocalKey(LocalStorageKey key)1354 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1355   BOOL result = TlsFree(static_cast<DWORD>(key));
1356   USE(result);
1357   DCHECK(result);
1358 }
1359 
1360 
GetThreadLocal(LocalStorageKey key)1361 void* Thread::GetThreadLocal(LocalStorageKey key) {
1362   return TlsGetValue(static_cast<DWORD>(key));
1363 }
1364 
1365 
SetThreadLocal(LocalStorageKey key,void * value)1366 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1367   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1368   USE(result);
1369   DCHECK(result);
1370 }
1371 
1372 }  // namespace base
1373 }  // namespace v8
1374