1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcexpr"
11 #include "llvm/MC/MCExpr.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringSwitch.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCSymbol.h"
18 #include "llvm/MC/MCValue.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22 
23 namespace {
24 namespace stats {
25 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
26 }
27 }
28 
print(raw_ostream & OS) const29 void MCExpr::print(raw_ostream &OS) const {
30   switch (getKind()) {
31   case MCExpr::Target:
32     return cast<MCTargetExpr>(this)->PrintImpl(OS);
33   case MCExpr::Constant:
34     OS << cast<MCConstantExpr>(*this).getValue();
35     return;
36 
37   case MCExpr::SymbolRef: {
38     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
39     const MCSymbol &Sym = SRE.getSymbol();
40     // Parenthesize names that start with $ so that they don't look like
41     // absolute names.
42     bool UseParens = Sym.getName()[0] == '$';
43 
44     if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
45         SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
46       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
47       UseParens = true;
48     }
49 
50     if (UseParens)
51       OS << '(' << Sym << ')';
52     else
53       OS << Sym;
54 
55     if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
56         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
57         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
58         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
59         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
60         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF)
61       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
62     else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
63              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
64              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
65       OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
66 
67     return;
68   }
69 
70   case MCExpr::Unary: {
71     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
72     switch (UE.getOpcode()) {
73     default: assert(0 && "Invalid opcode!");
74     case MCUnaryExpr::LNot:  OS << '!'; break;
75     case MCUnaryExpr::Minus: OS << '-'; break;
76     case MCUnaryExpr::Not:   OS << '~'; break;
77     case MCUnaryExpr::Plus:  OS << '+'; break;
78     }
79     OS << *UE.getSubExpr();
80     return;
81   }
82 
83   case MCExpr::Binary: {
84     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
85 
86     // Only print parens around the LHS if it is non-trivial.
87     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
88       OS << *BE.getLHS();
89     } else {
90       OS << '(' << *BE.getLHS() << ')';
91     }
92 
93     switch (BE.getOpcode()) {
94     default: assert(0 && "Invalid opcode!");
95     case MCBinaryExpr::Add:
96       // Print "X-42" instead of "X+-42".
97       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
98         if (RHSC->getValue() < 0) {
99           OS << RHSC->getValue();
100           return;
101         }
102       }
103 
104       OS <<  '+';
105       break;
106     case MCBinaryExpr::And:  OS <<  '&'; break;
107     case MCBinaryExpr::Div:  OS <<  '/'; break;
108     case MCBinaryExpr::EQ:   OS << "=="; break;
109     case MCBinaryExpr::GT:   OS <<  '>'; break;
110     case MCBinaryExpr::GTE:  OS << ">="; break;
111     case MCBinaryExpr::LAnd: OS << "&&"; break;
112     case MCBinaryExpr::LOr:  OS << "||"; break;
113     case MCBinaryExpr::LT:   OS <<  '<'; break;
114     case MCBinaryExpr::LTE:  OS << "<="; break;
115     case MCBinaryExpr::Mod:  OS <<  '%'; break;
116     case MCBinaryExpr::Mul:  OS <<  '*'; break;
117     case MCBinaryExpr::NE:   OS << "!="; break;
118     case MCBinaryExpr::Or:   OS <<  '|'; break;
119     case MCBinaryExpr::Shl:  OS << "<<"; break;
120     case MCBinaryExpr::Shr:  OS << ">>"; break;
121     case MCBinaryExpr::Sub:  OS <<  '-'; break;
122     case MCBinaryExpr::Xor:  OS <<  '^'; break;
123     }
124 
125     // Only print parens around the LHS if it is non-trivial.
126     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
127       OS << *BE.getRHS();
128     } else {
129       OS << '(' << *BE.getRHS() << ')';
130     }
131     return;
132   }
133   }
134 
135   assert(0 && "Invalid expression kind!");
136 }
137 
dump() const138 void MCExpr::dump() const {
139   print(dbgs());
140   dbgs() << '\n';
141 }
142 
143 /* *** */
144 
Create(Opcode Opc,const MCExpr * LHS,const MCExpr * RHS,MCContext & Ctx)145 const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
146                                          const MCExpr *RHS, MCContext &Ctx) {
147   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
148 }
149 
Create(Opcode Opc,const MCExpr * Expr,MCContext & Ctx)150 const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
151                                        MCContext &Ctx) {
152   return new (Ctx) MCUnaryExpr(Opc, Expr);
153 }
154 
Create(int64_t Value,MCContext & Ctx)155 const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
156   return new (Ctx) MCConstantExpr(Value);
157 }
158 
159 /* *** */
160 
Create(const MCSymbol * Sym,VariantKind Kind,MCContext & Ctx)161 const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
162                                                VariantKind Kind,
163                                                MCContext &Ctx) {
164   return new (Ctx) MCSymbolRefExpr(Sym, Kind);
165 }
166 
Create(StringRef Name,VariantKind Kind,MCContext & Ctx)167 const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
168                                                MCContext &Ctx) {
169   return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
170 }
171 
getVariantKindName(VariantKind Kind)172 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
173   switch (Kind) {
174   default:
175   case VK_Invalid: return "<<invalid>>";
176   case VK_None: return "<<none>>";
177 
178   case VK_GOT: return "GOT";
179   case VK_GOTOFF: return "GOTOFF";
180   case VK_GOTPCREL: return "GOTPCREL";
181   case VK_GOTTPOFF: return "GOTTPOFF";
182   case VK_INDNTPOFF: return "INDNTPOFF";
183   case VK_NTPOFF: return "NTPOFF";
184   case VK_GOTNTPOFF: return "GOTNTPOFF";
185   case VK_PLT: return "PLT";
186   case VK_TLSGD: return "TLSGD";
187   case VK_TLSLD: return "TLSLD";
188   case VK_TLSLDM: return "TLSLDM";
189   case VK_TPOFF: return "TPOFF";
190   case VK_DTPOFF: return "DTPOFF";
191   case VK_TLVP: return "TLVP";
192   case VK_ARM_PLT: return "(PLT)";
193   case VK_ARM_GOT: return "(GOT)";
194   case VK_ARM_GOTOFF: return "(GOTOFF)";
195   case VK_ARM_TPOFF: return "(tpoff)";
196   case VK_ARM_GOTTPOFF: return "(gottpoff)";
197   case VK_ARM_TLSGD: return "(tlsgd)";
198   case VK_PPC_TOC: return "toc";
199   case VK_PPC_DARWIN_HA16: return "ha16";
200   case VK_PPC_DARWIN_LO16: return "lo16";
201   case VK_PPC_GAS_HA16: return "ha";
202   case VK_PPC_GAS_LO16: return "l";
203   }
204 }
205 
206 MCSymbolRefExpr::VariantKind
getVariantKindForName(StringRef Name)207 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
208   return StringSwitch<VariantKind>(Name)
209     .Case("GOT", VK_GOT)
210     .Case("got", VK_GOT)
211     .Case("GOTOFF", VK_GOTOFF)
212     .Case("gotoff", VK_GOTOFF)
213     .Case("GOTPCREL", VK_GOTPCREL)
214     .Case("gotpcrel", VK_GOTPCREL)
215     .Case("GOTTPOFF", VK_GOTTPOFF)
216     .Case("gottpoff", VK_GOTTPOFF)
217     .Case("INDNTPOFF", VK_INDNTPOFF)
218     .Case("indntpoff", VK_INDNTPOFF)
219     .Case("NTPOFF", VK_NTPOFF)
220     .Case("ntpoff", VK_NTPOFF)
221     .Case("GOTNTPOFF", VK_GOTNTPOFF)
222     .Case("gotntpoff", VK_GOTNTPOFF)
223     .Case("PLT", VK_PLT)
224     .Case("plt", VK_PLT)
225     .Case("TLSGD", VK_TLSGD)
226     .Case("tlsgd", VK_TLSGD)
227     .Case("TLSLD", VK_TLSLD)
228     .Case("tlsld", VK_TLSLD)
229     .Case("TLSLDM", VK_TLSLDM)
230     .Case("tlsldm", VK_TLSLDM)
231     .Case("TPOFF", VK_TPOFF)
232     .Case("tpoff", VK_TPOFF)
233     .Case("DTPOFF", VK_DTPOFF)
234     .Case("dtpoff", VK_DTPOFF)
235     .Case("TLVP", VK_TLVP)
236     .Case("tlvp", VK_TLVP)
237     .Default(VK_Invalid);
238 }
239 
240 /* *** */
241 
Anchor()242 void MCTargetExpr::Anchor() {}
243 
244 /* *** */
245 
EvaluateAsAbsolute(int64_t & Res) const246 bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
247   return EvaluateAsAbsolute(Res, 0, 0, 0);
248 }
249 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout) const250 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
251                                 const MCAsmLayout &Layout) const {
252   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
253 }
254 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout,const SectionAddrMap & Addrs) const255 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
256                                 const MCAsmLayout &Layout,
257                                 const SectionAddrMap &Addrs) const {
258   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
259 }
260 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler & Asm) const261 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
262   return EvaluateAsAbsolute(Res, &Asm, 0, 0);
263 }
264 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs) const265 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
266                                 const MCAsmLayout *Layout,
267                                 const SectionAddrMap *Addrs) const {
268   MCValue Value;
269 
270   // Fast path constants.
271   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
272     Res = CE->getValue();
273     return true;
274   }
275 
276   // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
277   // absolutize differences across sections and that is what the MachO writer
278   // uses Addrs for.
279   bool IsRelocatable =
280     EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);
281 
282   // Record the current value.
283   Res = Value.getConstant();
284 
285   return IsRelocatable && Value.isAbsolute();
286 }
287 
288 /// \brief Helper method for \see EvaluateSymbolAdd().
AttemptToFoldSymbolOffsetDifference(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCSymbolRefExpr * & A,const MCSymbolRefExpr * & B,int64_t & Addend)289 static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
290                                                 const MCAsmLayout *Layout,
291                                                 const SectionAddrMap *Addrs,
292                                                 bool InSet,
293                                                 const MCSymbolRefExpr *&A,
294                                                 const MCSymbolRefExpr *&B,
295                                                 int64_t &Addend) {
296   if (!A || !B)
297     return;
298 
299   const MCSymbol &SA = A->getSymbol();
300   const MCSymbol &SB = B->getSymbol();
301 
302   if (SA.isUndefined() || SB.isUndefined())
303     return;
304 
305   if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
306     return;
307 
308   MCSymbolData &AD = Asm->getSymbolData(SA);
309   MCSymbolData &BD = Asm->getSymbolData(SB);
310 
311   if (AD.getFragment() == BD.getFragment()) {
312     Addend += (AD.getOffset() - BD.getOffset());
313 
314     // Pointers to Thumb symbols need to have their low-bit set to allow
315     // for interworking.
316     if (Asm->isThumbFunc(&SA))
317       Addend |= 1;
318 
319     // Clear the symbol expr pointers to indicate we have folded these
320     // operands.
321     A = B = 0;
322     return;
323   }
324 
325   if (!Layout)
326     return;
327 
328   const MCSectionData &SecA = *AD.getFragment()->getParent();
329   const MCSectionData &SecB = *BD.getFragment()->getParent();
330 
331   if ((&SecA != &SecB) && !Addrs)
332     return;
333 
334   // Eagerly evaluate.
335   Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
336              Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
337   if (Addrs && (&SecA != &SecB))
338     Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
339 
340   // Clear the symbol expr pointers to indicate we have folded these
341   // operands.
342   A = B = 0;
343 }
344 
345 /// \brief Evaluate the result of an add between (conceptually) two MCValues.
346 ///
347 /// This routine conceptually attempts to construct an MCValue:
348 ///   Result = (Result_A - Result_B + Result_Cst)
349 /// from two MCValue's LHS and RHS where
350 ///   Result = LHS + RHS
351 /// and
352 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
353 ///
354 /// This routine attempts to aggresively fold the operands such that the result
355 /// is representable in an MCValue, but may not always succeed.
356 ///
357 /// \returns True on success, false if the result is not representable in an
358 /// MCValue.
359 
360 /// NOTE: It is really important to have both the Asm and Layout arguments.
361 /// They might look redundant, but this function can be used before layout
362 /// is done (see the object streamer for example) and having the Asm argument
363 /// lets us avoid relaxations early.
EvaluateSymbolicAdd(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCValue & LHS,const MCSymbolRefExpr * RHS_A,const MCSymbolRefExpr * RHS_B,int64_t RHS_Cst,MCValue & Res)364 static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
365                                 const MCAsmLayout *Layout,
366                                 const SectionAddrMap *Addrs,
367                                 bool InSet,
368                                 const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
369                                 const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
370                                 MCValue &Res) {
371   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
372   // about dealing with modifiers. This will ultimately bite us, one day.
373   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
374   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
375   int64_t LHS_Cst = LHS.getConstant();
376 
377   // Fold the result constant immediately.
378   int64_t Result_Cst = LHS_Cst + RHS_Cst;
379 
380   assert((!Layout || Asm) &&
381          "Must have an assembler object if layout is given!");
382 
383   // If we have a layout, we can fold resolved differences.
384   if (Asm) {
385     // First, fold out any differences which are fully resolved. By
386     // reassociating terms in
387     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
388     // we have the four possible differences:
389     //   (LHS_A - LHS_B),
390     //   (LHS_A - RHS_B),
391     //   (RHS_A - LHS_B),
392     //   (RHS_A - RHS_B).
393     // Since we are attempting to be as aggressive as possible about folding, we
394     // attempt to evaluate each possible alternative.
395     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
396                                         Result_Cst);
397     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
398                                         Result_Cst);
399     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
400                                         Result_Cst);
401     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
402                                         Result_Cst);
403   }
404 
405   // We can't represent the addition or subtraction of two symbols.
406   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
407     return false;
408 
409   // At this point, we have at most one additive symbol and one subtractive
410   // symbol -- find them.
411   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
412   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
413 
414   // If we have a negated symbol, then we must have also have a non-negated
415   // symbol in order to encode the expression.
416   if (B && !A)
417     return false;
418 
419   Res = MCValue::get(A, B, Result_Cst);
420   return true;
421 }
422 
EvaluateAsRelocatable(MCValue & Res,const MCAsmLayout & Layout) const423 bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
424                                    const MCAsmLayout &Layout) const {
425   return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
426                                    0, false);
427 }
428 
EvaluateAsRelocatableImpl(MCValue & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet) const429 bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
430                                        const MCAssembler *Asm,
431                                        const MCAsmLayout *Layout,
432                                        const SectionAddrMap *Addrs,
433                                        bool InSet) const {
434   ++stats::MCExprEvaluate;
435 
436   switch (getKind()) {
437   case Target:
438     return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
439 
440   case Constant:
441     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
442     return true;
443 
444   case SymbolRef: {
445     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
446     const MCSymbol &Sym = SRE->getSymbol();
447 
448     // Evaluate recursively if this is a variable.
449     if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
450       bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
451                                                                    Layout,
452                                                                    Addrs,
453                                                                    true);
454       // If we failed to simplify this to a constant, let the target
455       // handle it.
456       if (Ret && !Res.getSymA() && !Res.getSymB())
457         return true;
458     }
459 
460     Res = MCValue::get(SRE, 0, 0);
461     return true;
462   }
463 
464   case Unary: {
465     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
466     MCValue Value;
467 
468     if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
469                                                       Addrs, InSet))
470       return false;
471 
472     switch (AUE->getOpcode()) {
473     case MCUnaryExpr::LNot:
474       if (!Value.isAbsolute())
475         return false;
476       Res = MCValue::get(!Value.getConstant());
477       break;
478     case MCUnaryExpr::Minus:
479       /// -(a - b + const) ==> (b - a - const)
480       if (Value.getSymA() && !Value.getSymB())
481         return false;
482       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
483                          -Value.getConstant());
484       break;
485     case MCUnaryExpr::Not:
486       if (!Value.isAbsolute())
487         return false;
488       Res = MCValue::get(~Value.getConstant());
489       break;
490     case MCUnaryExpr::Plus:
491       Res = Value;
492       break;
493     }
494 
495     return true;
496   }
497 
498   case Binary: {
499     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
500     MCValue LHSValue, RHSValue;
501 
502     if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
503                                                   Addrs, InSet) ||
504         !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
505                                                   Addrs, InSet))
506       return false;
507 
508     // We only support a few operations on non-constant expressions, handle
509     // those first.
510     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
511       switch (ABE->getOpcode()) {
512       default:
513         return false;
514       case MCBinaryExpr::Sub:
515         // Negate RHS and add.
516         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
517                                    RHSValue.getSymB(), RHSValue.getSymA(),
518                                    -RHSValue.getConstant(),
519                                    Res);
520 
521       case MCBinaryExpr::Add:
522         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
523                                    RHSValue.getSymA(), RHSValue.getSymB(),
524                                    RHSValue.getConstant(),
525                                    Res);
526       }
527     }
528 
529     // FIXME: We need target hooks for the evaluation. It may be limited in
530     // width, and gas defines the result of comparisons and right shifts
531     // differently from Apple as.
532     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
533     int64_t Result = 0;
534     switch (ABE->getOpcode()) {
535     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
536     case MCBinaryExpr::And:  Result = LHS & RHS; break;
537     case MCBinaryExpr::Div:  Result = LHS / RHS; break;
538     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
539     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
540     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
541     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
542     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
543     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
544     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
545     case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
546     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
547     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
548     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
549     case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
550     case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
551     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
552     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
553     }
554 
555     Res = MCValue::get(Result);
556     return true;
557   }
558   }
559 
560   assert(0 && "Invalid assembly expression kind!");
561   return false;
562 }
563 
FindAssociatedSection() const564 const MCSection *MCExpr::FindAssociatedSection() const {
565   switch (getKind()) {
566   case Target:
567     // We never look through target specific expressions.
568     return cast<MCTargetExpr>(this)->FindAssociatedSection();
569 
570   case Constant:
571     return MCSymbol::AbsolutePseudoSection;
572 
573   case SymbolRef: {
574     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
575     const MCSymbol &Sym = SRE->getSymbol();
576 
577     if (Sym.isDefined())
578       return &Sym.getSection();
579 
580     return 0;
581   }
582 
583   case Unary:
584     return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();
585 
586   case Binary: {
587     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
588     const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
589     const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();
590 
591     // If either section is absolute, return the other.
592     if (LHS_S == MCSymbol::AbsolutePseudoSection)
593       return RHS_S;
594     if (RHS_S == MCSymbol::AbsolutePseudoSection)
595       return LHS_S;
596 
597     // Otherwise, return the first non-null section.
598     return LHS_S ? LHS_S : RHS_S;
599   }
600   }
601 
602   assert(0 && "Invalid assembly expression kind!");
603   return 0;
604 }
605