1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "misched"
37
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45 cl::desc("Print critical path length to stdout"));
46 }
47
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50 cl::desc("Pop up a window to show MISched dags after they are processed"));
51
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61 cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63 cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67
68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
69 /// size of the ready lists.
70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
71 cl::desc("Limit ready list to N instructions"), cl::init(256));
72
73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
74 cl::desc("Enable register pressure scheduling."), cl::init(true));
75
76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
77 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
78
79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
80 cl::desc("Enable memop clustering."),
81 cl::init(true));
82
83 // Experimental heuristics
84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
85 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
86
87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
88 cl::desc("Verify machine instrs before and after machine scheduling"));
89
90 // DAG subtrees must have at least this many nodes.
91 static const unsigned MinSubtreeSize = 8;
92
93 // Pin the vtables to this file.
anchor()94 void MachineSchedStrategy::anchor() {}
anchor()95 void ScheduleDAGMutation::anchor() {}
96
97 //===----------------------------------------------------------------------===//
98 // Machine Instruction Scheduling Pass and Registry
99 //===----------------------------------------------------------------------===//
100
MachineSchedContext()101 MachineSchedContext::MachineSchedContext():
102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
103 RegClassInfo = new RegisterClassInfo();
104 }
105
~MachineSchedContext()106 MachineSchedContext::~MachineSchedContext() {
107 delete RegClassInfo;
108 }
109
110 namespace {
111 /// Base class for a machine scheduler class that can run at any point.
112 class MachineSchedulerBase : public MachineSchedContext,
113 public MachineFunctionPass {
114 public:
MachineSchedulerBase(char & ID)115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
116
117 void print(raw_ostream &O, const Module* = nullptr) const override;
118
119 protected:
120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
121 };
122
123 /// MachineScheduler runs after coalescing and before register allocation.
124 class MachineScheduler : public MachineSchedulerBase {
125 public:
126 MachineScheduler();
127
128 void getAnalysisUsage(AnalysisUsage &AU) const override;
129
130 bool runOnMachineFunction(MachineFunction&) override;
131
132 static char ID; // Class identification, replacement for typeinfo
133
134 protected:
135 ScheduleDAGInstrs *createMachineScheduler();
136 };
137
138 /// PostMachineScheduler runs after shortly before code emission.
139 class PostMachineScheduler : public MachineSchedulerBase {
140 public:
141 PostMachineScheduler();
142
143 void getAnalysisUsage(AnalysisUsage &AU) const override;
144
145 bool runOnMachineFunction(MachineFunction&) override;
146
147 static char ID; // Class identification, replacement for typeinfo
148
149 protected:
150 ScheduleDAGInstrs *createPostMachineScheduler();
151 };
152 } // namespace
153
154 char MachineScheduler::ID = 0;
155
156 char &llvm::MachineSchedulerID = MachineScheduler::ID;
157
158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
159 "Machine Instruction Scheduler", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
164 "Machine Instruction Scheduler", false, false)
165
166 MachineScheduler::MachineScheduler()
167 : MachineSchedulerBase(ID) {
168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
169 }
170
getAnalysisUsage(AnalysisUsage & AU) const171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
172 AU.setPreservesCFG();
173 AU.addRequiredID(MachineDominatorsID);
174 AU.addRequired<MachineLoopInfo>();
175 AU.addRequired<AAResultsWrapperPass>();
176 AU.addRequired<TargetPassConfig>();
177 AU.addRequired<SlotIndexes>();
178 AU.addPreserved<SlotIndexes>();
179 AU.addRequired<LiveIntervals>();
180 AU.addPreserved<LiveIntervals>();
181 MachineFunctionPass::getAnalysisUsage(AU);
182 }
183
184 char PostMachineScheduler::ID = 0;
185
186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
187
188 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
189 "PostRA Machine Instruction Scheduler", false, false)
190
PostMachineScheduler()191 PostMachineScheduler::PostMachineScheduler()
192 : MachineSchedulerBase(ID) {
193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
194 }
195
getAnalysisUsage(AnalysisUsage & AU) const196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
197 AU.setPreservesCFG();
198 AU.addRequiredID(MachineDominatorsID);
199 AU.addRequired<MachineLoopInfo>();
200 AU.addRequired<TargetPassConfig>();
201 MachineFunctionPass::getAnalysisUsage(AU);
202 }
203
204 MachinePassRegistry MachineSchedRegistry::Registry;
205
206 /// A dummy default scheduler factory indicates whether the scheduler
207 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
209 return nullptr;
210 }
211
212 /// MachineSchedOpt allows command line selection of the scheduler.
213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
214 RegisterPassParser<MachineSchedRegistry> >
215 MachineSchedOpt("misched",
216 cl::init(&useDefaultMachineSched), cl::Hidden,
217 cl::desc("Machine instruction scheduler to use"));
218
219 static MachineSchedRegistry
220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
221 useDefaultMachineSched);
222
223 static cl::opt<bool> EnableMachineSched(
224 "enable-misched",
225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
226 cl::Hidden);
227
228 static cl::opt<bool> EnablePostRAMachineSched(
229 "enable-post-misched",
230 cl::desc("Enable the post-ra machine instruction scheduling pass."),
231 cl::init(true), cl::Hidden);
232
233 /// Forward declare the standard machine scheduler. This will be used as the
234 /// default scheduler if the target does not set a default.
235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
237
238 /// Decrement this iterator until reaching the top or a non-debug instr.
239 static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator Beg)240 priorNonDebug(MachineBasicBlock::const_iterator I,
241 MachineBasicBlock::const_iterator Beg) {
242 assert(I != Beg && "reached the top of the region, cannot decrement");
243 while (--I != Beg) {
244 if (!I->isDebugValue())
245 break;
246 }
247 return I;
248 }
249
250 /// Non-const version.
251 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator Beg)252 priorNonDebug(MachineBasicBlock::iterator I,
253 MachineBasicBlock::const_iterator Beg) {
254 return const_cast<MachineInstr*>(
255 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
256 }
257
258 /// If this iterator is a debug value, increment until reaching the End or a
259 /// non-debug instruction.
260 static MachineBasicBlock::const_iterator
nextIfDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator End)261 nextIfDebug(MachineBasicBlock::const_iterator I,
262 MachineBasicBlock::const_iterator End) {
263 for(; I != End; ++I) {
264 if (!I->isDebugValue())
265 break;
266 }
267 return I;
268 }
269
270 /// Non-const version.
271 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator End)272 nextIfDebug(MachineBasicBlock::iterator I,
273 MachineBasicBlock::const_iterator End) {
274 // Cast the return value to nonconst MachineInstr, then cast to an
275 // instr_iterator, which does not check for null, finally return a
276 // bundle_iterator.
277 return MachineBasicBlock::instr_iterator(
278 const_cast<MachineInstr*>(
279 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
280 }
281
282 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
createMachineScheduler()283 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
284 // Select the scheduler, or set the default.
285 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
286 if (Ctor != useDefaultMachineSched)
287 return Ctor(this);
288
289 // Get the default scheduler set by the target for this function.
290 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
291 if (Scheduler)
292 return Scheduler;
293
294 // Default to GenericScheduler.
295 return createGenericSchedLive(this);
296 }
297
298 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
299 /// the caller. We don't have a command line option to override the postRA
300 /// scheduler. The Target must configure it.
createPostMachineScheduler()301 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
302 // Get the postRA scheduler set by the target for this function.
303 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
304 if (Scheduler)
305 return Scheduler;
306
307 // Default to GenericScheduler.
308 return createGenericSchedPostRA(this);
309 }
310
311 /// Top-level MachineScheduler pass driver.
312 ///
313 /// Visit blocks in function order. Divide each block into scheduling regions
314 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
315 /// consistent with the DAG builder, which traverses the interior of the
316 /// scheduling regions bottom-up.
317 ///
318 /// This design avoids exposing scheduling boundaries to the DAG builder,
319 /// simplifying the DAG builder's support for "special" target instructions.
320 /// At the same time the design allows target schedulers to operate across
321 /// scheduling boundaries, for example to bundle the boudary instructions
322 /// without reordering them. This creates complexity, because the target
323 /// scheduler must update the RegionBegin and RegionEnd positions cached by
324 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
325 /// design would be to split blocks at scheduling boundaries, but LLVM has a
326 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)327 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
328 if (skipFunction(*mf.getFunction()))
329 return false;
330
331 if (EnableMachineSched.getNumOccurrences()) {
332 if (!EnableMachineSched)
333 return false;
334 } else if (!mf.getSubtarget().enableMachineScheduler())
335 return false;
336
337 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
338
339 // Initialize the context of the pass.
340 MF = &mf;
341 MLI = &getAnalysis<MachineLoopInfo>();
342 MDT = &getAnalysis<MachineDominatorTree>();
343 PassConfig = &getAnalysis<TargetPassConfig>();
344 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
345
346 LIS = &getAnalysis<LiveIntervals>();
347
348 if (VerifyScheduling) {
349 DEBUG(LIS->dump());
350 MF->verify(this, "Before machine scheduling.");
351 }
352 RegClassInfo->runOnMachineFunction(*MF);
353
354 // Instantiate the selected scheduler for this target, function, and
355 // optimization level.
356 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
357 scheduleRegions(*Scheduler, false);
358
359 DEBUG(LIS->dump());
360 if (VerifyScheduling)
361 MF->verify(this, "After machine scheduling.");
362 return true;
363 }
364
runOnMachineFunction(MachineFunction & mf)365 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
366 if (skipFunction(*mf.getFunction()))
367 return false;
368
369 if (EnablePostRAMachineSched.getNumOccurrences()) {
370 if (!EnablePostRAMachineSched)
371 return false;
372 } else if (!mf.getSubtarget().enablePostRAScheduler()) {
373 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
374 return false;
375 }
376 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
377
378 // Initialize the context of the pass.
379 MF = &mf;
380 PassConfig = &getAnalysis<TargetPassConfig>();
381
382 if (VerifyScheduling)
383 MF->verify(this, "Before post machine scheduling.");
384
385 // Instantiate the selected scheduler for this target, function, and
386 // optimization level.
387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
388 scheduleRegions(*Scheduler, true);
389
390 if (VerifyScheduling)
391 MF->verify(this, "After post machine scheduling.");
392 return true;
393 }
394
395 /// Return true of the given instruction should not be included in a scheduling
396 /// region.
397 ///
398 /// MachineScheduler does not currently support scheduling across calls. To
399 /// handle calls, the DAG builder needs to be modified to create register
400 /// anti/output dependencies on the registers clobbered by the call's regmask
401 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
402 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
403 /// the boundary, but there would be no benefit to postRA scheduling across
404 /// calls this late anyway.
isSchedBoundary(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB,MachineFunction * MF,const TargetInstrInfo * TII)405 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
406 MachineBasicBlock *MBB,
407 MachineFunction *MF,
408 const TargetInstrInfo *TII) {
409 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
410 }
411
412 /// Main driver for both MachineScheduler and PostMachineScheduler.
scheduleRegions(ScheduleDAGInstrs & Scheduler,bool FixKillFlags)413 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
414 bool FixKillFlags) {
415 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
416
417 // Visit all machine basic blocks.
418 //
419 // TODO: Visit blocks in global postorder or postorder within the bottom-up
420 // loop tree. Then we can optionally compute global RegPressure.
421 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
422 MBB != MBBEnd; ++MBB) {
423
424 Scheduler.startBlock(&*MBB);
425
426 #ifndef NDEBUG
427 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
428 continue;
429 if (SchedOnlyBlock.getNumOccurrences()
430 && (int)SchedOnlyBlock != MBB->getNumber())
431 continue;
432 #endif
433
434 // Break the block into scheduling regions [I, RegionEnd), and schedule each
435 // region as soon as it is discovered. RegionEnd points the scheduling
436 // boundary at the bottom of the region. The DAG does not include RegionEnd,
437 // but the region does (i.e. the next RegionEnd is above the previous
438 // RegionBegin). If the current block has no terminator then RegionEnd ==
439 // MBB->end() for the bottom region.
440 //
441 // The Scheduler may insert instructions during either schedule() or
442 // exitRegion(), even for empty regions. So the local iterators 'I' and
443 // 'RegionEnd' are invalid across these calls.
444 //
445 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
446 // as a single instruction.
447 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
448 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
449
450 // Avoid decrementing RegionEnd for blocks with no terminator.
451 if (RegionEnd != MBB->end() ||
452 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
453 --RegionEnd;
454 }
455
456 // The next region starts above the previous region. Look backward in the
457 // instruction stream until we find the nearest boundary.
458 unsigned NumRegionInstrs = 0;
459 MachineBasicBlock::iterator I = RegionEnd;
460 for (;I != MBB->begin(); --I) {
461 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
462 break;
463 if (!I->isDebugValue())
464 ++NumRegionInstrs;
465 }
466 // Notify the scheduler of the region, even if we may skip scheduling
467 // it. Perhaps it still needs to be bundled.
468 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
469
470 // Skip empty scheduling regions (0 or 1 schedulable instructions).
471 if (I == RegionEnd || I == std::prev(RegionEnd)) {
472 // Close the current region. Bundle the terminator if needed.
473 // This invalidates 'RegionEnd' and 'I'.
474 Scheduler.exitRegion();
475 continue;
476 }
477 DEBUG(dbgs() << "********** MI Scheduling **********\n");
478 DEBUG(dbgs() << MF->getName()
479 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
480 << "\n From: " << *I << " To: ";
481 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
482 else dbgs() << "End";
483 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
484 if (DumpCriticalPathLength) {
485 errs() << MF->getName();
486 errs() << ":BB# " << MBB->getNumber();
487 errs() << " " << MBB->getName() << " \n";
488 }
489
490 // Schedule a region: possibly reorder instructions.
491 // This invalidates 'RegionEnd' and 'I'.
492 Scheduler.schedule();
493
494 // Close the current region.
495 Scheduler.exitRegion();
496
497 // Scheduling has invalidated the current iterator 'I'. Ask the
498 // scheduler for the top of it's scheduled region.
499 RegionEnd = Scheduler.begin();
500 }
501 Scheduler.finishBlock();
502 // FIXME: Ideally, no further passes should rely on kill flags. However,
503 // thumb2 size reduction is currently an exception, so the PostMIScheduler
504 // needs to do this.
505 if (FixKillFlags)
506 Scheduler.fixupKills(&*MBB);
507 }
508 Scheduler.finalizeSchedule();
509 }
510
print(raw_ostream & O,const Module * m) const511 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
512 // unimplemented
513 }
514
515 LLVM_DUMP_METHOD
dump()516 void ReadyQueue::dump() {
517 dbgs() << "Queue " << Name << ": ";
518 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
519 dbgs() << Queue[i]->NodeNum << " ";
520 dbgs() << "\n";
521 }
522
523 //===----------------------------------------------------------------------===//
524 // ScheduleDAGMI - Basic machine instruction scheduling. This is
525 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
526 // virtual registers.
527 // ===----------------------------------------------------------------------===/
528
529 // Provide a vtable anchor.
~ScheduleDAGMI()530 ScheduleDAGMI::~ScheduleDAGMI() {
531 }
532
canAddEdge(SUnit * SuccSU,SUnit * PredSU)533 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
534 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
535 }
536
addEdge(SUnit * SuccSU,const SDep & PredDep)537 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
538 if (SuccSU != &ExitSU) {
539 // Do not use WillCreateCycle, it assumes SD scheduling.
540 // If Pred is reachable from Succ, then the edge creates a cycle.
541 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
542 return false;
543 Topo.AddPred(SuccSU, PredDep.getSUnit());
544 }
545 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
546 // Return true regardless of whether a new edge needed to be inserted.
547 return true;
548 }
549
550 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
551 /// NumPredsLeft reaches zero, release the successor node.
552 ///
553 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)554 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
555 SUnit *SuccSU = SuccEdge->getSUnit();
556
557 if (SuccEdge->isWeak()) {
558 --SuccSU->WeakPredsLeft;
559 if (SuccEdge->isCluster())
560 NextClusterSucc = SuccSU;
561 return;
562 }
563 #ifndef NDEBUG
564 if (SuccSU->NumPredsLeft == 0) {
565 dbgs() << "*** Scheduling failed! ***\n";
566 SuccSU->dump(this);
567 dbgs() << " has been released too many times!\n";
568 llvm_unreachable(nullptr);
569 }
570 #endif
571 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
572 // CurrCycle may have advanced since then.
573 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
574 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
575
576 --SuccSU->NumPredsLeft;
577 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
578 SchedImpl->releaseTopNode(SuccSU);
579 }
580
581 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)582 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
583 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
584 I != E; ++I) {
585 releaseSucc(SU, &*I);
586 }
587 }
588
589 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
590 /// NumSuccsLeft reaches zero, release the predecessor node.
591 ///
592 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)593 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
594 SUnit *PredSU = PredEdge->getSUnit();
595
596 if (PredEdge->isWeak()) {
597 --PredSU->WeakSuccsLeft;
598 if (PredEdge->isCluster())
599 NextClusterPred = PredSU;
600 return;
601 }
602 #ifndef NDEBUG
603 if (PredSU->NumSuccsLeft == 0) {
604 dbgs() << "*** Scheduling failed! ***\n";
605 PredSU->dump(this);
606 dbgs() << " has been released too many times!\n";
607 llvm_unreachable(nullptr);
608 }
609 #endif
610 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
611 // CurrCycle may have advanced since then.
612 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
613 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
614
615 --PredSU->NumSuccsLeft;
616 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
617 SchedImpl->releaseBottomNode(PredSU);
618 }
619
620 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)621 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
622 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
623 I != E; ++I) {
624 releasePred(SU, &*I);
625 }
626 }
627
628 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
629 /// crossing a scheduling boundary. [begin, end) includes all instructions in
630 /// the region, including the boundary itself and single-instruction regions
631 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)632 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
633 MachineBasicBlock::iterator begin,
634 MachineBasicBlock::iterator end,
635 unsigned regioninstrs)
636 {
637 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
638
639 SchedImpl->initPolicy(begin, end, regioninstrs);
640 }
641
642 /// This is normally called from the main scheduler loop but may also be invoked
643 /// by the scheduling strategy to perform additional code motion.
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)644 void ScheduleDAGMI::moveInstruction(
645 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
646 // Advance RegionBegin if the first instruction moves down.
647 if (&*RegionBegin == MI)
648 ++RegionBegin;
649
650 // Update the instruction stream.
651 BB->splice(InsertPos, BB, MI);
652
653 // Update LiveIntervals
654 if (LIS)
655 LIS->handleMove(*MI, /*UpdateFlags=*/true);
656
657 // Recede RegionBegin if an instruction moves above the first.
658 if (RegionBegin == InsertPos)
659 RegionBegin = MI;
660 }
661
checkSchedLimit()662 bool ScheduleDAGMI::checkSchedLimit() {
663 #ifndef NDEBUG
664 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
665 CurrentTop = CurrentBottom;
666 return false;
667 }
668 ++NumInstrsScheduled;
669 #endif
670 return true;
671 }
672
673 /// Per-region scheduling driver, called back from
674 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
675 /// does not consider liveness or register pressure. It is useful for PostRA
676 /// scheduling and potentially other custom schedulers.
schedule()677 void ScheduleDAGMI::schedule() {
678 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
679 DEBUG(SchedImpl->dumpPolicy());
680
681 // Build the DAG.
682 buildSchedGraph(AA);
683
684 Topo.InitDAGTopologicalSorting();
685
686 postprocessDAG();
687
688 SmallVector<SUnit*, 8> TopRoots, BotRoots;
689 findRootsAndBiasEdges(TopRoots, BotRoots);
690
691 // Initialize the strategy before modifying the DAG.
692 // This may initialize a DFSResult to be used for queue priority.
693 SchedImpl->initialize(this);
694
695 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
696 SUnits[su].dumpAll(this));
697 if (ViewMISchedDAGs) viewGraph();
698
699 // Initialize ready queues now that the DAG and priority data are finalized.
700 initQueues(TopRoots, BotRoots);
701
702 bool IsTopNode = false;
703 while (true) {
704 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
705 SUnit *SU = SchedImpl->pickNode(IsTopNode);
706 if (!SU) break;
707
708 assert(!SU->isScheduled && "Node already scheduled");
709 if (!checkSchedLimit())
710 break;
711
712 MachineInstr *MI = SU->getInstr();
713 if (IsTopNode) {
714 assert(SU->isTopReady() && "node still has unscheduled dependencies");
715 if (&*CurrentTop == MI)
716 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
717 else
718 moveInstruction(MI, CurrentTop);
719 } else {
720 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
721 MachineBasicBlock::iterator priorII =
722 priorNonDebug(CurrentBottom, CurrentTop);
723 if (&*priorII == MI)
724 CurrentBottom = priorII;
725 else {
726 if (&*CurrentTop == MI)
727 CurrentTop = nextIfDebug(++CurrentTop, priorII);
728 moveInstruction(MI, CurrentBottom);
729 CurrentBottom = MI;
730 }
731 }
732 // Notify the scheduling strategy before updating the DAG.
733 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
734 // runs, it can then use the accurate ReadyCycle time to determine whether
735 // newly released nodes can move to the readyQ.
736 SchedImpl->schedNode(SU, IsTopNode);
737
738 updateQueues(SU, IsTopNode);
739 }
740 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
741
742 placeDebugValues();
743
744 DEBUG({
745 unsigned BBNum = begin()->getParent()->getNumber();
746 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
747 dumpSchedule();
748 dbgs() << '\n';
749 });
750 }
751
752 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()753 void ScheduleDAGMI::postprocessDAG() {
754 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
755 Mutations[i]->apply(this);
756 }
757 }
758
759 void ScheduleDAGMI::
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
761 SmallVectorImpl<SUnit*> &BotRoots) {
762 for (std::vector<SUnit>::iterator
763 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
764 SUnit *SU = &(*I);
765 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
766
767 // Order predecessors so DFSResult follows the critical path.
768 SU->biasCriticalPath();
769
770 // A SUnit is ready to top schedule if it has no predecessors.
771 if (!I->NumPredsLeft)
772 TopRoots.push_back(SU);
773 // A SUnit is ready to bottom schedule if it has no successors.
774 if (!I->NumSuccsLeft)
775 BotRoots.push_back(SU);
776 }
777 ExitSU.biasCriticalPath();
778 }
779
780 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
782 ArrayRef<SUnit*> BotRoots) {
783 NextClusterSucc = nullptr;
784 NextClusterPred = nullptr;
785
786 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
787 //
788 // Nodes with unreleased weak edges can still be roots.
789 // Release top roots in forward order.
790 for (SmallVectorImpl<SUnit*>::const_iterator
791 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
792 SchedImpl->releaseTopNode(*I);
793 }
794 // Release bottom roots in reverse order so the higher priority nodes appear
795 // first. This is more natural and slightly more efficient.
796 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
797 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
798 SchedImpl->releaseBottomNode(*I);
799 }
800
801 releaseSuccessors(&EntrySU);
802 releasePredecessors(&ExitSU);
803
804 SchedImpl->registerRoots();
805
806 // Advance past initial DebugValues.
807 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
808 CurrentBottom = RegionEnd;
809 }
810
811 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
813 // Release dependent instructions for scheduling.
814 if (IsTopNode)
815 releaseSuccessors(SU);
816 else
817 releasePredecessors(SU);
818
819 SU->isScheduled = true;
820 }
821
822 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()823 void ScheduleDAGMI::placeDebugValues() {
824 // If first instruction was a DBG_VALUE then put it back.
825 if (FirstDbgValue) {
826 BB->splice(RegionBegin, BB, FirstDbgValue);
827 RegionBegin = FirstDbgValue;
828 }
829
830 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
831 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
832 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
833 MachineInstr *DbgValue = P.first;
834 MachineBasicBlock::iterator OrigPrevMI = P.second;
835 if (&*RegionBegin == DbgValue)
836 ++RegionBegin;
837 BB->splice(++OrigPrevMI, BB, DbgValue);
838 if (OrigPrevMI == std::prev(RegionEnd))
839 RegionEnd = DbgValue;
840 }
841 DbgValues.clear();
842 FirstDbgValue = nullptr;
843 }
844
845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const846 void ScheduleDAGMI::dumpSchedule() const {
847 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
848 if (SUnit *SU = getSUnit(&(*MI)))
849 SU->dump(this);
850 else
851 dbgs() << "Missing SUnit\n";
852 }
853 }
854 #endif
855
856 //===----------------------------------------------------------------------===//
857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
858 // preservation.
859 //===----------------------------------------------------------------------===//
860
~ScheduleDAGMILive()861 ScheduleDAGMILive::~ScheduleDAGMILive() {
862 delete DFSResult;
863 }
864
865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
866 /// crossing a scheduling boundary. [begin, end) includes all instructions in
867 /// the region, including the boundary itself and single-instruction regions
868 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
870 MachineBasicBlock::iterator begin,
871 MachineBasicBlock::iterator end,
872 unsigned regioninstrs)
873 {
874 // ScheduleDAGMI initializes SchedImpl's per-region policy.
875 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
876
877 // For convenience remember the end of the liveness region.
878 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
879
880 SUPressureDiffs.clear();
881
882 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
883 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
884
885 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
886 "ShouldTrackLaneMasks requires ShouldTrackPressure");
887 }
888
889 // Setup the register pressure trackers for the top scheduled top and bottom
890 // scheduled regions.
initRegPressure()891 void ScheduleDAGMILive::initRegPressure() {
892 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
893 ShouldTrackLaneMasks, false);
894 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
895 ShouldTrackLaneMasks, false);
896
897 // Close the RPTracker to finalize live ins.
898 RPTracker.closeRegion();
899
900 DEBUG(RPTracker.dump());
901
902 // Initialize the live ins and live outs.
903 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
904 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
905
906 // Close one end of the tracker so we can call
907 // getMaxUpward/DownwardPressureDelta before advancing across any
908 // instructions. This converts currently live regs into live ins/outs.
909 TopRPTracker.closeTop();
910 BotRPTracker.closeBottom();
911
912 BotRPTracker.initLiveThru(RPTracker);
913 if (!BotRPTracker.getLiveThru().empty()) {
914 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
915 DEBUG(dbgs() << "Live Thru: ";
916 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
917 };
918
919 // For each live out vreg reduce the pressure change associated with other
920 // uses of the same vreg below the live-out reaching def.
921 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
922
923 // Account for liveness generated by the region boundary.
924 if (LiveRegionEnd != RegionEnd) {
925 SmallVector<RegisterMaskPair, 8> LiveUses;
926 BotRPTracker.recede(&LiveUses);
927 updatePressureDiffs(LiveUses);
928 }
929
930 DEBUG(
931 dbgs() << "Top Pressure:\n";
932 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
933 dbgs() << "Bottom Pressure:\n";
934 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
935 );
936
937 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
938
939 // Cache the list of excess pressure sets in this region. This will also track
940 // the max pressure in the scheduled code for these sets.
941 RegionCriticalPSets.clear();
942 const std::vector<unsigned> &RegionPressure =
943 RPTracker.getPressure().MaxSetPressure;
944 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
945 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
946 if (RegionPressure[i] > Limit) {
947 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
948 << " Limit " << Limit
949 << " Actual " << RegionPressure[i] << "\n");
950 RegionCriticalPSets.push_back(PressureChange(i));
951 }
952 }
953 DEBUG(dbgs() << "Excess PSets: ";
954 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
955 dbgs() << TRI->getRegPressureSetName(
956 RegionCriticalPSets[i].getPSet()) << " ";
957 dbgs() << "\n");
958 }
959
960 void ScheduleDAGMILive::
updateScheduledPressure(const SUnit * SU,const std::vector<unsigned> & NewMaxPressure)961 updateScheduledPressure(const SUnit *SU,
962 const std::vector<unsigned> &NewMaxPressure) {
963 const PressureDiff &PDiff = getPressureDiff(SU);
964 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
965 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
966 I != E; ++I) {
967 if (!I->isValid())
968 break;
969 unsigned ID = I->getPSet();
970 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
971 ++CritIdx;
972 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
973 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
974 && NewMaxPressure[ID] <= INT16_MAX)
975 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
976 }
977 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
978 if (NewMaxPressure[ID] >= Limit - 2) {
979 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
980 << NewMaxPressure[ID]
981 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
982 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
983 }
984 }
985 }
986
987 /// Update the PressureDiff array for liveness after scheduling this
988 /// instruction.
updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses)989 void ScheduleDAGMILive::updatePressureDiffs(
990 ArrayRef<RegisterMaskPair> LiveUses) {
991 for (const RegisterMaskPair &P : LiveUses) {
992 unsigned Reg = P.RegUnit;
993 /// FIXME: Currently assuming single-use physregs.
994 if (!TRI->isVirtualRegister(Reg))
995 continue;
996
997 if (ShouldTrackLaneMasks) {
998 // If the register has just become live then other uses won't change
999 // this fact anymore => decrement pressure.
1000 // If the register has just become dead then other uses make it come
1001 // back to life => increment pressure.
1002 bool Decrement = P.LaneMask != 0;
1003
1004 for (const VReg2SUnit &V2SU
1005 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1006 SUnit &SU = *V2SU.SU;
1007 if (SU.isScheduled || &SU == &ExitSU)
1008 continue;
1009
1010 PressureDiff &PDiff = getPressureDiff(&SU);
1011 PDiff.addPressureChange(Reg, Decrement, &MRI);
1012 DEBUG(
1013 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1014 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1015 << ' ' << *SU.getInstr();
1016 dbgs() << " to ";
1017 PDiff.dump(*TRI);
1018 );
1019 }
1020 } else {
1021 assert(P.LaneMask != 0);
1022 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1023 // This may be called before CurrentBottom has been initialized. However,
1024 // BotRPTracker must have a valid position. We want the value live into the
1025 // instruction or live out of the block, so ask for the previous
1026 // instruction's live-out.
1027 const LiveInterval &LI = LIS->getInterval(Reg);
1028 VNInfo *VNI;
1029 MachineBasicBlock::const_iterator I =
1030 nextIfDebug(BotRPTracker.getPos(), BB->end());
1031 if (I == BB->end())
1032 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1033 else {
1034 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1035 VNI = LRQ.valueIn();
1036 }
1037 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1038 assert(VNI && "No live value at use.");
1039 for (const VReg2SUnit &V2SU
1040 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1041 SUnit *SU = V2SU.SU;
1042 // If this use comes before the reaching def, it cannot be a last use,
1043 // so decrease its pressure change.
1044 if (!SU->isScheduled && SU != &ExitSU) {
1045 LiveQueryResult LRQ =
1046 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1047 if (LRQ.valueIn() == VNI) {
1048 PressureDiff &PDiff = getPressureDiff(SU);
1049 PDiff.addPressureChange(Reg, true, &MRI);
1050 DEBUG(
1051 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1052 << *SU->getInstr();
1053 dbgs() << " to ";
1054 PDiff.dump(*TRI);
1055 );
1056 }
1057 }
1058 }
1059 }
1060 }
1061 }
1062
1063 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1064 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1065 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1066 ///
1067 /// This is a skeletal driver, with all the functionality pushed into helpers,
1068 /// so that it can be easily extended by experimental schedulers. Generally,
1069 /// implementing MachineSchedStrategy should be sufficient to implement a new
1070 /// scheduling algorithm. However, if a scheduler further subclasses
1071 /// ScheduleDAGMILive then it will want to override this virtual method in order
1072 /// to update any specialized state.
schedule()1073 void ScheduleDAGMILive::schedule() {
1074 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1075 DEBUG(SchedImpl->dumpPolicy());
1076 buildDAGWithRegPressure();
1077
1078 Topo.InitDAGTopologicalSorting();
1079
1080 postprocessDAG();
1081
1082 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1083 findRootsAndBiasEdges(TopRoots, BotRoots);
1084
1085 // Initialize the strategy before modifying the DAG.
1086 // This may initialize a DFSResult to be used for queue priority.
1087 SchedImpl->initialize(this);
1088
1089 DEBUG(
1090 for (const SUnit &SU : SUnits) {
1091 SU.dumpAll(this);
1092 if (ShouldTrackPressure) {
1093 dbgs() << " Pressure Diff : ";
1094 getPressureDiff(&SU).dump(*TRI);
1095 }
1096 dbgs() << '\n';
1097 }
1098 );
1099 if (ViewMISchedDAGs) viewGraph();
1100
1101 // Initialize ready queues now that the DAG and priority data are finalized.
1102 initQueues(TopRoots, BotRoots);
1103
1104 bool IsTopNode = false;
1105 while (true) {
1106 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1107 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1108 if (!SU) break;
1109
1110 assert(!SU->isScheduled && "Node already scheduled");
1111 if (!checkSchedLimit())
1112 break;
1113
1114 scheduleMI(SU, IsTopNode);
1115
1116 if (DFSResult) {
1117 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1118 if (!ScheduledTrees.test(SubtreeID)) {
1119 ScheduledTrees.set(SubtreeID);
1120 DFSResult->scheduleTree(SubtreeID);
1121 SchedImpl->scheduleTree(SubtreeID);
1122 }
1123 }
1124
1125 // Notify the scheduling strategy after updating the DAG.
1126 SchedImpl->schedNode(SU, IsTopNode);
1127
1128 updateQueues(SU, IsTopNode);
1129 }
1130 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1131
1132 placeDebugValues();
1133
1134 DEBUG({
1135 unsigned BBNum = begin()->getParent()->getNumber();
1136 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1137 dumpSchedule();
1138 dbgs() << '\n';
1139 });
1140 }
1141
1142 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()1143 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1144 if (!ShouldTrackPressure) {
1145 RPTracker.reset();
1146 RegionCriticalPSets.clear();
1147 buildSchedGraph(AA);
1148 return;
1149 }
1150
1151 // Initialize the register pressure tracker used by buildSchedGraph.
1152 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1153 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1154
1155 // Account for liveness generate by the region boundary.
1156 if (LiveRegionEnd != RegionEnd)
1157 RPTracker.recede();
1158
1159 // Build the DAG, and compute current register pressure.
1160 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1161
1162 // Initialize top/bottom trackers after computing region pressure.
1163 initRegPressure();
1164 }
1165
computeDFSResult()1166 void ScheduleDAGMILive::computeDFSResult() {
1167 if (!DFSResult)
1168 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1169 DFSResult->clear();
1170 ScheduledTrees.clear();
1171 DFSResult->resize(SUnits.size());
1172 DFSResult->compute(SUnits);
1173 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1174 }
1175
1176 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1177 /// only provides the critical path for single block loops. To handle loops that
1178 /// span blocks, we could use the vreg path latencies provided by
1179 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1180 /// available for use in the scheduler.
1181 ///
1182 /// The cyclic path estimation identifies a def-use pair that crosses the back
1183 /// edge and considers the depth and height of the nodes. For example, consider
1184 /// the following instruction sequence where each instruction has unit latency
1185 /// and defines an epomymous virtual register:
1186 ///
1187 /// a->b(a,c)->c(b)->d(c)->exit
1188 ///
1189 /// The cyclic critical path is a two cycles: b->c->b
1190 /// The acyclic critical path is four cycles: a->b->c->d->exit
1191 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1192 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1193 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1194 /// LiveInDepth = depth(b) = len(a->b) = 1
1195 ///
1196 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1197 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1198 /// CyclicCriticalPath = min(2, 2) = 2
1199 ///
1200 /// This could be relevant to PostRA scheduling, but is currently implemented
1201 /// assuming LiveIntervals.
computeCyclicCriticalPath()1202 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1203 // This only applies to single block loop.
1204 if (!BB->isSuccessor(BB))
1205 return 0;
1206
1207 unsigned MaxCyclicLatency = 0;
1208 // Visit each live out vreg def to find def/use pairs that cross iterations.
1209 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1210 unsigned Reg = P.RegUnit;
1211 if (!TRI->isVirtualRegister(Reg))
1212 continue;
1213 const LiveInterval &LI = LIS->getInterval(Reg);
1214 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1215 if (!DefVNI)
1216 continue;
1217
1218 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1219 const SUnit *DefSU = getSUnit(DefMI);
1220 if (!DefSU)
1221 continue;
1222
1223 unsigned LiveOutHeight = DefSU->getHeight();
1224 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1225 // Visit all local users of the vreg def.
1226 for (const VReg2SUnit &V2SU
1227 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1228 SUnit *SU = V2SU.SU;
1229 if (SU == &ExitSU)
1230 continue;
1231
1232 // Only consider uses of the phi.
1233 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1234 if (!LRQ.valueIn()->isPHIDef())
1235 continue;
1236
1237 // Assume that a path spanning two iterations is a cycle, which could
1238 // overestimate in strange cases. This allows cyclic latency to be
1239 // estimated as the minimum slack of the vreg's depth or height.
1240 unsigned CyclicLatency = 0;
1241 if (LiveOutDepth > SU->getDepth())
1242 CyclicLatency = LiveOutDepth - SU->getDepth();
1243
1244 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1245 if (LiveInHeight > LiveOutHeight) {
1246 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1247 CyclicLatency = LiveInHeight - LiveOutHeight;
1248 } else
1249 CyclicLatency = 0;
1250
1251 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1252 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1253 if (CyclicLatency > MaxCyclicLatency)
1254 MaxCyclicLatency = CyclicLatency;
1255 }
1256 }
1257 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1258 return MaxCyclicLatency;
1259 }
1260
1261 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1262 /// the Top RP tracker in case the region beginning has changed.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)1263 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1264 ArrayRef<SUnit*> BotRoots) {
1265 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1266 if (ShouldTrackPressure) {
1267 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1268 TopRPTracker.setPos(CurrentTop);
1269 }
1270 }
1271
1272 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)1273 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1274 // Move the instruction to its new location in the instruction stream.
1275 MachineInstr *MI = SU->getInstr();
1276
1277 if (IsTopNode) {
1278 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1279 if (&*CurrentTop == MI)
1280 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1281 else {
1282 moveInstruction(MI, CurrentTop);
1283 TopRPTracker.setPos(MI);
1284 }
1285
1286 if (ShouldTrackPressure) {
1287 // Update top scheduled pressure.
1288 RegisterOperands RegOpers;
1289 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1290 if (ShouldTrackLaneMasks) {
1291 // Adjust liveness and add missing dead+read-undef flags.
1292 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1293 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1294 } else {
1295 // Adjust for missing dead-def flags.
1296 RegOpers.detectDeadDefs(*MI, *LIS);
1297 }
1298
1299 TopRPTracker.advance(RegOpers);
1300 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1301 DEBUG(
1302 dbgs() << "Top Pressure:\n";
1303 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1304 );
1305
1306 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1307 }
1308 } else {
1309 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1310 MachineBasicBlock::iterator priorII =
1311 priorNonDebug(CurrentBottom, CurrentTop);
1312 if (&*priorII == MI)
1313 CurrentBottom = priorII;
1314 else {
1315 if (&*CurrentTop == MI) {
1316 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1317 TopRPTracker.setPos(CurrentTop);
1318 }
1319 moveInstruction(MI, CurrentBottom);
1320 CurrentBottom = MI;
1321 }
1322 if (ShouldTrackPressure) {
1323 RegisterOperands RegOpers;
1324 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1325 if (ShouldTrackLaneMasks) {
1326 // Adjust liveness and add missing dead+read-undef flags.
1327 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1328 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1329 } else {
1330 // Adjust for missing dead-def flags.
1331 RegOpers.detectDeadDefs(*MI, *LIS);
1332 }
1333
1334 BotRPTracker.recedeSkipDebugValues();
1335 SmallVector<RegisterMaskPair, 8> LiveUses;
1336 BotRPTracker.recede(RegOpers, &LiveUses);
1337 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1338 DEBUG(
1339 dbgs() << "Bottom Pressure:\n";
1340 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1341 );
1342
1343 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1344 updatePressureDiffs(LiveUses);
1345 }
1346 }
1347 }
1348
1349 //===----------------------------------------------------------------------===//
1350 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1351 //===----------------------------------------------------------------------===//
1352
1353 namespace {
1354 /// \brief Post-process the DAG to create cluster edges between neighboring
1355 /// loads or between neighboring stores.
1356 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1357 struct MemOpInfo {
1358 SUnit *SU;
1359 unsigned BaseReg;
1360 int64_t Offset;
MemOpInfo__anond1ea022a0211::BaseMemOpClusterMutation::MemOpInfo1361 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1362 : SU(su), BaseReg(reg), Offset(ofs) {}
1363
operator <__anond1ea022a0211::BaseMemOpClusterMutation::MemOpInfo1364 bool operator<(const MemOpInfo&RHS) const {
1365 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1366 }
1367 };
1368
1369 const TargetInstrInfo *TII;
1370 const TargetRegisterInfo *TRI;
1371 bool IsLoad;
1372
1373 public:
BaseMemOpClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri,bool IsLoad)1374 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1375 const TargetRegisterInfo *tri, bool IsLoad)
1376 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1377
1378 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1379
1380 protected:
1381 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1382 };
1383
1384 class StoreClusterMutation : public BaseMemOpClusterMutation {
1385 public:
StoreClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)1386 StoreClusterMutation(const TargetInstrInfo *tii,
1387 const TargetRegisterInfo *tri)
1388 : BaseMemOpClusterMutation(tii, tri, false) {}
1389 };
1390
1391 class LoadClusterMutation : public BaseMemOpClusterMutation {
1392 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)1393 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1394 : BaseMemOpClusterMutation(tii, tri, true) {}
1395 };
1396 } // anonymous
1397
clusterNeighboringMemOps(ArrayRef<SUnit * > MemOps,ScheduleDAGMI * DAG)1398 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1399 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1400 SmallVector<MemOpInfo, 32> MemOpRecords;
1401 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) {
1402 SUnit *SU = MemOps[Idx];
1403 unsigned BaseReg;
1404 int64_t Offset;
1405 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1406 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1407 }
1408 if (MemOpRecords.size() < 2)
1409 return;
1410
1411 std::sort(MemOpRecords.begin(), MemOpRecords.end());
1412 unsigned ClusterLength = 1;
1413 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1414 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) {
1415 ClusterLength = 1;
1416 continue;
1417 }
1418
1419 SUnit *SUa = MemOpRecords[Idx].SU;
1420 SUnit *SUb = MemOpRecords[Idx+1].SU;
1421 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(),
1422 ClusterLength) &&
1423 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1424 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1425 << SUb->NodeNum << ")\n");
1426 // Copy successor edges from SUa to SUb. Interleaving computation
1427 // dependent on SUa can prevent load combining due to register reuse.
1428 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1429 // loads should have effectively the same inputs.
1430 for (SUnit::const_succ_iterator
1431 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1432 if (SI->getSUnit() == SUb)
1433 continue;
1434 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1435 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1436 }
1437 ++ClusterLength;
1438 } else
1439 ClusterLength = 1;
1440 }
1441 }
1442
1443 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGInstrs * DAGInstrs)1444 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1445
1446 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1447
1448 // Map DAG NodeNum to store chain ID.
1449 DenseMap<unsigned, unsigned> StoreChainIDs;
1450 // Map each store chain to a set of dependent MemOps.
1451 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1452 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1453 SUnit *SU = &DAG->SUnits[Idx];
1454 if ((IsLoad && !SU->getInstr()->mayLoad()) ||
1455 (!IsLoad && !SU->getInstr()->mayStore()))
1456 continue;
1457
1458 unsigned ChainPredID = DAG->SUnits.size();
1459 for (SUnit::const_pred_iterator
1460 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1461 if (PI->isCtrl()) {
1462 ChainPredID = PI->getSUnit()->NodeNum;
1463 break;
1464 }
1465 }
1466 // Check if this chain-like pred has been seen
1467 // before. ChainPredID==MaxNodeID at the top of the schedule.
1468 unsigned NumChains = StoreChainDependents.size();
1469 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1470 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1471 if (Result.second)
1472 StoreChainDependents.resize(NumChains + 1);
1473 StoreChainDependents[Result.first->second].push_back(SU);
1474 }
1475
1476 // Iterate over the store chains.
1477 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1478 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG);
1479 }
1480
1481 //===----------------------------------------------------------------------===//
1482 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1483 //===----------------------------------------------------------------------===//
1484
1485 namespace {
1486 /// \brief Post-process the DAG to create cluster edges between instructions
1487 /// that may be fused by the processor into a single operation.
1488 class MacroFusion : public ScheduleDAGMutation {
1489 const TargetInstrInfo &TII;
1490 const TargetRegisterInfo &TRI;
1491 public:
MacroFusion(const TargetInstrInfo & TII,const TargetRegisterInfo & TRI)1492 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1493 : TII(TII), TRI(TRI) {}
1494
1495 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1496 };
1497 } // anonymous
1498
1499 /// Returns true if \p MI reads a register written by \p Other.
HasDataDep(const TargetRegisterInfo & TRI,const MachineInstr & MI,const MachineInstr & Other)1500 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1501 const MachineInstr &Other) {
1502 for (const MachineOperand &MO : MI.uses()) {
1503 if (!MO.isReg() || !MO.readsReg())
1504 continue;
1505
1506 unsigned Reg = MO.getReg();
1507 if (Other.modifiesRegister(Reg, &TRI))
1508 return true;
1509 }
1510 return false;
1511 }
1512
1513 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1514 /// fused operations.
apply(ScheduleDAGInstrs * DAGInstrs)1515 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
1516 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1517
1518 // For now, assume targets can only fuse with the branch.
1519 SUnit &ExitSU = DAG->ExitSU;
1520 MachineInstr *Branch = ExitSU.getInstr();
1521 if (!Branch)
1522 return;
1523
1524 for (SUnit &SU : DAG->SUnits) {
1525 // SUnits with successors can't be schedule in front of the ExitSU.
1526 if (!SU.Succs.empty())
1527 continue;
1528 // We only care if the node writes to a register that the branch reads.
1529 MachineInstr *Pred = SU.getInstr();
1530 if (!HasDataDep(TRI, *Branch, *Pred))
1531 continue;
1532
1533 if (!TII.shouldScheduleAdjacent(*Pred, *Branch))
1534 continue;
1535
1536 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1537 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1538 // need to copy predecessor edges from ExitSU to SU, since top-down
1539 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1540 // of SU, we could create an artificial edge from the deepest root, but it
1541 // hasn't been needed yet.
1542 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1543 (void)Success;
1544 assert(Success && "No DAG nodes should be reachable from ExitSU");
1545
1546 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1547 break;
1548 }
1549 }
1550
1551 //===----------------------------------------------------------------------===//
1552 // CopyConstrain - DAG post-processing to encourage copy elimination.
1553 //===----------------------------------------------------------------------===//
1554
1555 namespace {
1556 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1557 /// the one use that defines the copy's source vreg, most likely an induction
1558 /// variable increment.
1559 class CopyConstrain : public ScheduleDAGMutation {
1560 // Transient state.
1561 SlotIndex RegionBeginIdx;
1562 // RegionEndIdx is the slot index of the last non-debug instruction in the
1563 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1564 SlotIndex RegionEndIdx;
1565 public:
CopyConstrain(const TargetInstrInfo *,const TargetRegisterInfo *)1566 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1567
1568 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1569
1570 protected:
1571 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1572 };
1573 } // anonymous
1574
1575 /// constrainLocalCopy handles two possibilities:
1576 /// 1) Local src:
1577 /// I0: = dst
1578 /// I1: src = ...
1579 /// I2: = dst
1580 /// I3: dst = src (copy)
1581 /// (create pred->succ edges I0->I1, I2->I1)
1582 ///
1583 /// 2) Local copy:
1584 /// I0: dst = src (copy)
1585 /// I1: = dst
1586 /// I2: src = ...
1587 /// I3: = dst
1588 /// (create pred->succ edges I1->I2, I3->I2)
1589 ///
1590 /// Although the MachineScheduler is currently constrained to single blocks,
1591 /// this algorithm should handle extended blocks. An EBB is a set of
1592 /// contiguously numbered blocks such that the previous block in the EBB is
1593 /// always the single predecessor.
constrainLocalCopy(SUnit * CopySU,ScheduleDAGMILive * DAG)1594 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1595 LiveIntervals *LIS = DAG->getLIS();
1596 MachineInstr *Copy = CopySU->getInstr();
1597
1598 // Check for pure vreg copies.
1599 const MachineOperand &SrcOp = Copy->getOperand(1);
1600 unsigned SrcReg = SrcOp.getReg();
1601 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1602 return;
1603
1604 const MachineOperand &DstOp = Copy->getOperand(0);
1605 unsigned DstReg = DstOp.getReg();
1606 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1607 return;
1608
1609 // Check if either the dest or source is local. If it's live across a back
1610 // edge, it's not local. Note that if both vregs are live across the back
1611 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1612 // If both the copy's source and dest are local live intervals, then we
1613 // should treat the dest as the global for the purpose of adding
1614 // constraints. This adds edges from source's other uses to the copy.
1615 unsigned LocalReg = SrcReg;
1616 unsigned GlobalReg = DstReg;
1617 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1618 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1619 LocalReg = DstReg;
1620 GlobalReg = SrcReg;
1621 LocalLI = &LIS->getInterval(LocalReg);
1622 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1623 return;
1624 }
1625 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1626
1627 // Find the global segment after the start of the local LI.
1628 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1629 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1630 // local live range. We could create edges from other global uses to the local
1631 // start, but the coalescer should have already eliminated these cases, so
1632 // don't bother dealing with it.
1633 if (GlobalSegment == GlobalLI->end())
1634 return;
1635
1636 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1637 // returned the next global segment. But if GlobalSegment overlaps with
1638 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1639 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1640 if (GlobalSegment->contains(LocalLI->beginIndex()))
1641 ++GlobalSegment;
1642
1643 if (GlobalSegment == GlobalLI->end())
1644 return;
1645
1646 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1647 if (GlobalSegment != GlobalLI->begin()) {
1648 // Two address defs have no hole.
1649 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1650 GlobalSegment->start)) {
1651 return;
1652 }
1653 // If the prior global segment may be defined by the same two-address
1654 // instruction that also defines LocalLI, then can't make a hole here.
1655 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1656 LocalLI->beginIndex())) {
1657 return;
1658 }
1659 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1660 // it would be a disconnected component in the live range.
1661 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1662 "Disconnected LRG within the scheduling region.");
1663 }
1664 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1665 if (!GlobalDef)
1666 return;
1667
1668 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1669 if (!GlobalSU)
1670 return;
1671
1672 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1673 // constraining the uses of the last local def to precede GlobalDef.
1674 SmallVector<SUnit*,8> LocalUses;
1675 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1676 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1677 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1678 for (SUnit::const_succ_iterator
1679 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1680 I != E; ++I) {
1681 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1682 continue;
1683 if (I->getSUnit() == GlobalSU)
1684 continue;
1685 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1686 return;
1687 LocalUses.push_back(I->getSUnit());
1688 }
1689 // Open the top of the GlobalLI hole by constraining any earlier global uses
1690 // to precede the start of LocalLI.
1691 SmallVector<SUnit*,8> GlobalUses;
1692 MachineInstr *FirstLocalDef =
1693 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1694 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1695 for (SUnit::const_pred_iterator
1696 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1697 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1698 continue;
1699 if (I->getSUnit() == FirstLocalSU)
1700 continue;
1701 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1702 return;
1703 GlobalUses.push_back(I->getSUnit());
1704 }
1705 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1706 // Add the weak edges.
1707 for (SmallVectorImpl<SUnit*>::const_iterator
1708 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1709 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1710 << GlobalSU->NodeNum << ")\n");
1711 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1712 }
1713 for (SmallVectorImpl<SUnit*>::const_iterator
1714 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1715 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1716 << FirstLocalSU->NodeNum << ")\n");
1717 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1718 }
1719 }
1720
1721 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1722 /// copy elimination.
apply(ScheduleDAGInstrs * DAGInstrs)1723 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1724 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1725 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1726
1727 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1728 if (FirstPos == DAG->end())
1729 return;
1730 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1731 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1732 *priorNonDebug(DAG->end(), DAG->begin()));
1733
1734 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1735 SUnit *SU = &DAG->SUnits[Idx];
1736 if (!SU->getInstr()->isCopy())
1737 continue;
1738
1739 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1740 }
1741 }
1742
1743 //===----------------------------------------------------------------------===//
1744 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1745 // and possibly other custom schedulers.
1746 //===----------------------------------------------------------------------===//
1747
1748 static const unsigned InvalidCycle = ~0U;
1749
~SchedBoundary()1750 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1751
reset()1752 void SchedBoundary::reset() {
1753 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1754 // Destroying and reconstructing it is very expensive though. So keep
1755 // invalid, placeholder HazardRecs.
1756 if (HazardRec && HazardRec->isEnabled()) {
1757 delete HazardRec;
1758 HazardRec = nullptr;
1759 }
1760 Available.clear();
1761 Pending.clear();
1762 CheckPending = false;
1763 NextSUs.clear();
1764 CurrCycle = 0;
1765 CurrMOps = 0;
1766 MinReadyCycle = UINT_MAX;
1767 ExpectedLatency = 0;
1768 DependentLatency = 0;
1769 RetiredMOps = 0;
1770 MaxExecutedResCount = 0;
1771 ZoneCritResIdx = 0;
1772 IsResourceLimited = false;
1773 ReservedCycles.clear();
1774 #ifndef NDEBUG
1775 // Track the maximum number of stall cycles that could arise either from the
1776 // latency of a DAG edge or the number of cycles that a processor resource is
1777 // reserved (SchedBoundary::ReservedCycles).
1778 MaxObservedStall = 0;
1779 #endif
1780 // Reserve a zero-count for invalid CritResIdx.
1781 ExecutedResCounts.resize(1);
1782 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1783 }
1784
1785 void SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1786 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1787 reset();
1788 if (!SchedModel->hasInstrSchedModel())
1789 return;
1790 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1791 for (std::vector<SUnit>::iterator
1792 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1793 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1794 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1795 * SchedModel->getMicroOpFactor();
1796 for (TargetSchedModel::ProcResIter
1797 PI = SchedModel->getWriteProcResBegin(SC),
1798 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1799 unsigned PIdx = PI->ProcResourceIdx;
1800 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1801 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1802 }
1803 }
1804 }
1805
1806 void SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1807 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1808 reset();
1809 DAG = dag;
1810 SchedModel = smodel;
1811 Rem = rem;
1812 if (SchedModel->hasInstrSchedModel()) {
1813 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1814 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1815 }
1816 }
1817
1818 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1819 /// these "soft stalls" differently than the hard stall cycles based on CPU
1820 /// resources and computed by checkHazard(). A fully in-order model
1821 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1822 /// available for scheduling until they are ready. However, a weaker in-order
1823 /// model may use this for heuristics. For example, if a processor has in-order
1824 /// behavior when reading certain resources, this may come into play.
getLatencyStallCycles(SUnit * SU)1825 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1826 if (!SU->isUnbuffered)
1827 return 0;
1828
1829 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1830 if (ReadyCycle > CurrCycle)
1831 return ReadyCycle - CurrCycle;
1832 return 0;
1833 }
1834
1835 /// Compute the next cycle at which the given processor resource can be
1836 /// scheduled.
1837 unsigned SchedBoundary::
getNextResourceCycle(unsigned PIdx,unsigned Cycles)1838 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1839 unsigned NextUnreserved = ReservedCycles[PIdx];
1840 // If this resource has never been used, always return cycle zero.
1841 if (NextUnreserved == InvalidCycle)
1842 return 0;
1843 // For bottom-up scheduling add the cycles needed for the current operation.
1844 if (!isTop())
1845 NextUnreserved += Cycles;
1846 return NextUnreserved;
1847 }
1848
1849 /// Does this SU have a hazard within the current instruction group.
1850 ///
1851 /// The scheduler supports two modes of hazard recognition. The first is the
1852 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1853 /// supports highly complicated in-order reservation tables
1854 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1855 ///
1856 /// The second is a streamlined mechanism that checks for hazards based on
1857 /// simple counters that the scheduler itself maintains. It explicitly checks
1858 /// for instruction dispatch limitations, including the number of micro-ops that
1859 /// can dispatch per cycle.
1860 ///
1861 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1862 bool SchedBoundary::checkHazard(SUnit *SU) {
1863 if (HazardRec->isEnabled()
1864 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1865 return true;
1866 }
1867 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1868 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1869 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1870 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1871 return true;
1872 }
1873 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1874 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1875 for (TargetSchedModel::ProcResIter
1876 PI = SchedModel->getWriteProcResBegin(SC),
1877 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1878 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1879 if (NRCycle > CurrCycle) {
1880 #ifndef NDEBUG
1881 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1882 #endif
1883 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1884 << SchedModel->getResourceName(PI->ProcResourceIdx)
1885 << "=" << NRCycle << "c\n");
1886 return true;
1887 }
1888 }
1889 }
1890 return false;
1891 }
1892
1893 // Find the unscheduled node in ReadySUs with the highest latency.
1894 unsigned SchedBoundary::
findMaxLatency(ArrayRef<SUnit * > ReadySUs)1895 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1896 SUnit *LateSU = nullptr;
1897 unsigned RemLatency = 0;
1898 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1899 I != E; ++I) {
1900 unsigned L = getUnscheduledLatency(*I);
1901 if (L > RemLatency) {
1902 RemLatency = L;
1903 LateSU = *I;
1904 }
1905 }
1906 if (LateSU) {
1907 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1908 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1909 }
1910 return RemLatency;
1911 }
1912
1913 // Count resources in this zone and the remaining unscheduled
1914 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1915 // resource index, or zero if the zone is issue limited.
1916 unsigned SchedBoundary::
getOtherResourceCount(unsigned & OtherCritIdx)1917 getOtherResourceCount(unsigned &OtherCritIdx) {
1918 OtherCritIdx = 0;
1919 if (!SchedModel->hasInstrSchedModel())
1920 return 0;
1921
1922 unsigned OtherCritCount = Rem->RemIssueCount
1923 + (RetiredMOps * SchedModel->getMicroOpFactor());
1924 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1925 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1926 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1927 PIdx != PEnd; ++PIdx) {
1928 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1929 if (OtherCount > OtherCritCount) {
1930 OtherCritCount = OtherCount;
1931 OtherCritIdx = PIdx;
1932 }
1933 }
1934 if (OtherCritIdx) {
1935 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1936 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1937 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1938 }
1939 return OtherCritCount;
1940 }
1941
releaseNode(SUnit * SU,unsigned ReadyCycle)1942 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1943 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1944
1945 #ifndef NDEBUG
1946 // ReadyCycle was been bumped up to the CurrCycle when this node was
1947 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1948 // scheduling, so may now be greater than ReadyCycle.
1949 if (ReadyCycle > CurrCycle)
1950 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1951 #endif
1952
1953 if (ReadyCycle < MinReadyCycle)
1954 MinReadyCycle = ReadyCycle;
1955
1956 // Check for interlocks first. For the purpose of other heuristics, an
1957 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1958 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1959 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
1960 Available.size() >= ReadyListLimit)
1961 Pending.push(SU);
1962 else
1963 Available.push(SU);
1964
1965 // Record this node as an immediate dependent of the scheduled node.
1966 NextSUs.insert(SU);
1967 }
1968
releaseTopNode(SUnit * SU)1969 void SchedBoundary::releaseTopNode(SUnit *SU) {
1970 if (SU->isScheduled)
1971 return;
1972
1973 releaseNode(SU, SU->TopReadyCycle);
1974 }
1975
releaseBottomNode(SUnit * SU)1976 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1977 if (SU->isScheduled)
1978 return;
1979
1980 releaseNode(SU, SU->BotReadyCycle);
1981 }
1982
1983 /// Move the boundary of scheduled code by one cycle.
bumpCycle(unsigned NextCycle)1984 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1985 if (SchedModel->getMicroOpBufferSize() == 0) {
1986 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1987 if (MinReadyCycle > NextCycle)
1988 NextCycle = MinReadyCycle;
1989 }
1990 // Update the current micro-ops, which will issue in the next cycle.
1991 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1992 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1993
1994 // Decrement DependentLatency based on the next cycle.
1995 if ((NextCycle - CurrCycle) > DependentLatency)
1996 DependentLatency = 0;
1997 else
1998 DependentLatency -= (NextCycle - CurrCycle);
1999
2000 if (!HazardRec->isEnabled()) {
2001 // Bypass HazardRec virtual calls.
2002 CurrCycle = NextCycle;
2003 } else {
2004 // Bypass getHazardType calls in case of long latency.
2005 for (; CurrCycle != NextCycle; ++CurrCycle) {
2006 if (isTop())
2007 HazardRec->AdvanceCycle();
2008 else
2009 HazardRec->RecedeCycle();
2010 }
2011 }
2012 CheckPending = true;
2013 unsigned LFactor = SchedModel->getLatencyFactor();
2014 IsResourceLimited =
2015 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2016 > (int)LFactor;
2017
2018 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2019 }
2020
incExecutedResources(unsigned PIdx,unsigned Count)2021 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2022 ExecutedResCounts[PIdx] += Count;
2023 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2024 MaxExecutedResCount = ExecutedResCounts[PIdx];
2025 }
2026
2027 /// Add the given processor resource to this scheduled zone.
2028 ///
2029 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2030 /// during which this resource is consumed.
2031 ///
2032 /// \return the next cycle at which the instruction may execute without
2033 /// oversubscribing resources.
2034 unsigned SchedBoundary::
countResource(unsigned PIdx,unsigned Cycles,unsigned NextCycle)2035 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2036 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2037 unsigned Count = Factor * Cycles;
2038 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
2039 << " +" << Cycles << "x" << Factor << "u\n");
2040
2041 // Update Executed resources counts.
2042 incExecutedResources(PIdx, Count);
2043 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2044 Rem->RemainingCounts[PIdx] -= Count;
2045
2046 // Check if this resource exceeds the current critical resource. If so, it
2047 // becomes the critical resource.
2048 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2049 ZoneCritResIdx = PIdx;
2050 DEBUG(dbgs() << " *** Critical resource "
2051 << SchedModel->getResourceName(PIdx) << ": "
2052 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2053 }
2054 // For reserved resources, record the highest cycle using the resource.
2055 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2056 if (NextAvailable > CurrCycle) {
2057 DEBUG(dbgs() << " Resource conflict: "
2058 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2059 << NextAvailable << "\n");
2060 }
2061 return NextAvailable;
2062 }
2063
2064 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)2065 void SchedBoundary::bumpNode(SUnit *SU) {
2066 // Update the reservation table.
2067 if (HazardRec->isEnabled()) {
2068 if (!isTop() && SU->isCall) {
2069 // Calls are scheduled with their preceding instructions. For bottom-up
2070 // scheduling, clear the pipeline state before emitting.
2071 HazardRec->Reset();
2072 }
2073 HazardRec->EmitInstruction(SU);
2074 }
2075 // checkHazard should prevent scheduling multiple instructions per cycle that
2076 // exceed the issue width.
2077 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2078 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2079 assert(
2080 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2081 "Cannot schedule this instruction's MicroOps in the current cycle.");
2082
2083 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2084 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2085
2086 unsigned NextCycle = CurrCycle;
2087 switch (SchedModel->getMicroOpBufferSize()) {
2088 case 0:
2089 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2090 break;
2091 case 1:
2092 if (ReadyCycle > NextCycle) {
2093 NextCycle = ReadyCycle;
2094 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2095 }
2096 break;
2097 default:
2098 // We don't currently model the OOO reorder buffer, so consider all
2099 // scheduled MOps to be "retired". We do loosely model in-order resource
2100 // latency. If this instruction uses an in-order resource, account for any
2101 // likely stall cycles.
2102 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2103 NextCycle = ReadyCycle;
2104 break;
2105 }
2106 RetiredMOps += IncMOps;
2107
2108 // Update resource counts and critical resource.
2109 if (SchedModel->hasInstrSchedModel()) {
2110 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2111 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2112 Rem->RemIssueCount -= DecRemIssue;
2113 if (ZoneCritResIdx) {
2114 // Scale scheduled micro-ops for comparing with the critical resource.
2115 unsigned ScaledMOps =
2116 RetiredMOps * SchedModel->getMicroOpFactor();
2117
2118 // If scaled micro-ops are now more than the previous critical resource by
2119 // a full cycle, then micro-ops issue becomes critical.
2120 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2121 >= (int)SchedModel->getLatencyFactor()) {
2122 ZoneCritResIdx = 0;
2123 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2124 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2125 }
2126 }
2127 for (TargetSchedModel::ProcResIter
2128 PI = SchedModel->getWriteProcResBegin(SC),
2129 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2130 unsigned RCycle =
2131 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2132 if (RCycle > NextCycle)
2133 NextCycle = RCycle;
2134 }
2135 if (SU->hasReservedResource) {
2136 // For reserved resources, record the highest cycle using the resource.
2137 // For top-down scheduling, this is the cycle in which we schedule this
2138 // instruction plus the number of cycles the operations reserves the
2139 // resource. For bottom-up is it simply the instruction's cycle.
2140 for (TargetSchedModel::ProcResIter
2141 PI = SchedModel->getWriteProcResBegin(SC),
2142 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2143 unsigned PIdx = PI->ProcResourceIdx;
2144 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2145 if (isTop()) {
2146 ReservedCycles[PIdx] =
2147 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2148 }
2149 else
2150 ReservedCycles[PIdx] = NextCycle;
2151 }
2152 }
2153 }
2154 }
2155 // Update ExpectedLatency and DependentLatency.
2156 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2157 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2158 if (SU->getDepth() > TopLatency) {
2159 TopLatency = SU->getDepth();
2160 DEBUG(dbgs() << " " << Available.getName()
2161 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2162 }
2163 if (SU->getHeight() > BotLatency) {
2164 BotLatency = SU->getHeight();
2165 DEBUG(dbgs() << " " << Available.getName()
2166 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2167 }
2168 // If we stall for any reason, bump the cycle.
2169 if (NextCycle > CurrCycle) {
2170 bumpCycle(NextCycle);
2171 } else {
2172 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2173 // resource limited. If a stall occurred, bumpCycle does this.
2174 unsigned LFactor = SchedModel->getLatencyFactor();
2175 IsResourceLimited =
2176 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2177 > (int)LFactor;
2178 }
2179 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2180 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2181 // one cycle. Since we commonly reach the max MOps here, opportunistically
2182 // bump the cycle to avoid uselessly checking everything in the readyQ.
2183 CurrMOps += IncMOps;
2184 while (CurrMOps >= SchedModel->getIssueWidth()) {
2185 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2186 << " at cycle " << CurrCycle << '\n');
2187 bumpCycle(++NextCycle);
2188 }
2189 DEBUG(dumpScheduledState());
2190 }
2191
2192 /// Release pending ready nodes in to the available queue. This makes them
2193 /// visible to heuristics.
releasePending()2194 void SchedBoundary::releasePending() {
2195 // If the available queue is empty, it is safe to reset MinReadyCycle.
2196 if (Available.empty())
2197 MinReadyCycle = UINT_MAX;
2198
2199 // Check to see if any of the pending instructions are ready to issue. If
2200 // so, add them to the available queue.
2201 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2202 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2203 SUnit *SU = *(Pending.begin()+i);
2204 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2205
2206 if (ReadyCycle < MinReadyCycle)
2207 MinReadyCycle = ReadyCycle;
2208
2209 if (!IsBuffered && ReadyCycle > CurrCycle)
2210 continue;
2211
2212 if (checkHazard(SU))
2213 continue;
2214
2215 if (Available.size() >= ReadyListLimit)
2216 break;
2217
2218 Available.push(SU);
2219 Pending.remove(Pending.begin()+i);
2220 --i; --e;
2221 }
2222 CheckPending = false;
2223 }
2224
2225 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)2226 void SchedBoundary::removeReady(SUnit *SU) {
2227 if (Available.isInQueue(SU))
2228 Available.remove(Available.find(SU));
2229 else {
2230 assert(Pending.isInQueue(SU) && "bad ready count");
2231 Pending.remove(Pending.find(SU));
2232 }
2233 }
2234
2235 /// If this queue only has one ready candidate, return it. As a side effect,
2236 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2237 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()2238 SUnit *SchedBoundary::pickOnlyChoice() {
2239 if (CheckPending)
2240 releasePending();
2241
2242 if (CurrMOps > 0) {
2243 // Defer any ready instrs that now have a hazard.
2244 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2245 if (checkHazard(*I)) {
2246 Pending.push(*I);
2247 I = Available.remove(I);
2248 continue;
2249 }
2250 ++I;
2251 }
2252 }
2253 for (unsigned i = 0; Available.empty(); ++i) {
2254 // FIXME: Re-enable assert once PR20057 is resolved.
2255 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2256 // "permanent hazard");
2257 (void)i;
2258 bumpCycle(CurrCycle + 1);
2259 releasePending();
2260 }
2261
2262 DEBUG(Pending.dump());
2263 DEBUG(Available.dump());
2264
2265 if (Available.size() == 1)
2266 return *Available.begin();
2267 return nullptr;
2268 }
2269
2270 #ifndef NDEBUG
2271 // This is useful information to dump after bumpNode.
2272 // Note that the Queue contents are more useful before pickNodeFromQueue.
dumpScheduledState()2273 void SchedBoundary::dumpScheduledState() {
2274 unsigned ResFactor;
2275 unsigned ResCount;
2276 if (ZoneCritResIdx) {
2277 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2278 ResCount = getResourceCount(ZoneCritResIdx);
2279 } else {
2280 ResFactor = SchedModel->getMicroOpFactor();
2281 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2282 }
2283 unsigned LFactor = SchedModel->getLatencyFactor();
2284 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2285 << " Retired: " << RetiredMOps;
2286 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2287 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2288 << ResCount / ResFactor << " "
2289 << SchedModel->getResourceName(ZoneCritResIdx)
2290 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2291 << (IsResourceLimited ? " - Resource" : " - Latency")
2292 << " limited.\n";
2293 }
2294 #endif
2295
2296 //===----------------------------------------------------------------------===//
2297 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2298 //===----------------------------------------------------------------------===//
2299
2300 void GenericSchedulerBase::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)2301 initResourceDelta(const ScheduleDAGMI *DAG,
2302 const TargetSchedModel *SchedModel) {
2303 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2304 return;
2305
2306 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2307 for (TargetSchedModel::ProcResIter
2308 PI = SchedModel->getWriteProcResBegin(SC),
2309 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2310 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2311 ResDelta.CritResources += PI->Cycles;
2312 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2313 ResDelta.DemandedResources += PI->Cycles;
2314 }
2315 }
2316
2317 /// Set the CandPolicy given a scheduling zone given the current resources and
2318 /// latencies inside and outside the zone.
setPolicy(CandPolicy & Policy,bool IsPostRA,SchedBoundary & CurrZone,SchedBoundary * OtherZone)2319 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2320 SchedBoundary &CurrZone,
2321 SchedBoundary *OtherZone) {
2322 // Apply preemptive heuristics based on the total latency and resources
2323 // inside and outside this zone. Potential stalls should be considered before
2324 // following this policy.
2325
2326 // Compute remaining latency. We need this both to determine whether the
2327 // overall schedule has become latency-limited and whether the instructions
2328 // outside this zone are resource or latency limited.
2329 //
2330 // The "dependent" latency is updated incrementally during scheduling as the
2331 // max height/depth of scheduled nodes minus the cycles since it was
2332 // scheduled:
2333 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2334 //
2335 // The "independent" latency is the max ready queue depth:
2336 // ILat = max N.depth for N in Available|Pending
2337 //
2338 // RemainingLatency is the greater of independent and dependent latency.
2339 unsigned RemLatency = CurrZone.getDependentLatency();
2340 RemLatency = std::max(RemLatency,
2341 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2342 RemLatency = std::max(RemLatency,
2343 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2344
2345 // Compute the critical resource outside the zone.
2346 unsigned OtherCritIdx = 0;
2347 unsigned OtherCount =
2348 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2349
2350 bool OtherResLimited = false;
2351 if (SchedModel->hasInstrSchedModel()) {
2352 unsigned LFactor = SchedModel->getLatencyFactor();
2353 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2354 }
2355 // Schedule aggressively for latency in PostRA mode. We don't check for
2356 // acyclic latency during PostRA, and highly out-of-order processors will
2357 // skip PostRA scheduling.
2358 if (!OtherResLimited) {
2359 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2360 Policy.ReduceLatency |= true;
2361 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2362 << " RemainingLatency " << RemLatency << " + "
2363 << CurrZone.getCurrCycle() << "c > CritPath "
2364 << Rem.CriticalPath << "\n");
2365 }
2366 }
2367 // If the same resource is limiting inside and outside the zone, do nothing.
2368 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2369 return;
2370
2371 DEBUG(
2372 if (CurrZone.isResourceLimited()) {
2373 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2374 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2375 << "\n";
2376 }
2377 if (OtherResLimited)
2378 dbgs() << " RemainingLimit: "
2379 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2380 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2381 dbgs() << " Latency limited both directions.\n");
2382
2383 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2384 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2385
2386 if (OtherResLimited)
2387 Policy.DemandResIdx = OtherCritIdx;
2388 }
2389
2390 #ifndef NDEBUG
getReasonStr(GenericSchedulerBase::CandReason Reason)2391 const char *GenericSchedulerBase::getReasonStr(
2392 GenericSchedulerBase::CandReason Reason) {
2393 switch (Reason) {
2394 case NoCand: return "NOCAND ";
2395 case Only1: return "ONLY1 ";
2396 case PhysRegCopy: return "PREG-COPY ";
2397 case RegExcess: return "REG-EXCESS";
2398 case RegCritical: return "REG-CRIT ";
2399 case Stall: return "STALL ";
2400 case Cluster: return "CLUSTER ";
2401 case Weak: return "WEAK ";
2402 case RegMax: return "REG-MAX ";
2403 case ResourceReduce: return "RES-REDUCE";
2404 case ResourceDemand: return "RES-DEMAND";
2405 case TopDepthReduce: return "TOP-DEPTH ";
2406 case TopPathReduce: return "TOP-PATH ";
2407 case BotHeightReduce:return "BOT-HEIGHT";
2408 case BotPathReduce: return "BOT-PATH ";
2409 case NextDefUse: return "DEF-USE ";
2410 case NodeOrder: return "ORDER ";
2411 };
2412 llvm_unreachable("Unknown reason!");
2413 }
2414
traceCandidate(const SchedCandidate & Cand)2415 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2416 PressureChange P;
2417 unsigned ResIdx = 0;
2418 unsigned Latency = 0;
2419 switch (Cand.Reason) {
2420 default:
2421 break;
2422 case RegExcess:
2423 P = Cand.RPDelta.Excess;
2424 break;
2425 case RegCritical:
2426 P = Cand.RPDelta.CriticalMax;
2427 break;
2428 case RegMax:
2429 P = Cand.RPDelta.CurrentMax;
2430 break;
2431 case ResourceReduce:
2432 ResIdx = Cand.Policy.ReduceResIdx;
2433 break;
2434 case ResourceDemand:
2435 ResIdx = Cand.Policy.DemandResIdx;
2436 break;
2437 case TopDepthReduce:
2438 Latency = Cand.SU->getDepth();
2439 break;
2440 case TopPathReduce:
2441 Latency = Cand.SU->getHeight();
2442 break;
2443 case BotHeightReduce:
2444 Latency = Cand.SU->getHeight();
2445 break;
2446 case BotPathReduce:
2447 Latency = Cand.SU->getDepth();
2448 break;
2449 }
2450 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2451 if (P.isValid())
2452 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2453 << ":" << P.getUnitInc() << " ";
2454 else
2455 dbgs() << " ";
2456 if (ResIdx)
2457 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2458 else
2459 dbgs() << " ";
2460 if (Latency)
2461 dbgs() << " " << Latency << " cycles ";
2462 else
2463 dbgs() << " ";
2464 dbgs() << '\n';
2465 }
2466 #endif
2467
2468 /// Return true if this heuristic determines order.
tryLess(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2469 static bool tryLess(int TryVal, int CandVal,
2470 GenericSchedulerBase::SchedCandidate &TryCand,
2471 GenericSchedulerBase::SchedCandidate &Cand,
2472 GenericSchedulerBase::CandReason Reason) {
2473 if (TryVal < CandVal) {
2474 TryCand.Reason = Reason;
2475 return true;
2476 }
2477 if (TryVal > CandVal) {
2478 if (Cand.Reason > Reason)
2479 Cand.Reason = Reason;
2480 return true;
2481 }
2482 return false;
2483 }
2484
tryGreater(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2485 static bool tryGreater(int TryVal, int CandVal,
2486 GenericSchedulerBase::SchedCandidate &TryCand,
2487 GenericSchedulerBase::SchedCandidate &Cand,
2488 GenericSchedulerBase::CandReason Reason) {
2489 if (TryVal > CandVal) {
2490 TryCand.Reason = Reason;
2491 return true;
2492 }
2493 if (TryVal < CandVal) {
2494 if (Cand.Reason > Reason)
2495 Cand.Reason = Reason;
2496 return true;
2497 }
2498 return false;
2499 }
2500
tryLatency(GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,SchedBoundary & Zone)2501 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2502 GenericSchedulerBase::SchedCandidate &Cand,
2503 SchedBoundary &Zone) {
2504 if (Zone.isTop()) {
2505 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2506 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2507 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2508 return true;
2509 }
2510 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2511 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2512 return true;
2513 } else {
2514 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2515 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2516 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2517 return true;
2518 }
2519 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2520 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2521 return true;
2522 }
2523 return false;
2524 }
2525
tracePick(GenericSchedulerBase::CandReason Reason,bool IsTop)2526 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2527 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2528 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2529 }
2530
tracePick(const GenericSchedulerBase::SchedCandidate & Cand)2531 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2532 tracePick(Cand.Reason, Cand.AtTop);
2533 }
2534
initialize(ScheduleDAGMI * dag)2535 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2536 assert(dag->hasVRegLiveness() &&
2537 "(PreRA)GenericScheduler needs vreg liveness");
2538 DAG = static_cast<ScheduleDAGMILive*>(dag);
2539 SchedModel = DAG->getSchedModel();
2540 TRI = DAG->TRI;
2541
2542 Rem.init(DAG, SchedModel);
2543 Top.init(DAG, SchedModel, &Rem);
2544 Bot.init(DAG, SchedModel, &Rem);
2545
2546 // Initialize resource counts.
2547
2548 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2549 // are disabled, then these HazardRecs will be disabled.
2550 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2551 if (!Top.HazardRec) {
2552 Top.HazardRec =
2553 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2554 Itin, DAG);
2555 }
2556 if (!Bot.HazardRec) {
2557 Bot.HazardRec =
2558 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2559 Itin, DAG);
2560 }
2561 TopCand.SU = nullptr;
2562 BotCand.SU = nullptr;
2563 }
2564
2565 /// Initialize the per-region scheduling policy.
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)2566 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2567 MachineBasicBlock::iterator End,
2568 unsigned NumRegionInstrs) {
2569 const MachineFunction &MF = *Begin->getParent()->getParent();
2570 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2571
2572 // Avoid setting up the register pressure tracker for small regions to save
2573 // compile time. As a rough heuristic, only track pressure when the number of
2574 // schedulable instructions exceeds half the integer register file.
2575 RegionPolicy.ShouldTrackPressure = true;
2576 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2577 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2578 if (TLI->isTypeLegal(LegalIntVT)) {
2579 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2580 TLI->getRegClassFor(LegalIntVT));
2581 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2582 }
2583 }
2584
2585 // For generic targets, we default to bottom-up, because it's simpler and more
2586 // compile-time optimizations have been implemented in that direction.
2587 RegionPolicy.OnlyBottomUp = true;
2588
2589 // Allow the subtarget to override default policy.
2590 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2591
2592 // After subtarget overrides, apply command line options.
2593 if (!EnableRegPressure)
2594 RegionPolicy.ShouldTrackPressure = false;
2595
2596 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2597 // e.g. -misched-bottomup=false allows scheduling in both directions.
2598 assert((!ForceTopDown || !ForceBottomUp) &&
2599 "-misched-topdown incompatible with -misched-bottomup");
2600 if (ForceBottomUp.getNumOccurrences() > 0) {
2601 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2602 if (RegionPolicy.OnlyBottomUp)
2603 RegionPolicy.OnlyTopDown = false;
2604 }
2605 if (ForceTopDown.getNumOccurrences() > 0) {
2606 RegionPolicy.OnlyTopDown = ForceTopDown;
2607 if (RegionPolicy.OnlyTopDown)
2608 RegionPolicy.OnlyBottomUp = false;
2609 }
2610 }
2611
dumpPolicy()2612 void GenericScheduler::dumpPolicy() {
2613 dbgs() << "GenericScheduler RegionPolicy: "
2614 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2615 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2616 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2617 << "\n";
2618 }
2619
2620 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2621 /// critical path by more cycles than it takes to drain the instruction buffer.
2622 /// We estimate an upper bounds on in-flight instructions as:
2623 ///
2624 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2625 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2626 /// InFlightResources = InFlightIterations * LoopResources
2627 ///
2628 /// TODO: Check execution resources in addition to IssueCount.
checkAcyclicLatency()2629 void GenericScheduler::checkAcyclicLatency() {
2630 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2631 return;
2632
2633 // Scaled number of cycles per loop iteration.
2634 unsigned IterCount =
2635 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2636 Rem.RemIssueCount);
2637 // Scaled acyclic critical path.
2638 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2639 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2640 unsigned InFlightCount =
2641 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2642 unsigned BufferLimit =
2643 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2644
2645 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2646
2647 DEBUG(dbgs() << "IssueCycles="
2648 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2649 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2650 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2651 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2652 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2653 if (Rem.IsAcyclicLatencyLimited)
2654 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2655 }
2656
registerRoots()2657 void GenericScheduler::registerRoots() {
2658 Rem.CriticalPath = DAG->ExitSU.getDepth();
2659
2660 // Some roots may not feed into ExitSU. Check all of them in case.
2661 for (std::vector<SUnit*>::const_iterator
2662 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2663 if ((*I)->getDepth() > Rem.CriticalPath)
2664 Rem.CriticalPath = (*I)->getDepth();
2665 }
2666 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2667 if (DumpCriticalPathLength) {
2668 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2669 }
2670
2671 if (EnableCyclicPath) {
2672 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2673 checkAcyclicLatency();
2674 }
2675 }
2676
tryPressure(const PressureChange & TryP,const PressureChange & CandP,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason,const TargetRegisterInfo * TRI,const MachineFunction & MF)2677 static bool tryPressure(const PressureChange &TryP,
2678 const PressureChange &CandP,
2679 GenericSchedulerBase::SchedCandidate &TryCand,
2680 GenericSchedulerBase::SchedCandidate &Cand,
2681 GenericSchedulerBase::CandReason Reason,
2682 const TargetRegisterInfo *TRI,
2683 const MachineFunction &MF) {
2684 // If one candidate decreases and the other increases, go with it.
2685 // Invalid candidates have UnitInc==0.
2686 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2687 Reason)) {
2688 return true;
2689 }
2690 // Do not compare the magnitude of pressure changes between top and bottom
2691 // boundary.
2692 if (Cand.AtTop != TryCand.AtTop)
2693 return false;
2694
2695 // If both candidates affect the same set in the same boundary, go with the
2696 // smallest increase.
2697 unsigned TryPSet = TryP.getPSetOrMax();
2698 unsigned CandPSet = CandP.getPSetOrMax();
2699 if (TryPSet == CandPSet) {
2700 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2701 Reason);
2702 }
2703
2704 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2705 std::numeric_limits<int>::max();
2706
2707 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2708 std::numeric_limits<int>::max();
2709
2710 // If the candidates are decreasing pressure, reverse priority.
2711 if (TryP.getUnitInc() < 0)
2712 std::swap(TryRank, CandRank);
2713 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2714 }
2715
getWeakLeft(const SUnit * SU,bool isTop)2716 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2717 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2718 }
2719
2720 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2721 /// their physreg def/use.
2722 ///
2723 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2724 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2725 /// with the operation that produces or consumes the physreg. We'll do this when
2726 /// regalloc has support for parallel copies.
biasPhysRegCopy(const SUnit * SU,bool isTop)2727 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2728 const MachineInstr *MI = SU->getInstr();
2729 if (!MI->isCopy())
2730 return 0;
2731
2732 unsigned ScheduledOper = isTop ? 1 : 0;
2733 unsigned UnscheduledOper = isTop ? 0 : 1;
2734 // If we have already scheduled the physreg produce/consumer, immediately
2735 // schedule the copy.
2736 if (TargetRegisterInfo::isPhysicalRegister(
2737 MI->getOperand(ScheduledOper).getReg()))
2738 return 1;
2739 // If the physreg is at the boundary, defer it. Otherwise schedule it
2740 // immediately to free the dependent. We can hoist the copy later.
2741 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2742 if (TargetRegisterInfo::isPhysicalRegister(
2743 MI->getOperand(UnscheduledOper).getReg()))
2744 return AtBoundary ? -1 : 1;
2745 return 0;
2746 }
2747
initCandidate(SchedCandidate & Cand,SUnit * SU,bool AtTop,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)2748 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2749 bool AtTop,
2750 const RegPressureTracker &RPTracker,
2751 RegPressureTracker &TempTracker) {
2752 Cand.SU = SU;
2753 Cand.AtTop = AtTop;
2754 if (DAG->isTrackingPressure()) {
2755 if (AtTop) {
2756 TempTracker.getMaxDownwardPressureDelta(
2757 Cand.SU->getInstr(),
2758 Cand.RPDelta,
2759 DAG->getRegionCriticalPSets(),
2760 DAG->getRegPressure().MaxSetPressure);
2761 } else {
2762 if (VerifyScheduling) {
2763 TempTracker.getMaxUpwardPressureDelta(
2764 Cand.SU->getInstr(),
2765 &DAG->getPressureDiff(Cand.SU),
2766 Cand.RPDelta,
2767 DAG->getRegionCriticalPSets(),
2768 DAG->getRegPressure().MaxSetPressure);
2769 } else {
2770 RPTracker.getUpwardPressureDelta(
2771 Cand.SU->getInstr(),
2772 DAG->getPressureDiff(Cand.SU),
2773 Cand.RPDelta,
2774 DAG->getRegionCriticalPSets(),
2775 DAG->getRegPressure().MaxSetPressure);
2776 }
2777 }
2778 }
2779 DEBUG(if (Cand.RPDelta.Excess.isValid())
2780 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") "
2781 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2782 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2783 }
2784
2785 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2786 /// hierarchical. This may be more efficient than a graduated cost model because
2787 /// we don't need to evaluate all aspects of the model for each node in the
2788 /// queue. But it's really done to make the heuristics easier to debug and
2789 /// statistically analyze.
2790 ///
2791 /// \param Cand provides the policy and current best candidate.
2792 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2793 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2794 // if Cand is from a different zone than TryCand.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary * Zone)2795 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2796 SchedCandidate &TryCand,
2797 SchedBoundary *Zone) {
2798 // Initialize the candidate if needed.
2799 if (!Cand.isValid()) {
2800 TryCand.Reason = NodeOrder;
2801 return;
2802 }
2803
2804 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2805 biasPhysRegCopy(Cand.SU, Cand.AtTop),
2806 TryCand, Cand, PhysRegCopy))
2807 return;
2808
2809 // Avoid exceeding the target's limit.
2810 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2811 Cand.RPDelta.Excess,
2812 TryCand, Cand, RegExcess, TRI,
2813 DAG->MF))
2814 return;
2815
2816 // Avoid increasing the max critical pressure in the scheduled region.
2817 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2818 Cand.RPDelta.CriticalMax,
2819 TryCand, Cand, RegCritical, TRI,
2820 DAG->MF))
2821 return;
2822
2823 // We only compare a subset of features when comparing nodes between
2824 // Top and Bottom boundary. Some properties are simply incomparable, in many
2825 // other instances we should only override the other boundary if something
2826 // is a clear good pick on one boundary. Skip heuristics that are more
2827 // "tie-breaking" in nature.
2828 bool SameBoundary = Zone != nullptr;
2829 if (SameBoundary) {
2830 // For loops that are acyclic path limited, aggressively schedule for
2831 // latency. This can result in very long dependence chains scheduled in
2832 // sequence, so once every cycle (when CurrMOps == 0), switch to normal
2833 // heuristics.
2834 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2835 tryLatency(TryCand, Cand, *Zone))
2836 return;
2837
2838 // Prioritize instructions that read unbuffered resources by stall cycles.
2839 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2840 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2841 return;
2842 }
2843
2844 // Keep clustered nodes together to encourage downstream peephole
2845 // optimizations which may reduce resource requirements.
2846 //
2847 // This is a best effort to set things up for a post-RA pass. Optimizations
2848 // like generating loads of multiple registers should ideally be done within
2849 // the scheduler pass by combining the loads during DAG postprocessing.
2850 const SUnit *CandNextClusterSU =
2851 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2852 const SUnit *TryCandNextClusterSU =
2853 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2854 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2855 Cand.SU == CandNextClusterSU,
2856 TryCand, Cand, Cluster))
2857 return;
2858
2859 if (SameBoundary) {
2860 // Weak edges are for clustering and other constraints.
2861 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2862 getWeakLeft(Cand.SU, Cand.AtTop),
2863 TryCand, Cand, Weak))
2864 return;
2865 }
2866
2867 // Avoid increasing the max pressure of the entire region.
2868 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2869 Cand.RPDelta.CurrentMax,
2870 TryCand, Cand, RegMax, TRI,
2871 DAG->MF))
2872 return;
2873
2874 if (SameBoundary) {
2875 // Avoid critical resource consumption and balance the schedule.
2876 TryCand.initResourceDelta(DAG, SchedModel);
2877 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2878 TryCand, Cand, ResourceReduce))
2879 return;
2880 if (tryGreater(TryCand.ResDelta.DemandedResources,
2881 Cand.ResDelta.DemandedResources,
2882 TryCand, Cand, ResourceDemand))
2883 return;
2884
2885 // Avoid serializing long latency dependence chains.
2886 // For acyclic path limited loops, latency was already checked above.
2887 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2888 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2889 return;
2890
2891 // Prefer immediate defs/users of the last scheduled instruction. This is a
2892 // local pressure avoidance strategy that also makes the machine code
2893 // readable.
2894 if (tryGreater(Zone->isNextSU(TryCand.SU), Zone->isNextSU(Cand.SU),
2895 TryCand, Cand, NextDefUse))
2896 return;
2897
2898 // Fall through to original instruction order.
2899 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2900 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2901 TryCand.Reason = NodeOrder;
2902 }
2903 }
2904 }
2905
2906 /// Pick the best candidate from the queue.
2907 ///
2908 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2909 /// DAG building. To adjust for the current scheduling location we need to
2910 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const CandPolicy & ZonePolicy,const RegPressureTracker & RPTracker,SchedCandidate & Cand)2911 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2912 const CandPolicy &ZonePolicy,
2913 const RegPressureTracker &RPTracker,
2914 SchedCandidate &Cand) {
2915 // getMaxPressureDelta temporarily modifies the tracker.
2916 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2917
2918 ReadyQueue &Q = Zone.Available;
2919 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2920
2921 SchedCandidate TryCand(ZonePolicy);
2922 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker);
2923 // Pass SchedBoundary only when comparing nodes from the same boundary.
2924 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
2925 tryCandidate(Cand, TryCand, ZoneArg);
2926 if (TryCand.Reason != NoCand) {
2927 // Initialize resource delta if needed in case future heuristics query it.
2928 if (TryCand.ResDelta == SchedResourceDelta())
2929 TryCand.initResourceDelta(DAG, SchedModel);
2930 Cand.setBest(TryCand);
2931 DEBUG(traceCandidate(Cand));
2932 }
2933 }
2934 }
2935
2936 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)2937 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2938 // Schedule as far as possible in the direction of no choice. This is most
2939 // efficient, but also provides the best heuristics for CriticalPSets.
2940 if (SUnit *SU = Bot.pickOnlyChoice()) {
2941 IsTopNode = false;
2942 tracePick(Only1, false);
2943 return SU;
2944 }
2945 if (SUnit *SU = Top.pickOnlyChoice()) {
2946 IsTopNode = true;
2947 tracePick(Only1, true);
2948 return SU;
2949 }
2950 // Set the bottom-up policy based on the state of the current bottom zone and
2951 // the instructions outside the zone, including the top zone.
2952 CandPolicy BotPolicy;
2953 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
2954 // Set the top-down policy based on the state of the current top zone and
2955 // the instructions outside the zone, including the bottom zone.
2956 CandPolicy TopPolicy;
2957 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
2958
2959 // See if BotCand is still valid (because we previously scheduled from Top).
2960 DEBUG(dbgs() << "Picking from Bot:\n");
2961 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
2962 BotCand.Policy != BotPolicy) {
2963 BotCand.reset(CandPolicy());
2964 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
2965 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2966 } else {
2967 DEBUG(traceCandidate(BotCand));
2968 #ifndef NDEBUG
2969 if (VerifyScheduling) {
2970 SchedCandidate TCand;
2971 TCand.reset(CandPolicy());
2972 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
2973 assert(TCand.SU == BotCand.SU &&
2974 "Last pick result should correspond to re-picking right now");
2975 }
2976 #endif
2977 }
2978
2979 // Check if the top Q has a better candidate.
2980 DEBUG(dbgs() << "Picking from Top:\n");
2981 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
2982 TopCand.Policy != TopPolicy) {
2983 TopCand.reset(CandPolicy());
2984 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
2985 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2986 } else {
2987 DEBUG(traceCandidate(TopCand));
2988 #ifndef NDEBUG
2989 if (VerifyScheduling) {
2990 SchedCandidate TCand;
2991 TCand.reset(CandPolicy());
2992 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
2993 assert(TCand.SU == TopCand.SU &&
2994 "Last pick result should correspond to re-picking right now");
2995 }
2996 #endif
2997 }
2998
2999 // Pick best from BotCand and TopCand.
3000 assert(BotCand.isValid());
3001 assert(TopCand.isValid());
3002 SchedCandidate Cand = BotCand;
3003 TopCand.Reason = NoCand;
3004 tryCandidate(Cand, TopCand, nullptr);
3005 if (TopCand.Reason != NoCand) {
3006 Cand.setBest(TopCand);
3007 DEBUG(traceCandidate(Cand));
3008 }
3009
3010 IsTopNode = Cand.AtTop;
3011 tracePick(Cand);
3012 return Cand.SU;
3013 }
3014
3015 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)3016 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3017 if (DAG->top() == DAG->bottom()) {
3018 assert(Top.Available.empty() && Top.Pending.empty() &&
3019 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3020 return nullptr;
3021 }
3022 SUnit *SU;
3023 do {
3024 if (RegionPolicy.OnlyTopDown) {
3025 SU = Top.pickOnlyChoice();
3026 if (!SU) {
3027 CandPolicy NoPolicy;
3028 TopCand.reset(NoPolicy);
3029 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3030 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3031 tracePick(TopCand);
3032 SU = TopCand.SU;
3033 }
3034 IsTopNode = true;
3035 } else if (RegionPolicy.OnlyBottomUp) {
3036 SU = Bot.pickOnlyChoice();
3037 if (!SU) {
3038 CandPolicy NoPolicy;
3039 BotCand.reset(NoPolicy);
3040 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3041 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3042 tracePick(BotCand);
3043 SU = BotCand.SU;
3044 }
3045 IsTopNode = false;
3046 } else {
3047 SU = pickNodeBidirectional(IsTopNode);
3048 }
3049 } while (SU->isScheduled);
3050
3051 if (SU->isTopReady())
3052 Top.removeReady(SU);
3053 if (SU->isBottomReady())
3054 Bot.removeReady(SU);
3055
3056 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3057 return SU;
3058 }
3059
reschedulePhysRegCopies(SUnit * SU,bool isTop)3060 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3061
3062 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3063 if (!isTop)
3064 ++InsertPos;
3065 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3066
3067 // Find already scheduled copies with a single physreg dependence and move
3068 // them just above the scheduled instruction.
3069 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3070 I != E; ++I) {
3071 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3072 continue;
3073 SUnit *DepSU = I->getSUnit();
3074 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3075 continue;
3076 MachineInstr *Copy = DepSU->getInstr();
3077 if (!Copy->isCopy())
3078 continue;
3079 DEBUG(dbgs() << " Rescheduling physreg copy ";
3080 I->getSUnit()->dump(DAG));
3081 DAG->moveInstruction(Copy, InsertPos);
3082 }
3083 }
3084
3085 /// Update the scheduler's state after scheduling a node. This is the same node
3086 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3087 /// update it's state based on the current cycle before MachineSchedStrategy
3088 /// does.
3089 ///
3090 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3091 /// them here. See comments in biasPhysRegCopy.
schedNode(SUnit * SU,bool IsTopNode)3092 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3093 if (IsTopNode) {
3094 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3095 Top.bumpNode(SU);
3096 if (SU->hasPhysRegUses)
3097 reschedulePhysRegCopies(SU, true);
3098 } else {
3099 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3100 Bot.bumpNode(SU);
3101 if (SU->hasPhysRegDefs)
3102 reschedulePhysRegCopies(SU, false);
3103 }
3104 }
3105
3106 /// Create the standard converging machine scheduler. This will be used as the
3107 /// default scheduler if the target does not set a default.
createGenericSchedLive(MachineSchedContext * C)3108 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3109 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3110 // Register DAG post-processors.
3111 //
3112 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3113 // data and pass it to later mutations. Have a single mutation that gathers
3114 // the interesting nodes in one pass.
3115 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
3116 if (EnableMemOpCluster) {
3117 if (DAG->TII->enableClusterLoads())
3118 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
3119 if (DAG->TII->enableClusterStores())
3120 DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI));
3121 }
3122 if (EnableMacroFusion)
3123 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
3124 return DAG;
3125 }
3126
3127 static MachineSchedRegistry
3128 GenericSchedRegistry("converge", "Standard converging scheduler.",
3129 createGenericSchedLive);
3130
3131 //===----------------------------------------------------------------------===//
3132 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3133 //===----------------------------------------------------------------------===//
3134
initialize(ScheduleDAGMI * Dag)3135 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3136 DAG = Dag;
3137 SchedModel = DAG->getSchedModel();
3138 TRI = DAG->TRI;
3139
3140 Rem.init(DAG, SchedModel);
3141 Top.init(DAG, SchedModel, &Rem);
3142 BotRoots.clear();
3143
3144 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3145 // or are disabled, then these HazardRecs will be disabled.
3146 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3147 if (!Top.HazardRec) {
3148 Top.HazardRec =
3149 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3150 Itin, DAG);
3151 }
3152 }
3153
3154
registerRoots()3155 void PostGenericScheduler::registerRoots() {
3156 Rem.CriticalPath = DAG->ExitSU.getDepth();
3157
3158 // Some roots may not feed into ExitSU. Check all of them in case.
3159 for (SmallVectorImpl<SUnit*>::const_iterator
3160 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3161 if ((*I)->getDepth() > Rem.CriticalPath)
3162 Rem.CriticalPath = (*I)->getDepth();
3163 }
3164 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3165 if (DumpCriticalPathLength) {
3166 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3167 }
3168 }
3169
3170 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3171 ///
3172 /// \param Cand provides the policy and current best candidate.
3173 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand)3174 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3175 SchedCandidate &TryCand) {
3176
3177 // Initialize the candidate if needed.
3178 if (!Cand.isValid()) {
3179 TryCand.Reason = NodeOrder;
3180 return;
3181 }
3182
3183 // Prioritize instructions that read unbuffered resources by stall cycles.
3184 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3185 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3186 return;
3187
3188 // Avoid critical resource consumption and balance the schedule.
3189 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3190 TryCand, Cand, ResourceReduce))
3191 return;
3192 if (tryGreater(TryCand.ResDelta.DemandedResources,
3193 Cand.ResDelta.DemandedResources,
3194 TryCand, Cand, ResourceDemand))
3195 return;
3196
3197 // Avoid serializing long latency dependence chains.
3198 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3199 return;
3200 }
3201
3202 // Fall through to original instruction order.
3203 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3204 TryCand.Reason = NodeOrder;
3205 }
3206
pickNodeFromQueue(SchedCandidate & Cand)3207 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3208 ReadyQueue &Q = Top.Available;
3209 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3210 SchedCandidate TryCand(Cand.Policy);
3211 TryCand.SU = *I;
3212 TryCand.AtTop = true;
3213 TryCand.initResourceDelta(DAG, SchedModel);
3214 tryCandidate(Cand, TryCand);
3215 if (TryCand.Reason != NoCand) {
3216 Cand.setBest(TryCand);
3217 DEBUG(traceCandidate(Cand));
3218 }
3219 }
3220 }
3221
3222 /// Pick the next node to schedule.
pickNode(bool & IsTopNode)3223 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3224 if (DAG->top() == DAG->bottom()) {
3225 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3226 return nullptr;
3227 }
3228 SUnit *SU;
3229 do {
3230 SU = Top.pickOnlyChoice();
3231 if (SU) {
3232 tracePick(Only1, true);
3233 } else {
3234 CandPolicy NoPolicy;
3235 SchedCandidate TopCand(NoPolicy);
3236 // Set the top-down policy based on the state of the current top zone and
3237 // the instructions outside the zone, including the bottom zone.
3238 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3239 pickNodeFromQueue(TopCand);
3240 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3241 tracePick(TopCand);
3242 SU = TopCand.SU;
3243 }
3244 } while (SU->isScheduled);
3245
3246 IsTopNode = true;
3247 Top.removeReady(SU);
3248
3249 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3250 return SU;
3251 }
3252
3253 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3254 /// scheduled/remaining flags in the DAG nodes.
schedNode(SUnit * SU,bool IsTopNode)3255 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3256 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3257 Top.bumpNode(SU);
3258 }
3259
3260 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
createGenericSchedPostRA(MachineSchedContext * C)3261 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3262 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3263 }
3264
3265 //===----------------------------------------------------------------------===//
3266 // ILP Scheduler. Currently for experimental analysis of heuristics.
3267 //===----------------------------------------------------------------------===//
3268
3269 namespace {
3270 /// \brief Order nodes by the ILP metric.
3271 struct ILPOrder {
3272 const SchedDFSResult *DFSResult;
3273 const BitVector *ScheduledTrees;
3274 bool MaximizeILP;
3275
ILPOrder__anond1ea022a0511::ILPOrder3276 ILPOrder(bool MaxILP)
3277 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3278
3279 /// \brief Apply a less-than relation on node priority.
3280 ///
3281 /// (Return true if A comes after B in the Q.)
operator ()__anond1ea022a0511::ILPOrder3282 bool operator()(const SUnit *A, const SUnit *B) const {
3283 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3284 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3285 if (SchedTreeA != SchedTreeB) {
3286 // Unscheduled trees have lower priority.
3287 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3288 return ScheduledTrees->test(SchedTreeB);
3289
3290 // Trees with shallower connections have have lower priority.
3291 if (DFSResult->getSubtreeLevel(SchedTreeA)
3292 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3293 return DFSResult->getSubtreeLevel(SchedTreeA)
3294 < DFSResult->getSubtreeLevel(SchedTreeB);
3295 }
3296 }
3297 if (MaximizeILP)
3298 return DFSResult->getILP(A) < DFSResult->getILP(B);
3299 else
3300 return DFSResult->getILP(A) > DFSResult->getILP(B);
3301 }
3302 };
3303
3304 /// \brief Schedule based on the ILP metric.
3305 class ILPScheduler : public MachineSchedStrategy {
3306 ScheduleDAGMILive *DAG;
3307 ILPOrder Cmp;
3308
3309 std::vector<SUnit*> ReadyQ;
3310 public:
ILPScheduler(bool MaximizeILP)3311 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3312
initialize(ScheduleDAGMI * dag)3313 void initialize(ScheduleDAGMI *dag) override {
3314 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3315 DAG = static_cast<ScheduleDAGMILive*>(dag);
3316 DAG->computeDFSResult();
3317 Cmp.DFSResult = DAG->getDFSResult();
3318 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3319 ReadyQ.clear();
3320 }
3321
registerRoots()3322 void registerRoots() override {
3323 // Restore the heap in ReadyQ with the updated DFS results.
3324 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3325 }
3326
3327 /// Implement MachineSchedStrategy interface.
3328 /// -----------------------------------------
3329
3330 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)3331 SUnit *pickNode(bool &IsTopNode) override {
3332 if (ReadyQ.empty()) return nullptr;
3333 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3334 SUnit *SU = ReadyQ.back();
3335 ReadyQ.pop_back();
3336 IsTopNode = false;
3337 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3338 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3339 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3340 << DAG->getDFSResult()->getSubtreeLevel(
3341 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3342 << "Scheduling " << *SU->getInstr());
3343 return SU;
3344 }
3345
3346 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)3347 void scheduleTree(unsigned SubtreeID) override {
3348 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3349 }
3350
3351 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3352 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)3353 void schedNode(SUnit *SU, bool IsTopNode) override {
3354 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3355 }
3356
releaseTopNode(SUnit *)3357 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3358
releaseBottomNode(SUnit * SU)3359 void releaseBottomNode(SUnit *SU) override {
3360 ReadyQ.push_back(SU);
3361 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3362 }
3363 };
3364 } // namespace
3365
createILPMaxScheduler(MachineSchedContext * C)3366 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3367 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3368 }
createILPMinScheduler(MachineSchedContext * C)3369 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3370 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3371 }
3372 static MachineSchedRegistry ILPMaxRegistry(
3373 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3374 static MachineSchedRegistry ILPMinRegistry(
3375 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3376
3377 //===----------------------------------------------------------------------===//
3378 // Machine Instruction Shuffler for Correctness Testing
3379 //===----------------------------------------------------------------------===//
3380
3381 #ifndef NDEBUG
3382 namespace {
3383 /// Apply a less-than relation on the node order, which corresponds to the
3384 /// instruction order prior to scheduling. IsReverse implements greater-than.
3385 template<bool IsReverse>
3386 struct SUnitOrder {
operator ()__anond1ea022a0611::SUnitOrder3387 bool operator()(SUnit *A, SUnit *B) const {
3388 if (IsReverse)
3389 return A->NodeNum > B->NodeNum;
3390 else
3391 return A->NodeNum < B->NodeNum;
3392 }
3393 };
3394
3395 /// Reorder instructions as much as possible.
3396 class InstructionShuffler : public MachineSchedStrategy {
3397 bool IsAlternating;
3398 bool IsTopDown;
3399
3400 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3401 // gives nodes with a higher number higher priority causing the latest
3402 // instructions to be scheduled first.
3403 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3404 TopQ;
3405 // When scheduling bottom-up, use greater-than as the queue priority.
3406 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3407 BottomQ;
3408 public:
InstructionShuffler(bool alternate,bool topdown)3409 InstructionShuffler(bool alternate, bool topdown)
3410 : IsAlternating(alternate), IsTopDown(topdown) {}
3411
initialize(ScheduleDAGMI *)3412 void initialize(ScheduleDAGMI*) override {
3413 TopQ.clear();
3414 BottomQ.clear();
3415 }
3416
3417 /// Implement MachineSchedStrategy interface.
3418 /// -----------------------------------------
3419
pickNode(bool & IsTopNode)3420 SUnit *pickNode(bool &IsTopNode) override {
3421 SUnit *SU;
3422 if (IsTopDown) {
3423 do {
3424 if (TopQ.empty()) return nullptr;
3425 SU = TopQ.top();
3426 TopQ.pop();
3427 } while (SU->isScheduled);
3428 IsTopNode = true;
3429 } else {
3430 do {
3431 if (BottomQ.empty()) return nullptr;
3432 SU = BottomQ.top();
3433 BottomQ.pop();
3434 } while (SU->isScheduled);
3435 IsTopNode = false;
3436 }
3437 if (IsAlternating)
3438 IsTopDown = !IsTopDown;
3439 return SU;
3440 }
3441
schedNode(SUnit * SU,bool IsTopNode)3442 void schedNode(SUnit *SU, bool IsTopNode) override {}
3443
releaseTopNode(SUnit * SU)3444 void releaseTopNode(SUnit *SU) override {
3445 TopQ.push(SU);
3446 }
releaseBottomNode(SUnit * SU)3447 void releaseBottomNode(SUnit *SU) override {
3448 BottomQ.push(SU);
3449 }
3450 };
3451 } // namespace
3452
createInstructionShuffler(MachineSchedContext * C)3453 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3454 bool Alternate = !ForceTopDown && !ForceBottomUp;
3455 bool TopDown = !ForceBottomUp;
3456 assert((TopDown || !ForceTopDown) &&
3457 "-misched-topdown incompatible with -misched-bottomup");
3458 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3459 }
3460 static MachineSchedRegistry ShufflerRegistry(
3461 "shuffle", "Shuffle machine instructions alternating directions",
3462 createInstructionShuffler);
3463 #endif // !NDEBUG
3464
3465 //===----------------------------------------------------------------------===//
3466 // GraphWriter support for ScheduleDAGMILive.
3467 //===----------------------------------------------------------------------===//
3468
3469 #ifndef NDEBUG
3470 namespace llvm {
3471
3472 template<> struct GraphTraits<
3473 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3474
3475 template<>
3476 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3477
DOTGraphTraitsllvm::DOTGraphTraits3478 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3479
getGraphNamellvm::DOTGraphTraits3480 static std::string getGraphName(const ScheduleDAG *G) {
3481 return G->MF.getName();
3482 }
3483
renderGraphFromBottomUpllvm::DOTGraphTraits3484 static bool renderGraphFromBottomUp() {
3485 return true;
3486 }
3487
isNodeHiddenllvm::DOTGraphTraits3488 static bool isNodeHidden(const SUnit *Node) {
3489 if (ViewMISchedCutoff == 0)
3490 return false;
3491 return (Node->Preds.size() > ViewMISchedCutoff
3492 || Node->Succs.size() > ViewMISchedCutoff);
3493 }
3494
3495 /// If you want to override the dot attributes printed for a particular
3496 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits3497 static std::string getEdgeAttributes(const SUnit *Node,
3498 SUnitIterator EI,
3499 const ScheduleDAG *Graph) {
3500 if (EI.isArtificialDep())
3501 return "color=cyan,style=dashed";
3502 if (EI.isCtrlDep())
3503 return "color=blue,style=dashed";
3504 return "";
3505 }
3506
getNodeLabelllvm::DOTGraphTraits3507 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3508 std::string Str;
3509 raw_string_ostream SS(Str);
3510 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3511 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3512 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3513 SS << "SU:" << SU->NodeNum;
3514 if (DFS)
3515 SS << " I:" << DFS->getNumInstrs(SU);
3516 return SS.str();
3517 }
getNodeDescriptionllvm::DOTGraphTraits3518 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3519 return G->getGraphNodeLabel(SU);
3520 }
3521
getNodeAttributesllvm::DOTGraphTraits3522 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3523 std::string Str("shape=Mrecord");
3524 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3525 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3526 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3527 if (DFS) {
3528 Str += ",style=filled,fillcolor=\"#";
3529 Str += DOT::getColorString(DFS->getSubtreeID(N));
3530 Str += '"';
3531 }
3532 return Str;
3533 }
3534 };
3535 } // namespace llvm
3536 #endif // NDEBUG
3537
3538 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3539 /// rendered using 'dot'.
3540 ///
viewGraph(const Twine & Name,const Twine & Title)3541 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3542 #ifndef NDEBUG
3543 ViewGraph(this, Name, false, Title);
3544 #else
3545 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3546 << "systems with Graphviz or gv!\n";
3547 #endif // NDEBUG
3548 }
3549
3550 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()3551 void ScheduleDAGMI::viewGraph() {
3552 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3553 }
3554