1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** AAC encoder library ******************************
96 
97    Author(s):   M.Werner
98 
99    Description: Quantization
100 
101 *******************************************************************************/
102 
103 #include "quantize.h"
104 
105 #include "aacEnc_rom.h"
106 
107 /*****************************************************************************
108 
109     functionname: FDKaacEnc_quantizeLines
110     description: quantizes spectrum lines
111     returns:
112     input: global gain, number of lines to process, spectral data
113     output: quantized spectrum
114 
115 *****************************************************************************/
FDKaacEnc_quantizeLines(INT gain,INT noOfLines,const FIXP_DBL * mdctSpectrum,SHORT * quaSpectrum,INT dZoneQuantEnable)116 static void FDKaacEnc_quantizeLines(INT gain, INT noOfLines,
117                                     const FIXP_DBL *mdctSpectrum,
118                                     SHORT *quaSpectrum, INT dZoneQuantEnable) {
119   int line;
120   FIXP_DBL k = FL2FXCONST_DBL(0.0f);
121   FIXP_QTD quantizer = FDKaacEnc_quantTableQ[(-gain) & 3];
122   INT quantizershift = ((-gain) >> 2) + 1;
123   const INT kShift = 16;
124 
125   if (dZoneQuantEnable)
126     k = FL2FXCONST_DBL(0.23f) >> kShift;
127   else
128     k = FL2FXCONST_DBL(-0.0946f + 0.5f) >> kShift;
129 
130   for (line = 0; line < noOfLines; line++) {
131     FIXP_DBL accu = fMultDiv2(mdctSpectrum[line], quantizer);
132 
133     if (accu < FL2FXCONST_DBL(0.0f)) {
134       accu = -accu;
135       /* normalize */
136       INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not
137                                                     necessary here since test
138                                                     value is always > 0 */
139       accu <<= accuShift;
140       INT tabIndex =
141           (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
142       INT totalShift = quantizershift - accuShift + 1;
143       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],
144                        FDKaacEnc_quantTableE[totalShift & 3]);
145       totalShift = (16 - 4) - (3 * (totalShift >> 2));
146       FDK_ASSERT(totalShift >= 0); /* MAX_QUANT_VIOLATION */
147       accu >>= fixMin(totalShift, DFRACT_BITS - 1);
148       quaSpectrum[line] =
149           (SHORT)(-((LONG)(k + accu) >> (DFRACT_BITS - 1 - 16)));
150     } else if (accu > FL2FXCONST_DBL(0.0f)) {
151       /* normalize */
152       INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not
153                                                     necessary here since test
154                                                     value is always > 0 */
155       accu <<= accuShift;
156       INT tabIndex =
157           (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
158       INT totalShift = quantizershift - accuShift + 1;
159       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],
160                        FDKaacEnc_quantTableE[totalShift & 3]);
161       totalShift = (16 - 4) - (3 * (totalShift >> 2));
162       FDK_ASSERT(totalShift >= 0); /* MAX_QUANT_VIOLATION */
163       accu >>= fixMin(totalShift, DFRACT_BITS - 1);
164       quaSpectrum[line] = (SHORT)((LONG)(k + accu) >> (DFRACT_BITS - 1 - 16));
165     } else {
166       quaSpectrum[line] = 0;
167     }
168   }
169 }
170 
171 /*****************************************************************************
172 
173     functionname:iFDKaacEnc_quantizeLines
174     description: iquantizes spectrum lines
175                  mdctSpectrum = iquaSpectrum^4/3 *2^(0.25*gain)
176     input: global gain, number of lines to process,quantized spectrum
177     output: spectral data
178 
179 *****************************************************************************/
FDKaacEnc_invQuantizeLines(INT gain,INT noOfLines,SHORT * quantSpectrum,FIXP_DBL * mdctSpectrum)180 static void FDKaacEnc_invQuantizeLines(INT gain, INT noOfLines,
181                                        SHORT *quantSpectrum,
182                                        FIXP_DBL *mdctSpectrum)
183 
184 {
185   INT iquantizermod;
186   INT iquantizershift;
187   INT line;
188 
189   iquantizermod = gain & 3;
190   iquantizershift = gain >> 2;
191 
192   for (line = 0; line < noOfLines; line++) {
193     if (quantSpectrum[line] < 0) {
194       FIXP_DBL accu;
195       INT ex, specExp, tabIndex;
196       FIXP_DBL s, t;
197 
198       accu = (FIXP_DBL)-quantSpectrum[line];
199 
200       ex = CountLeadingBits(accu);
201       accu <<= ex;
202       specExp = (DFRACT_BITS - 1) - ex;
203 
204       FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */
205 
206       tabIndex = (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
207 
208       /* calculate "mantissa" ^4/3 */
209       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
210 
211       /* get approperiate exponent multiplier for specExp^3/4 combined with
212        * scfMod */
213       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
214 
215       /* multiply "mantissa" ^4/3 with exponent multiplier */
216       accu = fMult(s, t);
217 
218       /* get approperiate exponent shifter */
219       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp] -
220                 1; /* -1 to avoid overflows in accu */
221 
222       if ((-iquantizershift - specExp) < 0)
223         accu <<= -(-iquantizershift - specExp);
224       else
225         accu >>= -iquantizershift - specExp;
226 
227       mdctSpectrum[line] = -accu;
228     } else if (quantSpectrum[line] > 0) {
229       FIXP_DBL accu;
230       INT ex, specExp, tabIndex;
231       FIXP_DBL s, t;
232 
233       accu = (FIXP_DBL)(INT)quantSpectrum[line];
234 
235       ex = CountLeadingBits(accu);
236       accu <<= ex;
237       specExp = (DFRACT_BITS - 1) - ex;
238 
239       FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */
240 
241       tabIndex = (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
242 
243       /* calculate "mantissa" ^4/3 */
244       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
245 
246       /* get approperiate exponent multiplier for specExp^3/4 combined with
247        * scfMod */
248       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
249 
250       /* multiply "mantissa" ^4/3 with exponent multiplier */
251       accu = fMult(s, t);
252 
253       /* get approperiate exponent shifter */
254       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp] -
255                 1; /* -1 to avoid overflows in accu */
256 
257       if ((-iquantizershift - specExp) < 0)
258         accu <<= -(-iquantizershift - specExp);
259       else
260         accu >>= -iquantizershift - specExp;
261 
262       mdctSpectrum[line] = accu;
263     } else {
264       mdctSpectrum[line] = FL2FXCONST_DBL(0.0f);
265     }
266   }
267 }
268 
269 /*****************************************************************************
270 
271     functionname: FDKaacEnc_QuantizeSpectrum
272     description: quantizes the entire spectrum
273     returns:
274     input: number of scalefactor bands to be quantized, ...
275     output: quantized spectrum
276 
277 *****************************************************************************/
FDKaacEnc_QuantizeSpectrum(INT sfbCnt,INT maxSfbPerGroup,INT sfbPerGroup,const INT * sfbOffset,const FIXP_DBL * mdctSpectrum,INT globalGain,const INT * scalefactors,SHORT * quantizedSpectrum,INT dZoneQuantEnable)278 void FDKaacEnc_QuantizeSpectrum(INT sfbCnt, INT maxSfbPerGroup, INT sfbPerGroup,
279                                 const INT *sfbOffset,
280                                 const FIXP_DBL *mdctSpectrum, INT globalGain,
281                                 const INT *scalefactors,
282                                 SHORT *quantizedSpectrum,
283                                 INT dZoneQuantEnable) {
284   INT sfbOffs, sfb;
285 
286   /* in FDKaacEnc_quantizeLines quaSpectrum is calculated with:
287         spec^(3/4) * 2^(-3/16*QSS) * 2^(3/4*scale) + k
288      simplify scaling calculation and reduce QSS before:
289         spec^(3/4) * 2^(-3/16*(QSS - 4*scale)) */
290 
291   for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup)
292     for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
293       INT scalefactor = scalefactors[sfbOffs + sfb];
294 
295       FDKaacEnc_quantizeLines(
296           globalGain - scalefactor, /* QSS */
297           sfbOffset[sfbOffs + sfb + 1] - sfbOffset[sfbOffs + sfb],
298           mdctSpectrum + sfbOffset[sfbOffs + sfb],
299           quantizedSpectrum + sfbOffset[sfbOffs + sfb], dZoneQuantEnable);
300     }
301 }
302 
303 /*****************************************************************************
304 
305     functionname: FDKaacEnc_calcSfbDist
306     description: calculates distortion of quantized values
307     returns: distortion
308     input: gain, number of lines to process, spectral data
309     output:
310 
311 *****************************************************************************/
FDKaacEnc_calcSfbDist(const FIXP_DBL * mdctSpectrum,SHORT * quantSpectrum,INT noOfLines,INT gain,INT dZoneQuantEnable)312 FIXP_DBL FDKaacEnc_calcSfbDist(const FIXP_DBL *mdctSpectrum,
313                                SHORT *quantSpectrum, INT noOfLines, INT gain,
314                                INT dZoneQuantEnable) {
315   INT i, scale;
316   FIXP_DBL xfsf;
317   FIXP_DBL diff;
318   FIXP_DBL invQuantSpec;
319 
320   xfsf = FL2FXCONST_DBL(0.0f);
321 
322   for (i = 0; i < noOfLines; i++) {
323     /* quantization */
324     FDKaacEnc_quantizeLines(gain, 1, &mdctSpectrum[i], &quantSpectrum[i],
325                             dZoneQuantEnable);
326 
327     if (fAbs(quantSpectrum[i]) > MAX_QUANT) {
328       return FL2FXCONST_DBL(0.0f);
329     }
330     /* inverse quantization */
331     FDKaacEnc_invQuantizeLines(gain, 1, &quantSpectrum[i], &invQuantSpec);
332 
333     /* dist */
334     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i] >> 1));
335 
336     scale = CountLeadingBits(diff);
337     diff = scaleValue(diff, scale);
338     diff = fPow2(diff);
339     scale = fixMin(2 * (scale - 1), DFRACT_BITS - 1);
340 
341     diff = scaleValue(diff, -scale);
342 
343     xfsf = xfsf + diff;
344   }
345 
346   xfsf = CalcLdData(xfsf);
347 
348   return xfsf;
349 }
350 
351 /*****************************************************************************
352 
353     functionname: FDKaacEnc_calcSfbQuantEnergyAndDist
354     description: calculates energy and distortion of quantized values
355     returns:
356     input: gain, number of lines to process, quantized spectral data,
357            spectral data
358     output: energy, distortion
359 
360 *****************************************************************************/
FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL * mdctSpectrum,SHORT * quantSpectrum,INT noOfLines,INT gain,FIXP_DBL * en,FIXP_DBL * dist)361 void FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL *mdctSpectrum,
362                                          SHORT *quantSpectrum, INT noOfLines,
363                                          INT gain, FIXP_DBL *en,
364                                          FIXP_DBL *dist) {
365   INT i, scale;
366   FIXP_DBL invQuantSpec;
367   FIXP_DBL diff;
368 
369   FIXP_DBL energy = FL2FXCONST_DBL(0.0f);
370   FIXP_DBL distortion = FL2FXCONST_DBL(0.0f);
371 
372   for (i = 0; i < noOfLines; i++) {
373     if (fAbs(quantSpectrum[i]) > MAX_QUANT) {
374       *en = FL2FXCONST_DBL(0.0f);
375       *dist = FL2FXCONST_DBL(0.0f);
376       return;
377     }
378 
379     /* inverse quantization */
380     FDKaacEnc_invQuantizeLines(gain, 1, &quantSpectrum[i], &invQuantSpec);
381 
382     /* energy */
383     energy += fPow2(invQuantSpec);
384 
385     /* dist */
386     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i] >> 1));
387 
388     scale = CountLeadingBits(diff);
389     diff = scaleValue(diff, scale);
390     diff = fPow2(diff);
391 
392     scale = fixMin(2 * (scale - 1), DFRACT_BITS - 1);
393 
394     diff = scaleValue(diff, -scale);
395 
396     distortion += diff;
397   }
398 
399   *en = CalcLdData(energy) + FL2FXCONST_DBL(0.03125f);
400   *dist = CalcLdData(distortion);
401 }
402